Exceptional service in the national interest

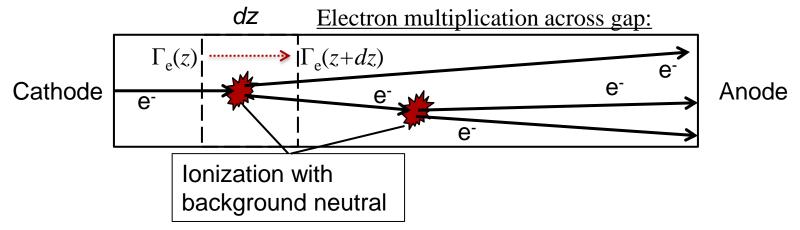
Photos placed in horizontal position with even amount of white space between photos and header

Paschen Concepts in Non-Uniform Gas

Christopher H. Moore, Matthew M. Hopkins, Jeremiah J. Boerner, Paul S. Crozier, Stan G. Moore

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2013-9299C

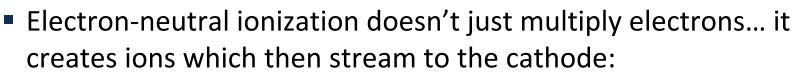
Outline



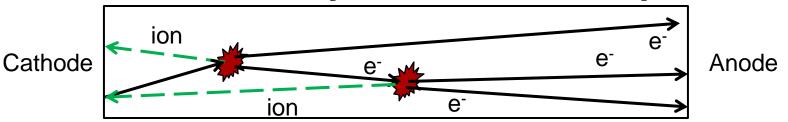
- Paschen Background
- Large gap vs. small gap, or Auger neutralization vs. Cold Field Emission (CFE)
- Effect of non-uniform background neutral gas density

Can We Predict Breakdown Analytically?

- Obtain analytic breakdown criteria (limited by assumptions)
- Paschen breakdown:



Change in e⁻ flux across dz due to ionization with mean free path, λ_{iz}:


$$d\Gamma_e = \Gamma_e \frac{dz}{\lambda_{iz}(z)} = \alpha(z)\Gamma_e dz, \qquad \alpha(z) \equiv \frac{1}{\lambda_{iz}(z)}$$

- Assume form for $\alpha(z)$: $\alpha(z) = const = A_p p exp\left(-\frac{B_p p}{E}\right)$
 - $A_p \& B_p$ fit to breakdown data and \approx constant over range of E/n
 - Fails when background gas is non-uniform, field is non-uniform, or when ionization significantly depletes the background neutral gas density

Can We Predict Breakdown Analytically?

Electron production at cathode via ion impact:

■ The breakdown is self-sustaining → Auger neutralization of ions produces e^{-} flux at cathode: Assumes γ_{se} is constant – not

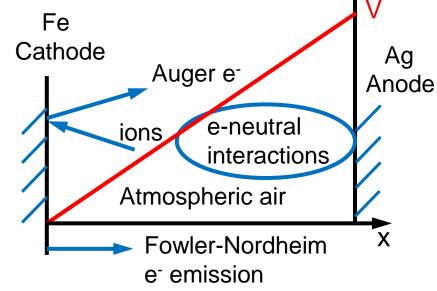
$$\Gamma_e(0) = \gamma_{se}\Gamma_i(0)$$

• Further assume space charge negligible $(E = \frac{V_b}{d_{gap}})$ and put it together to obtain Paschen's curve:

$$V_B = \frac{B_p p d}{ln(A_p p d) - ln[ln(1 + 1/\gamma_e)]}$$

Sandia National Laboratories

valid for microscale gaps


Paschen Curve: Summary

- Basic physical mechanism of breakdown:
 - Electron multiplication across gap via electron-neutral ionization
 - Ions occasionally generate an electron at the cathode
- Main Paschen assumptions:
 - Constant electron yield per ion approaching the surface (γ_e)
 - Negligible space charge
 - Electric field is constant
 - Constant A_p and B_p coefficients based on electron energy distribution function (EEDF) across the gap and the resultant electron-neutral interactions
- Simulation allows for analysis where assumptions are not valid
 - When Cold Field Emission (CFE) of electrons matters
 - Microscale gaps
 - Vacuum gaps with very high applied voltages
 - Spatially non-uniform background neutral gas densities like those developed during vacuum breakdown or when a vacuum seal fails
 - Nonlinear electric fields from realistic geometries

1D Breakdown in Air

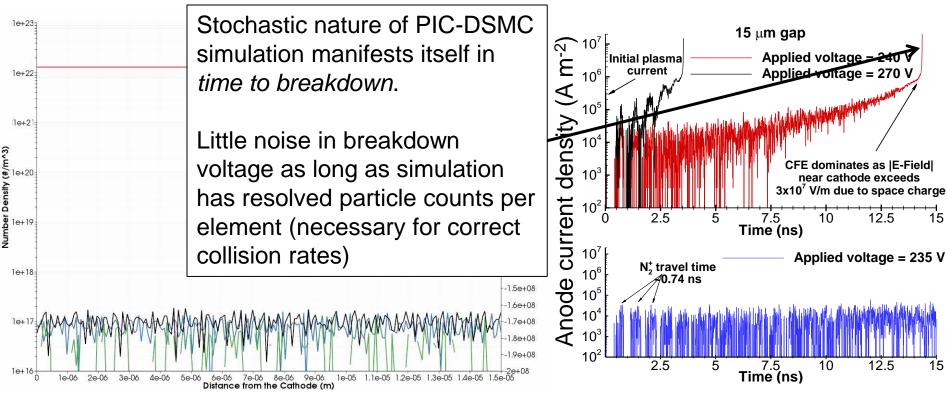
- PIC-DSMC simulations 1D spatial, 3D velocity (1D3V)
 - Simulate various gap sizes \rightarrow Find breakdown voltage
 - Uniform grid, $\Delta x < \lambda_D$ at $n_e = 10^{21} \text{ m}^{-3}$ (typical "breakdown" density)
 - Timestep = 5 × 10⁻¹⁵ s < CFL < mean collision time < 1/ ω_{pe}
- "Trigger" breakdown with an initial, very low density uniform electron & ion plasma of 10¹⁷ m⁻³ (~10⁻⁹*n_{N2})

Surface Model

- Include Auger neutralization
 - Upon approach to surface, ion is neutralized and liberates secondary electron with probability γ_e
 - $\gamma_{e,N_2^+} = 0.026$, $\gamma_{e,O_2^+} = 0.018$ (Lieberman & Lichtenberg, 2005)
 - Function of the ion species' ionization potential & surface work function (use ϕ =4.5 for Fe)
 - Independent of kinetic energy below ~500 eV
 - Dependent on surface contamination
- Include Fowler-Nordheim field emission
 - Quantum tunneling through surface potential barrier accounting for local surface E-field, E_s

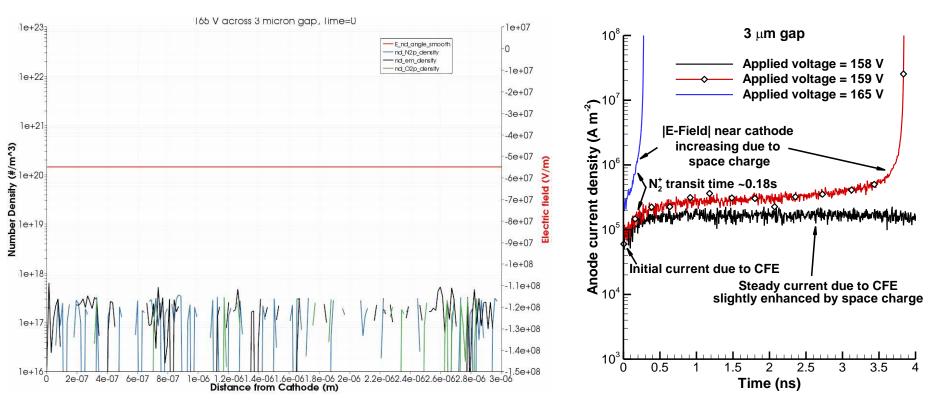
$$j = \frac{A[\beta E_s]^2}{\phi} exp\left(-\frac{B\phi^{1.5}v(y)}{[\beta E_s]}\right); \quad v(y) \approx 0.95 - \left(\frac{C[\beta E_s]^{0.5}}{\phi}\right)^2$$

- Assume β =50, typical for polished metal but dependent on surface conditions
- In present work no attempt is made to calibrate γ or β to exp. data. More rigorous validation with better exp. data can be done in future.


Gas Interaction Model

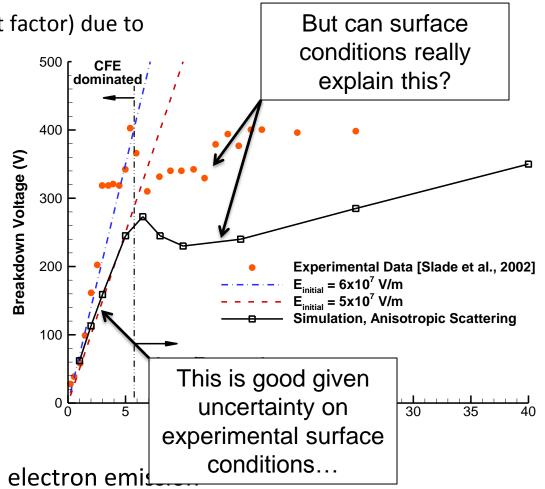
- Include e⁻-N₂, e⁻-O₂, e⁻-N₂⁺, and e⁻-O₂⁺ interactions
 - Elastic, Excitation
 - Alter electron energy distribution
 - Elastic collisions can be either isotropic or preferentially forward scattering
 - Ionization: $N_2 \rightarrow N_2^+$ and $O_2 \rightarrow O_2^+$
 - Source of ions & secondary electrons
 - Use total ionization cross section
 - Do not include double ionization (N₂ → N₂⁺⁺ & O₂ → O₂⁺⁺)
 - Do not include dissociative ionization ($N_2 \rightarrow N + N^+ \& O_2 \rightarrow O + O^+$)
 - Recombination ($O_2 \rightarrow O + O^-$), Attachment ($N_2^+ \rightarrow 2N \& O_2^+ \rightarrow 2O$)
 - Sink for electrons, ions
- Ignore ion-neutral and e⁻-ion collisions for computational speedup
 - During breakdown gas < 0.01% ionized → negligible momentum transfer to neutral gas, comparatively few electron-ion collisions

Large Gap Breakdown



- Initial pulsing of current as ions transit gap and release electrons from cathode which then generate more ions
- Eventually quasi-neutral plasma established
 - Gap voltage drop only across sheath → Fowler-Nordheim emission accelerates breakdown
 - Most ionization events occur at edge of sheath

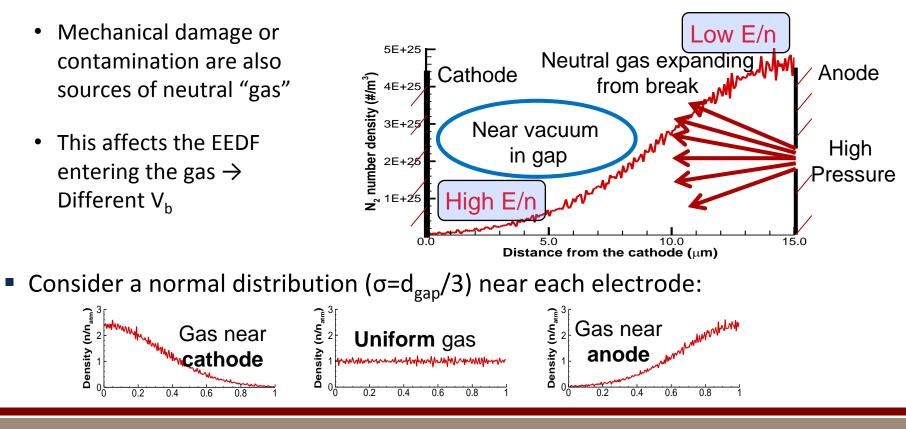
Small Gap Breakdown



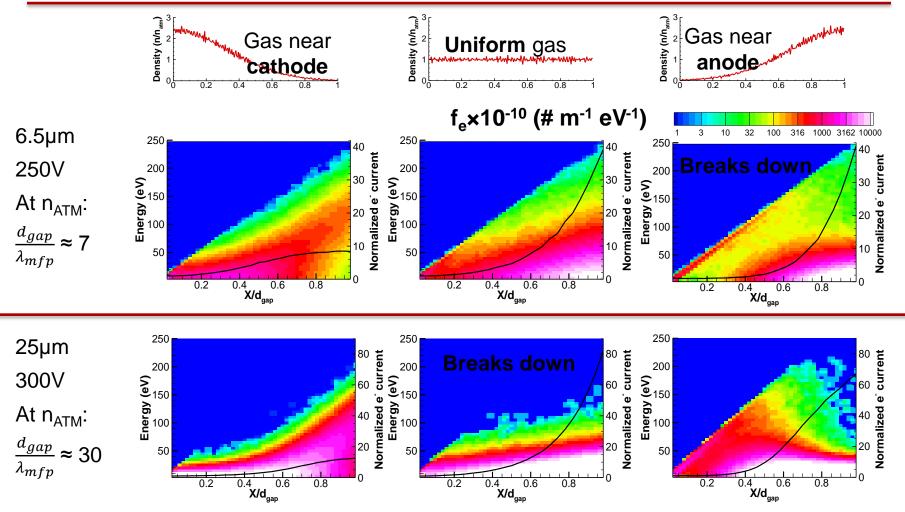
- For small enough gaps, Fowler-Nordheim field emission dominant source of electrons
- Ionization of gap gas → Net charge buildup across gap leads to increased field emission and breakdown

Breakdown vs. Gap Size: Experiment

- Small gaps: Fowler-Nordheim emission
 - Sensitive to β (field enhancement factor) due to microscopic roughness & φ (cathode work function)
 - Experiment requires initial E-field across the gap of ~6 × 10⁷ V/m to breakdown (blue dash-dot line)
 - Simulation requires smaller initial E-field of ~5 × 10⁷ V/m (while still in CFE regime)

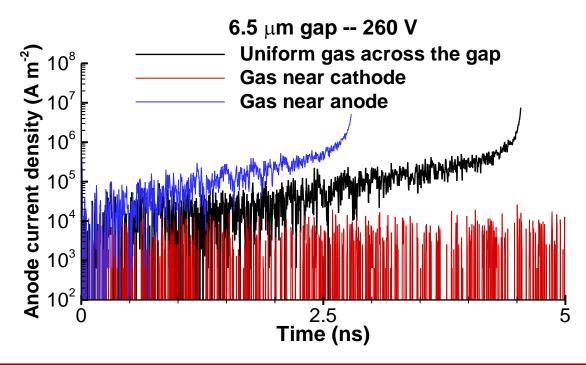


Large Gaps: Auger neutralization electron emittees conditions...
Sensitive to secondary emission coefficient and e⁻ - neutral interactions


Non-Uniform Gas Model

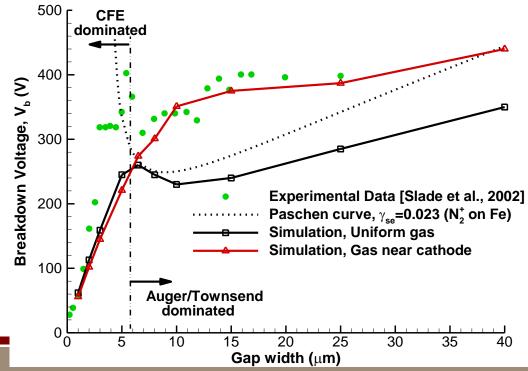
- Paschen curve predicts V_b well for large gaps with a uniform background of neutrals
- What if the gas is non-uniform across the gap?
 - Vacuum breakdown proceeds via production of neutral gas "fuel" from surfaces usually acting as cathode or anode

Electron Energy Distributions

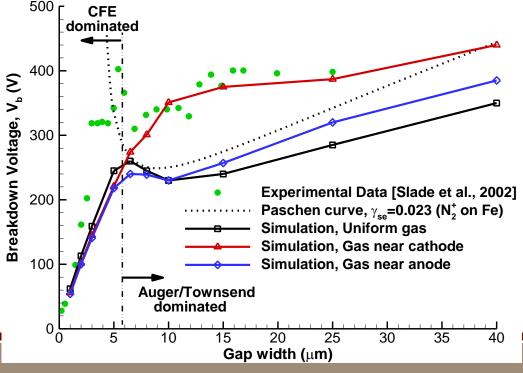


■ Energy dependent cross sections + applied field that accelerates electrons across the gap → Location of high density region matters!

Current Across 6.5 µm Gap


- Changes in EEDF directly affect current growth!
- Increased gas density near the cathode suppresses breakdown
- Increased gas density near anode speeds up breakdown for smaller gaps (Kn_{gap} ~ 0.2)
 - Ionization rate increased, fewer ion pulses needed to generate quasi-neutral plasma and the associated sheath → CFE

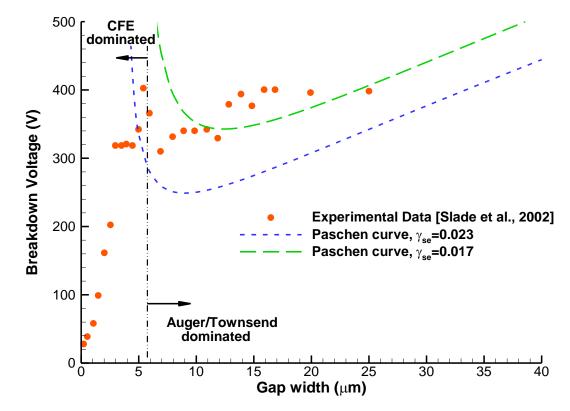
Breakdown vs. Gap size



- CFE dominated gaps: V_b not significantly affected by gas distribution.
- Auger/Townsend dominated gaps:
 - Gas near cathode $\rightarrow V_{b}$ increases by ~50%
 - Close to cathode low energy electrons likely to lose energy to excitation & don't have energy for ionization. Collision rate (~density) smaller once electrons gain sufficient energy → Less ionization per electron across the gap.

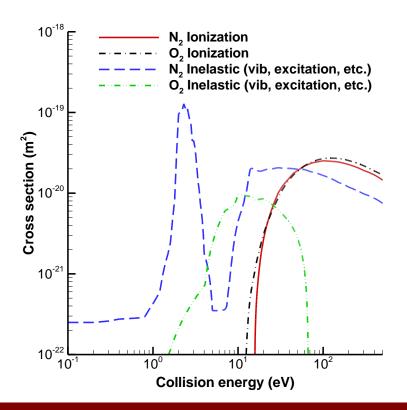
Breakdown vs. Gap size

- Auger/Townsend dominated gaps:
 - Gas near anode → V_b can decrease by ~10% relative to uniform gas distributions, but it also increases for larger gaps Why?
 - V_b increases when gap width > several mean free paths
 - In high density region the e⁻ don't gain as much energy from the field between collisions resulting in increased energy lost to excitation and less ionization.
 - V_b decreases when gap width < several mean free paths
 - Relatively fewer collisions so e⁻ gains more energy from field between collisions
 - Higher average collision energy for the e⁻ → More ionization collisions relative to inelastic


Conclusions: Non-Uniform Neutral Gas

- Neutral background gas distribution not as important for breakdown in microscale gaps dominated by Fowler-Nordheim cold field emission of electrons from the cathode
 - For larger gaps the background gas distribution effects the EEDF through an interplay between energy gained from the field and energy lost due to inelastic collisions → net ionization rate changes with gas distribution
- Gas density higher **near cathode**:
 - V_b increased by ~50%
 - Collision rate slower once electrons gain sufficient energy to ionize → Less ionization per electron across the gap.
- Gas density higher **near anode**:
 - V_b increases when gap width > several mean free paths. In high density region electrons don't gain as much energy between collisions and thus have higher chance to lose energy via excitation vs. ionization
 - V_b decreases when gap width < several mean free paths. Fewer collisions across gap $\rightarrow e^-$ energy near peak ionization cross section

Breakdown vs. Gap size: Paschen


- Experimental breakdown voltages in large gaps (where Paschen should be valid) "fit" by $\gamma_e \cong 0.017$
- Small change in γ_e gives large change in Paschen curve

Sandia

Electron production across gap

- EEDF changes if there is a non-uniform background gas
 - More energy-losing excitation collisions if denser gas located in region where electrons are ~10 eV (near cathode)
 - Ionization efficiency changes → More/Less daughter electrons from a single electron created at cathode (Auger-neutralization)
- Thus different background neutral gas density distributions result in different electron multiplication across the gap for a given voltage
 - Complex interplay between energy gained from the field, lost due to inelastic collisions, and the ionization rate

