Multi Harmonic Accelerating Cavities for RF Breakdown Studies*

Y. Jiang¹, J.L. Hirshfield^{1,2}

¹Department of Physics, Yale University, New Haven, CT, USA ²Omega-P, Inc., New Haven, CT, USA

*Supported in part by US Department of Energy, Office of High Energy Physics

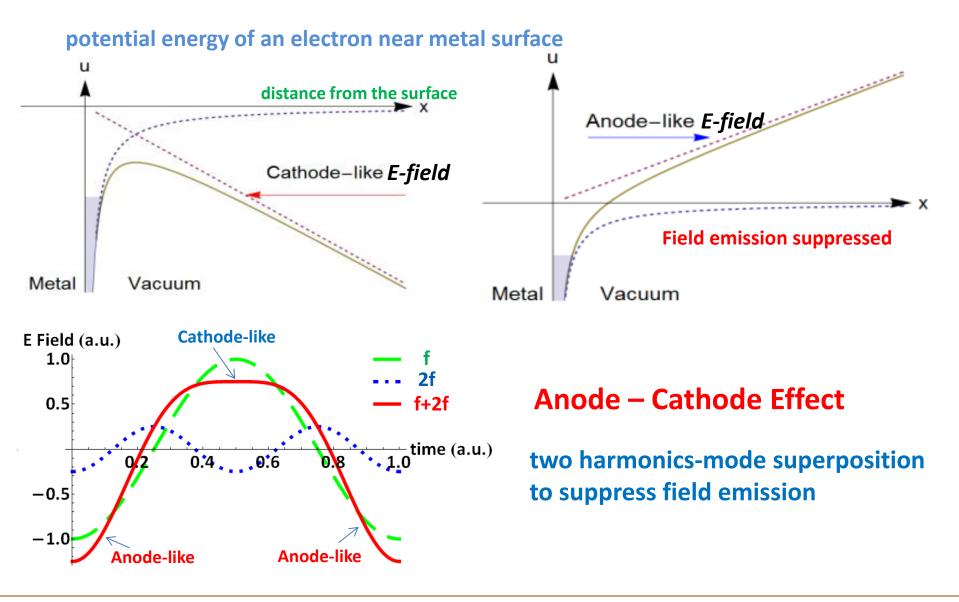
MeVArc 2013

Outline

I. Harmonic mode superposition for breakdown suppression

- $TM_{010} + TM_{020}$ ("anode-cathode effect" field emission suppression)
- $TM_{010} + TM_{011}$ or $TM_{010} + TM_{012}$ (pulsed heating suppression)

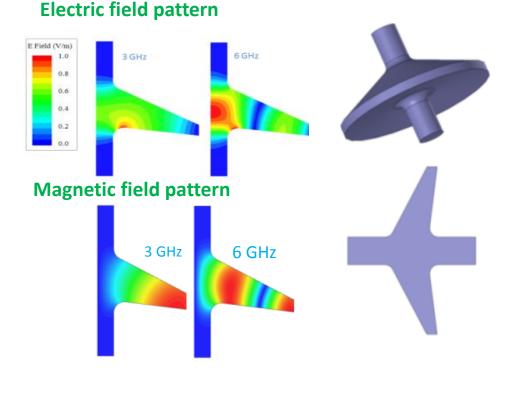
II. Plan of RF Breakdown Experiments

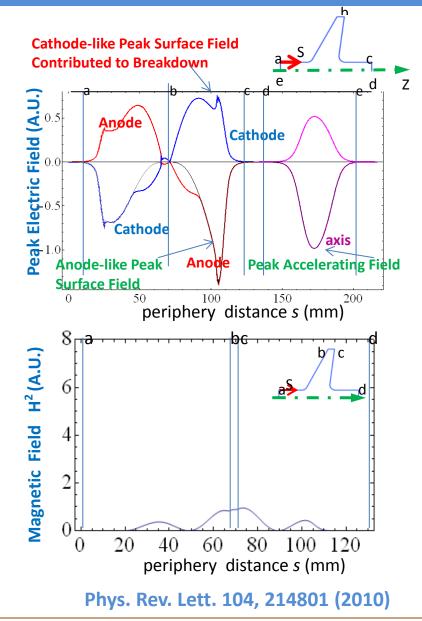

- Two frequency RF Source
- Clamped Test Structures

III. Possible application for future accelerators

- Externally driven from phase-synchronous RF sources
- Beam driven (detuned cavities in a co-linear TBA configuration)

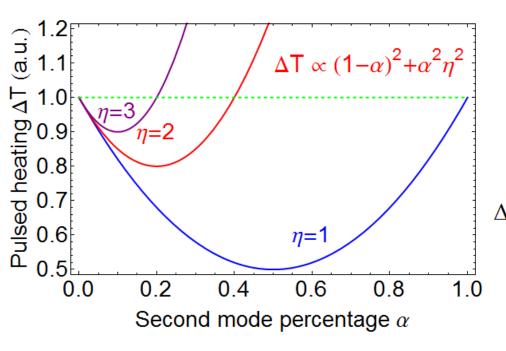
Motivation I: Field Emission





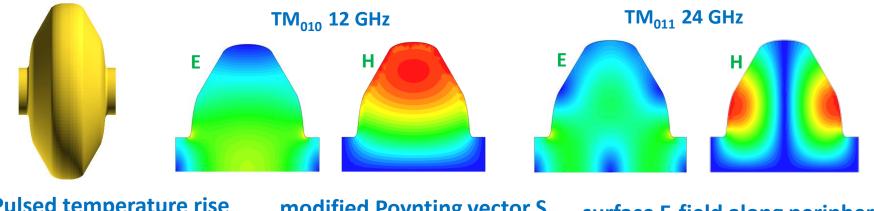
Multi-Harmonic Cavity: Anode-Cathode effect

TM₀₁₀ + TM₀₂₀ (f + 2f) MHC:

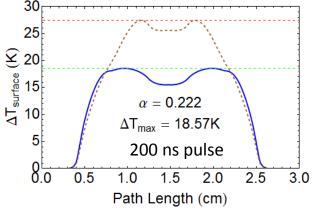

- Superposition of TM₀₁₀ and 2nd -harmonic TM₀₂₀
- Longitudinal non-symmetric
- Peak accelerating field ≥ breakdown threshold

Motivation II: Surface Pulsed Heating

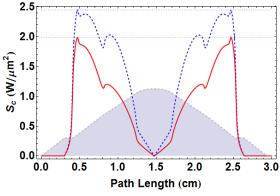
 $E_{total} = (1 - \alpha)E_1 + \alpha E_2$ $H_{total} = (1 - \alpha)H_1 + \alpha H_2$ E₁, E₂ normalized to the same acceleration gradient α is the percentage of the 2nd mode $\Delta T \propto (1-\alpha)^2 < H_1^2 > + \alpha^2 \sqrt{f_2/f_1} < H_2^2 >$ $= \langle H_1^2 \rangle [(1 - \alpha)^2 + \alpha^2 \eta^2]$ where $\eta = \sqrt{(f_2/f_1)^{1/2} < H_2^2} > / < H_1^2 >$

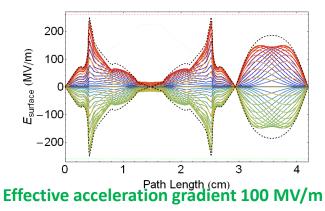

Quadratic dependence: $\exists \alpha \quad (1 - \alpha)^2 + \alpha^2 \eta^2 < 1$ So are modified Poynting vector *S_c* and total required RF power *P_{total}*

two harmonics-mode superposition to suppress pulsed heating



MHC : Pulsed Heating Suppression


$TM_{010} + TM_{011}$ (f + 2f)


Pulsed temperature rise

modified Poynting vector S_c

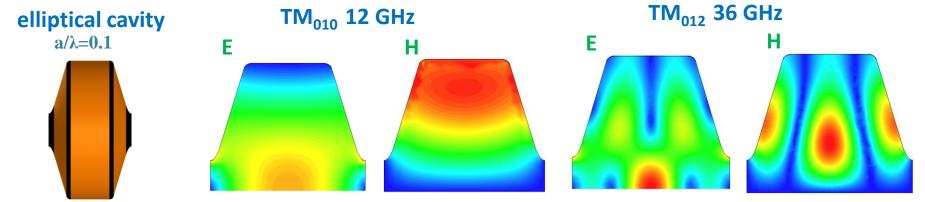
surface E-field along periphery

2-mode superposition compared to fundamental mode alone in the same MHC : \Box pulsed heating temperature $\sqrt{32\%}$ \Box maximum modified Poynting vector S_c \downarrow 20% effective shunt impedance **↑** 37% \Box total required RF power \downarrow 27%

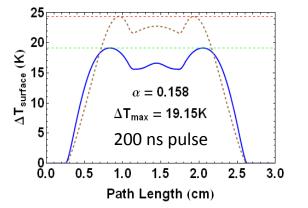
TM₀₁₀+TM₀₁₁ Cavity

a/λ=0.12 π mode standing wave	TM _{010 +} TM ₀₁₁ Bimodal Cavity			Pillbox A	Nose-cone	
effective gradient E _{acc} =100MV/m	1 st harmonic alone	2 nd harmonic alone	78% 1 st +22% 2 nd	1 st harmonic only	Pillbox B 1 st harmonic only	1 st harmonic only
frequency (GHz)	11.9942	23.9884		11.9942	11.9942	11.9942
effective shunt impedance (MΩ/m)	95.7	38.3	▲ 131.4	89.7	99.1	113.9
transit time factor	0.765	0.786		0.768	0.753	0.758
max E _{surf} (MV/m)	246.8	367.4	246.8	209.7	246.8	225.0
max H _{surf} (MA/m)	0.327	0.634	0.350	0.327	0.298	0.289
max <i>S_c</i> (W/μm²)	2.45	10.3	▼1.95	3.75	3.02	4.20
max ΔT (K) @ 200ns pulse length	27.5	148.2	▼18.6	27.5	22.87	21.5
wall loss (MW)	1.306	3.263	▼0.95	1.392	1.262	1.097

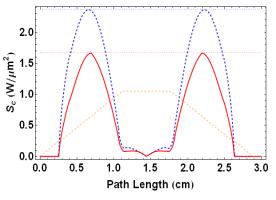
2-mode superposition compared to fundamental mode alone in the same MHC : □ pulsed heating temperature ↓32% □ maximum modified Poynting ve

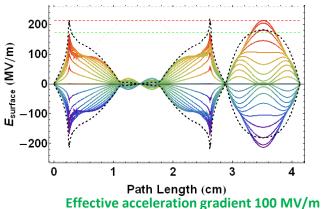

 \Box total required RF power \downarrow 27%

□ maximum modified Poynting vector $S_c ↓ 20\%$ □ effective shunt impedance ↑ 37%



MHC : Pulsed Heating Suppression I


$TM_{010} + TM_{012} (f + 3f)$


pulsed heating temperature

modified Poynting vector S_c

surface E-field along periphery

◊ pulsed heating temperature ↓22%
◊ effect shunt impedance ↑23%
◊ peak surface E-field ↓19.4%

◊ modified Poynting vector ↓30%
◊ total RF power ↓ 19%

TM₀₁₀+TM₀₁₂ Cavity

a/λ=0.10 π mode standing wave	TM _{010 +} TM ₀₁₂ Bimodal Cavity			Pillbox A	Pillbox B	Nose-cone
effective gradient	1 st harmonic alone	3 rd harmonic alone	84% 1 st +16% 3 rd	1 st harmonic only	1 st harmonic only	1 st harmonic
<i>E_{acc}</i> =100 MV/m frequency (GHz)	11.9942	35.9826	±10% 2,**	11.9942	11.9942	only 11.9942
effective shunt impedance (MΩ/m)	100.73	24.65	124.19	100.43	99.18	127.7
transit time factor	0.753	0.633		0.762	0.758	0.749
max E _{surf} (MV/m)	209.8	359.2	178.0	206.7	178.0	218.6
max H _{surf} (MA/m)	0.309	0.776	0.339	0.309	0.309	0.267
max S _c (W/μm²)	2.365	9.700	1.670	3.190	3.181	3.68
max ΔT (K) @ 200ns pulse length	24.46	261.8	▼ 19.15	24.46	24.46	17.65
wall loss (MW)	1.241	5.069	▼ 1.006	1.244	1.260	0.979

	Bimodal (11%)	Bimodal (16%)	Nose-cone	
effective gradient E_a	150	150	150	MV/m
effective shunt impedance	119.7	124.2	127.7	MΩ/m
max E _{surf}	250.0	267	327.9	MV/m
max H _{surf}	0.488	0.509	0.401	MA/m
max S _c	4.26	3.76	8.28	W/µm²
max ΔT @	45.0	43.1	39.7	К
200ns pulse length	43.0	43.1	59.7	ĸ
wall loss	2.35	2.26	2.20	MW

Outline

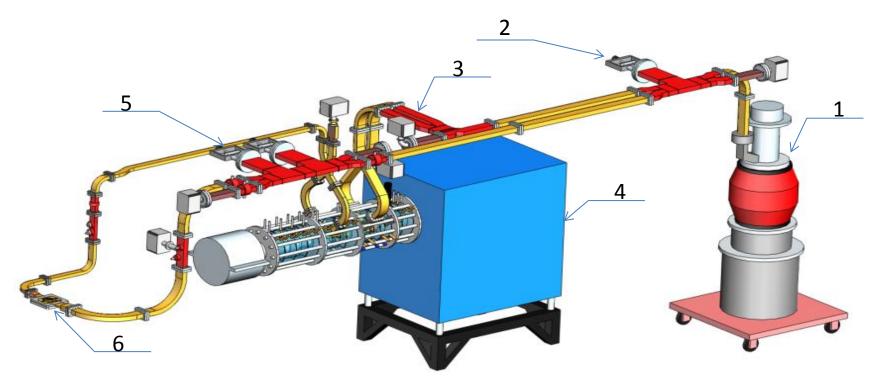
I. Harmonic mode superposition for breakdown suppression

- $TM_{010} + TM_{020}$ ("anode-cathode effect" field emission suppression)
- $TM_{010} + TM_{011}$ or $TM_{010} + TM_{012}$ (pulsed heating suppression)

II. Plan of RF Breakdown Experiments

- Two frequency RF Source
- Clamped Test Structures

III. Possible application for future accelerators


- Externally driven from phase-synchronous RF sources
- Beam driven (detuned cavities in a co-linear TBA configuration)

Two-Frequency RF Source at Yale University

Power splitting into each frequency component with adjustable amplitude and phase

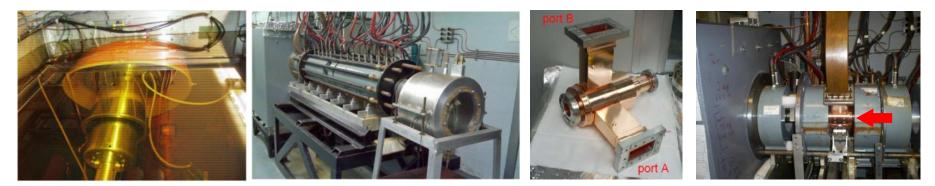
- **Two sources automatically phase-locked**
- **No new modulator, no C-band or X-band driver needed.**


Layout of dual-frequency RF source, shown feeding a bimodal test cavity:

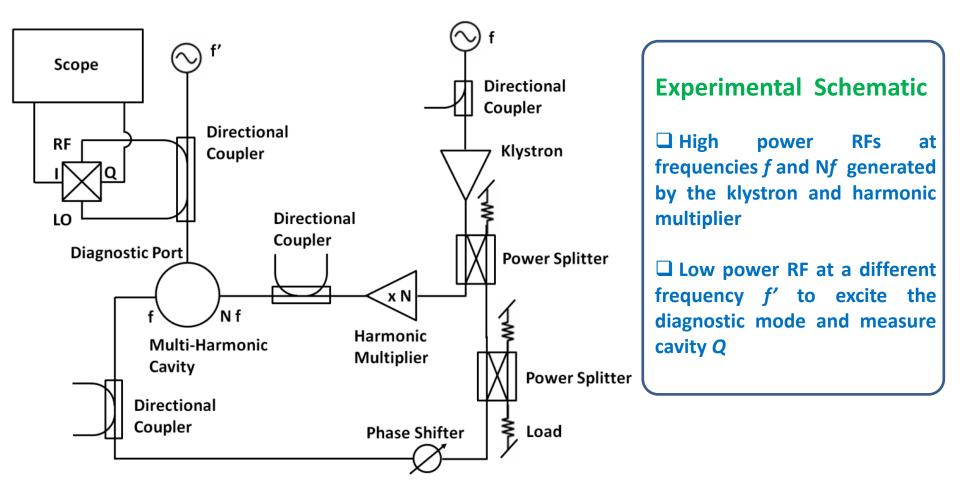
- 1. S-band klystron
- 4. 250-kV gun tank

- 2. variable power splitter
- 5. variable power splitter and phase shifter
- 3. 3-dB hybrid splitter
- 6. bimodal test cavity

Harmonic Output Cavities

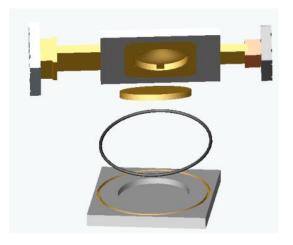


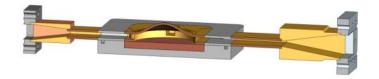
Harmonic Multipliers

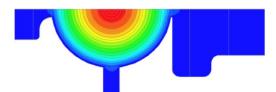

Nominal operating parameters of harmonic multipliers

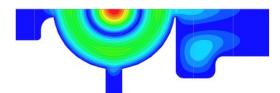
	2 nd harmonic multiplier	3 rd harmonic multiplier	7 th harmonic multiplier
Output frequency	5.712 GHz	8.568 GHz	19.992 GHz
RF input power at 2.856 GHz	6.0 MW	6.0MW	8.5 MW
Beam voltage and power at 20 A	250 kV, 5.0 MW	200 kV, 4.0 MW	250 kV, 5.0 MW
RF output power	5.3 MW	6.7 MW	4.0 MW
Harmonic power multiplication factor	0.88	1.12	0.47
Overall efficiency	48%	67%	30%

Drive Cavity cold tested and installed

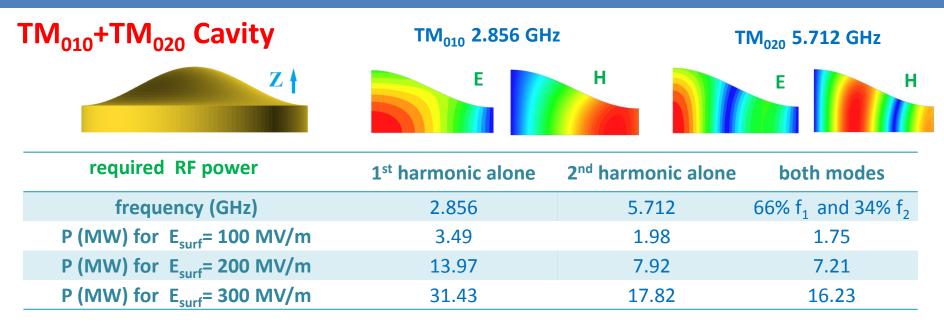

RF Breakdown and Pulsed Heating Experiment



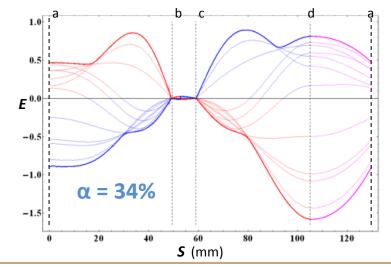


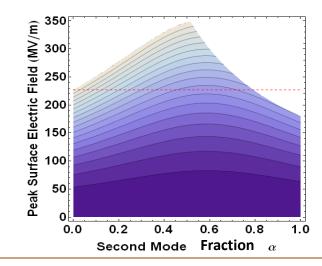

Omega-P, Inc.

Clamped Cavity to Test Anode-Cathode Effect

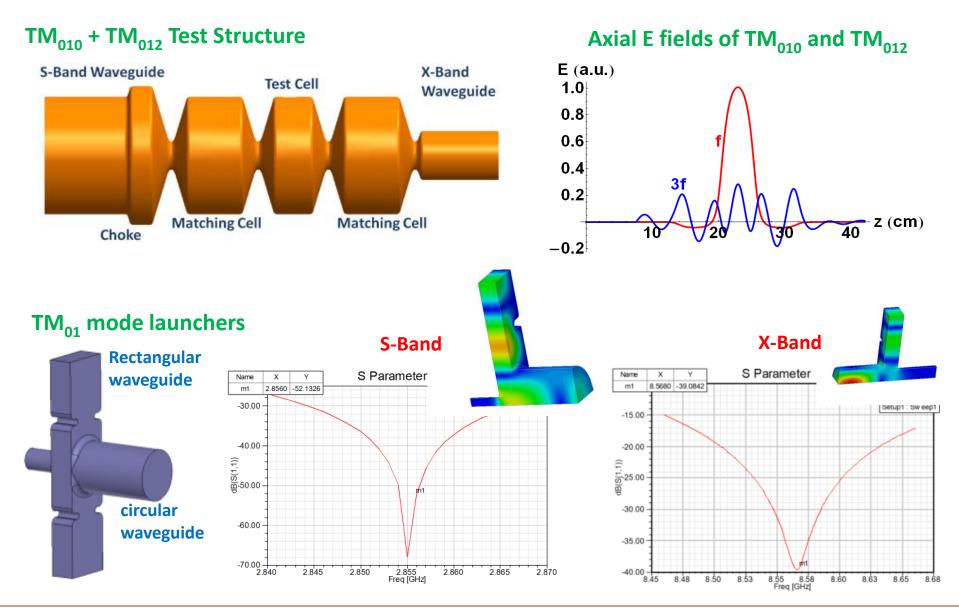

Clamped structure with demountable bottom flat surface allows convenient replacement of test plates

The bottom test plate is expected to exhibit the greatest damage from breakdown, due to the anode-cathode field imbalance.


The top and input waveguides are to be reused for tests with varying power levels and phases for the two RF sources


RF Properties of Bimodal Test Cavity

E-field distribution along cavity periphery S



peak surface E-field with 18 MW klystron power

Bimodal Cavity to Suppress Pulsed Heating

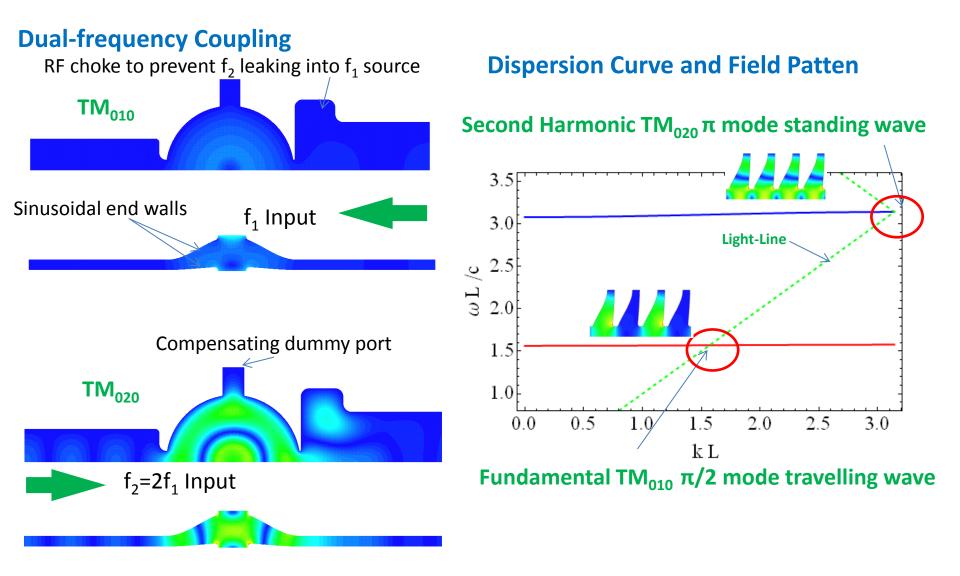
Yale

Outline

I. Harmonic mode superposition for breakdown suppression

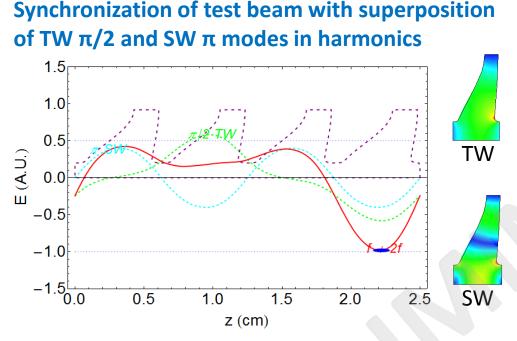
- $TM_{010} + TM_{020}$ ("anode-cathode effect" field emission suppression)
- $TM_{010} + TM_{011}$ or $TM_{010} + TM_{012}$ (pulsed heating suppression)

II. Plan of RF Breakdown Experiments

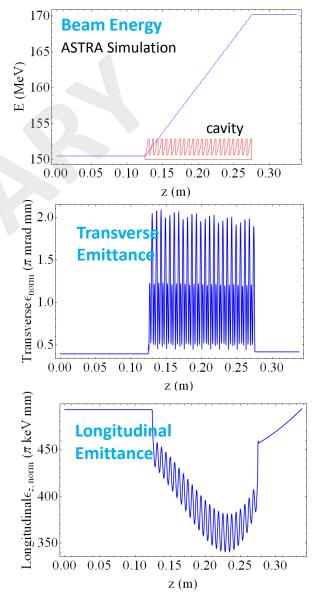

- Two frequency RF Source
- Clamped Test Structures

III. Possible application for future accelerators

- Externally driven from phase-synchronous RF sources
- Beam driven (detuned cavities in a co-linear TBA configuration)



External RF Excitation of MHC Structure


Beam Dynamics in MHC

Peak axial electric field of each mode:
 E₁=150 MV/m at 12 GHz, E₂=60 MV/m at 24 GHz

Peak anode-like surface field 388 MV/m, peak cathode-like surface field 213 MV/m (< breakdown limit)</p>

□ 24 cells, 15 cm, 150 MeV => 170 MeV, Effective Gradient 135 MV/m

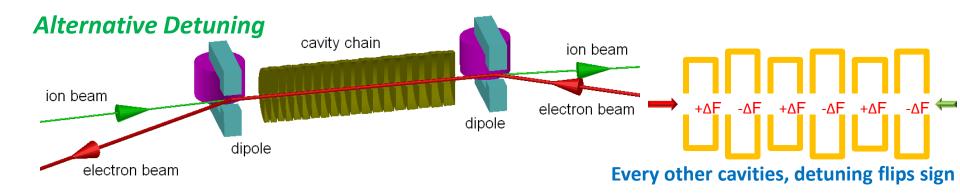
Outline

I. Harmonic mode superposition for breakdown suppression

- $TM_{010} + TM_{020}$ ("anode-cathode effect" field emission suppression)
- $TM_{010} + TM_{011}$ or $TM_{010} + TM_{012}$ (pulsed heating suppression)

II. Plan of RF Breakdown Experiments


- Two frequency RF Source
- Clamped Test Structures


III. Possible application for future accelerators

- Externally driven from phase-synchronous RF sources
- Beam driven (detuned cavities in a co-linear TBA configuration)

Beam Excitation: Detuned-Cavity TBA

"High-gradient two-beam accelerator structure", S. Yu Kazakov, S.V. Kuzikov, Y. Jiang, and J. L. Hirshfield, PRSTAB 13, 071303 (2010)

Single Mode Detuned Cavity TBA

Estimation for steady state in SW TM₀₁₀ π -mode structure

Steady state E field on axis

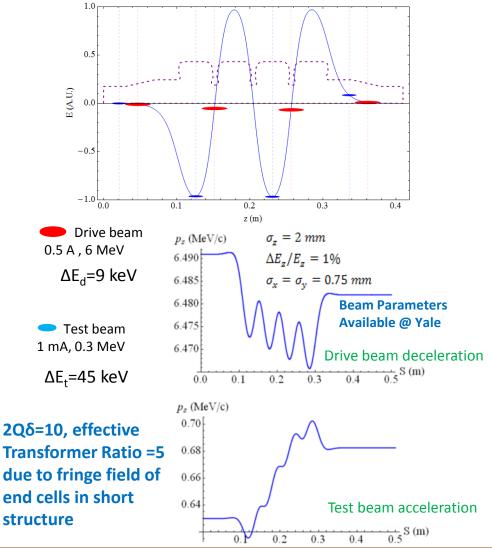
$$E(z,t) = -\frac{E(z)I_{\omega}R}{E_0T}\cos\phi e^{i(\omega t + \phi)}$$

Drive beam deceleration

$$D = \frac{1}{\Lambda} \Re \int_{-\Lambda/2}^{\Lambda/2} E(z, t = z/c) dz = -\frac{I_{\omega}R}{2} \cos^2 \phi$$

Test beam acceleration

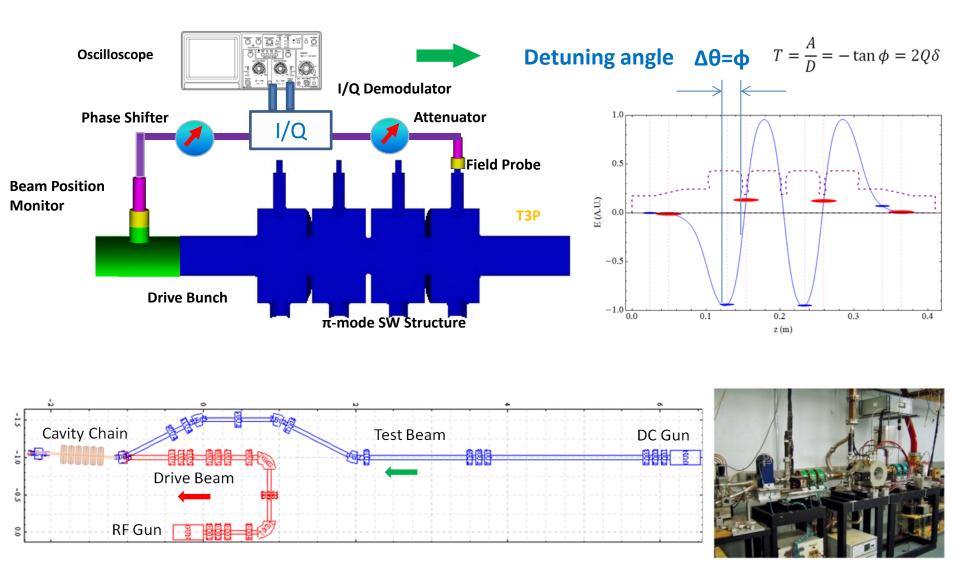
$$A = \frac{1}{\Lambda} \Re \int_{-\Lambda/2}^{\Lambda/2} E_1(z, t = z/c + \pi/2\omega) dz = \frac{I_\omega R}{4} \sin 2\phi$$


Transformer ratio

$$T = \frac{A}{D} = -\tan\phi = 2Q\delta$$

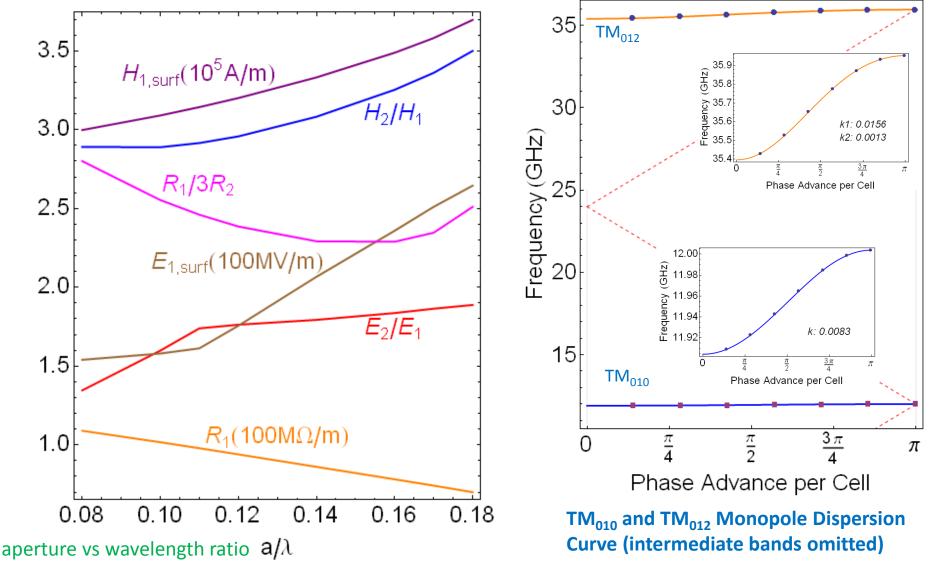
- I_{ω} Fourier component of beam current at ω
- *R* Effective Shunt impedance
- Ø Detuning angle

$$\delta = (\omega - \omega_c)/\omega_c$$
 Detuning


2.856 GHz TM010 π -mode excitation by drive bunches in detuned 4-cell SW structure

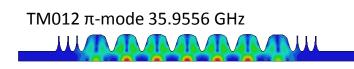
Omega-P, Inc.

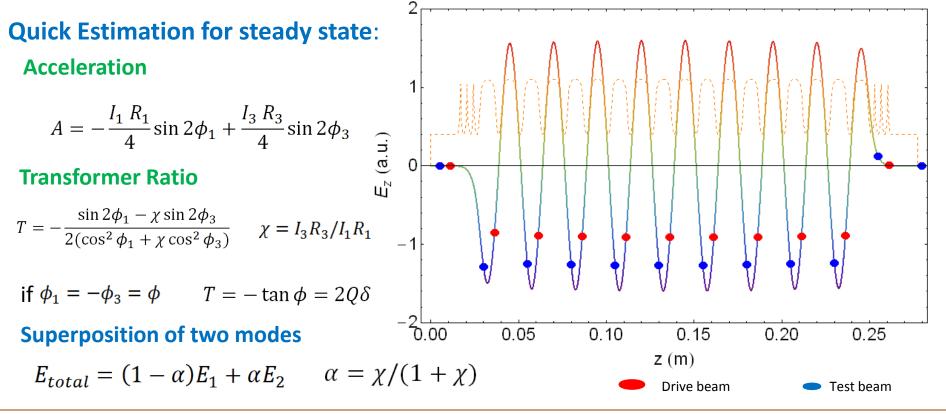
Yale


Single Mode TBA Experimental Plan

RF Parameters of TM₀₁₂ MHC Structure

Performance with different a/λ


Yale


Beam-Driven X-band MHC Structure

Drive frequency is 11.9942 GHz

- **Detuning angle is 85.6 degree and 2Q\delta=13.1**
- □ Chokes at either end of the structure trap field
- With a/λ=0.12, the drive current needs to be 13A to have 100 MV/m acceleration gradient, or 20A to have 150 MV/m. New TBA paradigm?

TM010 π-mode 12.0032 GHz

Acknowledgement

Omega-P, Inc.

Beam Physics Lab, Yale University

Prof. Jay Hirshfield, PI

Dr. Sergey Shchelkunov

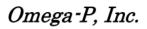
Visiting Scholars

Prof. Roger Jones University of Manchester UK

Lee Carver University of Manchester UK

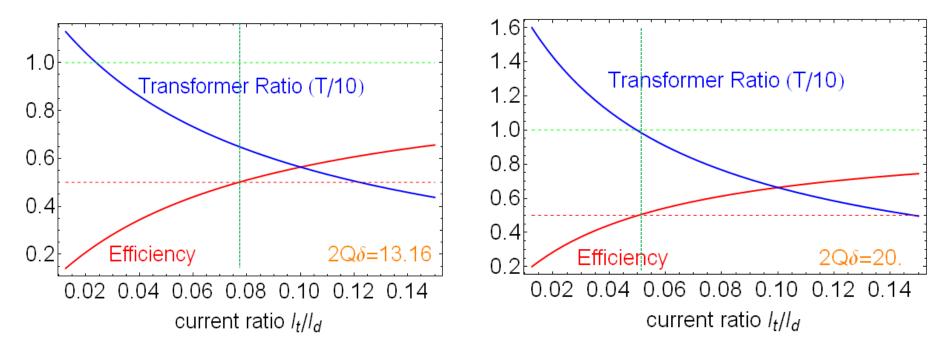
Summary

□Multi-harmonic operation of acceleration cavities may allow suppression of RF breakdown and/or pulsed heating, and possible increase in acceleration gradient.


- TM₀₁₀+TM₀₂₀, exhibits anode-cathode effect that could increase acceleration gradient without raising the surface cathode field.
- TM₀₁₀+TM_{01m}, exhibits smaller surface pulsed heating than TM₀₁₀ alone.

QRF Breakdown tests driven by two-frequency RF source are underway.

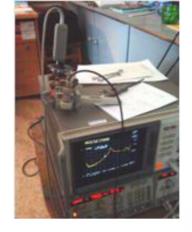
Detuned single-mode cavity two-beam structure shows high transformer ratio, and high beam-to-beam efficiency. Detuned bimodal cavity two-beam structure could have the same virtues with the additional benefit of reduced field emission and/or surface pulsed heating. Beam dynamics and wakefield studies are underway.



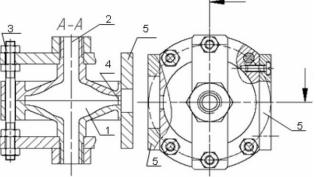
Performance of MHC with Beam Loading

Test beam loading with different detuning

Details in PRSTAB 13, 071303 (2010)



Omega-P, Inc.

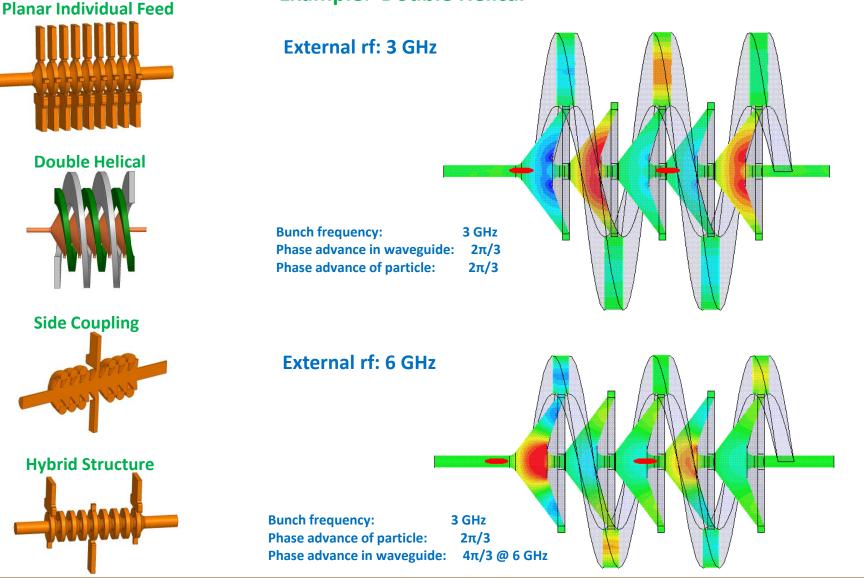

Cold Test of Tunable Bimodal Cavity

Bimodal symmetric cavity was built with its TM_{010} -like mode with $f_1 = 7.0$ GHz and TM_{020} -like mode with $f_2 = 14.0$ GHz, with greater sensitivity to fabrication errors.

Tuning of frequencies was achieved by slightly squeezing 2-mm thick flexible copper wall which could be easily deformed by ~1 mm without plastic deformation. The first mode is more sensitive to such wall displacement than is the second.

Drawing of the test cavity with a flexible wall: 1 - cavity body; 2 - simulated beam tunnel; 3 - tuning screw, 4 - coupling holes; 5 - waveguide flanges.

Multi-harmonic test setup for RF breakdown studies, Y. Jiang, S.V. Kuzikov, S.Yu. Kazakov, and J. L. Hirshfield, Nuclear Instruments and Methods in Physics Research A, v657, pp 71-77 (2011)


-10 -10 -20 -20 T, dB Вb -30 -30 -40 -40 -50 13.84 13.86 13.88 13.92 13 94 13.84 13.94 13.86 13.88 13.9 13.92 13.96 13.98 f GHz f GHz

> Initial mode equidistance exceeded 26 MHz. $\Delta f \approx 1$ MHz can be achieved by squeezing the wall to shift by approximately 0.1 mm.

Multi-harmonic excitation and synchronization

Yale

Possible Structure Schemes

```
Omega-P, Inc.
```