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Motivation

Want to build high-gradient
(Eacc ≥ 100MV/m)
particle accelerators
Highest gradient achieved in
normal-conducting structures
Gradient limited by arcs
Understand arc ignition!

→ Design structures
more resistant to arcing
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Experimental comparison: DC spark experiment

High-voltage DC pulses
on spark gap in ultra high vacuum
Understand basic behavior
of vacuum arc breakdowns
Measure gap voltage & current
through the breakdown
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Current calculation: Shockley-Ramo theorem

Calculation of instantanious currents on electrodes
Particles/time through plane incorrect & noisy
Noise is a problem for circuit models

Use the Shockley-Ramo theorem to calculate currents
Charges in the gap induce charges on electrodes
Induced charge dependent on position
Moving charges ⇒ current

Assumes electrostatic fields

Get ϕ for an electrode by
solving ∇2ϕ = 0 with ϕ = 1
on electrode of interest,

ϕ = 0 for all other electrodes.

Qind = −qϕ(~r)
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Arc evolution

Main stages of vacuum arc
ignition are visible:

1 Field emission
and gas creation

2 Ionization
3 Bombardment and growth

Current growing together
with transverse size
Capacitor discharged
Ions accelerated against field

Fast discharge:
U = 5800 V, C = 0.5 pF
βtip = 35, βflat = 2
Heatspike Y = 1,
threshold = 1025 ions/cm2/s
Sim. domain 6x24 µm
∆t = 0.9 fs, ∆z = 50 nm
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Emission process

Parameters for emission:
Field emission:
βtip = 35
βflat = 1 / 2
Evaporation ratio
rCu = 0.015
Heatspike
Yield = 0 / 1 / 2
threshold = 1025/cm2/s

Initial fields:
967 and 290 MV/m
Effects:

Time-to-breakdown
Speed of growth
Neutral/ion ratio
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External circuit
Circuit types tested:

Capacitive – prev. slide
Resistive

Varied parameters:
Resistance
Initial voltage

All simulations ran with:
βtip = 35, βflat = 2
Heatspike Y = 1,
threshold = 1025/cm2/s

Results
Smaller U⇒ longer tbreakdown
Larger R ⇒ slower growth
Small Vgap ⇒ plasma bridge

Gap
C

I

Vgap = Vt=0 − 1
C

∫ t
0 I dt

RGap
U

Vgap = U − RI
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Small Vgap ⇒ plasma bridge

Resistive, U=1740 V:
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Introduction Simulation code Simulations System state Summary

Ion bombardment of cathode

Energy distribution
mostly determined by sheath

Most probable value ≈ 30 eV
Average yield from
Yamamura-Tawara sputtering ≈ 0.1

Not enough to sustain arc
Heat-spike sputtering needed

Bombardment flux density
≈ 1024 − 1025/cm2/s
Slow “pulsing” in the bombardment

Associated with high gap voltage
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Species: i, surface: c, time window: 0.000000-0.332503 ns

U = 5700 V
R = 0 Ω
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Introduction Simulation code Simulations System state Summary

Surface current density

Anode dominated by
electron plume

Current densities reach
≈ 107A/cm2

Cathode sees both
electron emission,
ion bombardment,
and returning electrons

“Pulsing” can reverse
current under sheath

U = 1740 V
R = 0 Ω

U = 5800 V
R = 0 Ω
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Introduction Simulation code Simulations System state Summary

Field distribution

Sheath field ≈ 10GV /m
Field expelled
from quasineutral plasma

Some oscillations still visible,
fewer at smaller Vgap

If Vgap remains high,
high gradient between
top of plasma and anode

Play field
0 Ω

Play field
5000 Ω

Play potential
0 Ω

Play potential
5000 Ω

All using resistive circuit,
U = 5800 V
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Introduction Simulation code Simulations System state Summary

Temperature

If Maxwellian, velocity
components are Gaussian

v = N (µ, σ)

T[K] =
(σ[m/s])

2∗m[kg]
k[J/K]

or T[eV] =
(σ[m/s])

2∗m[kg]
e[J/eV]

To be expected if plasma
dominated by collissions

Not always the case
Especially at high gradients
Especially not for electrons

Typical temperatures 5–20 eV
(105–106 K)

Higher at larger voltages
Where defined

Neutral Cu
5800 V
5000 Ω

Electrons
5800 V
0 Ω
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Introduction Simulation code Simulations System state Summary

Summary

ArcPic2D: 2D3V PIC+MCC code
Heat spike sputtering needed for plasma growth
Higher voltage ⇒

Shorter tbreakdown
Faster growth
Less anode splashing
More turbulent plasma
High gradient between plasma and anode

Large circuit resistance ⇒ slower current growth
Ion impact energy on cathode ≈ 30 eV

Defined by sheath
Independent of circuit and emission parameters

Plasma densities ≈ 1020 ions/cm3

“Temperatures” ≈ 5-20 eV (ions & neutrals)
Expansion rate ≈ 10 km/s
Thanks to: Lotta, Helga, Nick, Anders, Walter, Sergio
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Particle-in-Cell Parallelism Emission processes

BACKUP SLIDES
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Particle-in-Cell Parallelism Emission processes

Particle in cell (PIC) + Monte Carlo Collisions (MCC)

Volume divided into grid
Field solver
Proximity for collisions

Macro-particles moves in
continuous phase-space

Main loop:
Update

potential

Move particles Particle sinks
& sources

Collisions

Output

ou
tp

ut
st

ep

Distribute charges to grid points

Collide random pairs of particles
in each cell
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Particle-in-Cell Parallelism Emission processes

Monte-Carlo collisions

Particles inside same cell
are considered “close enough” to collide
For each collision type, create random particle pairs
Implemented collisions:

Coulomb scattering (e−,e−), (Cu+,Cu+), (Cu+, e−)
Elastic collisions (e−,Cu), (Cu, Cu)
Charge exchange/momentum transfer (Cu+,Cu)
Impact ionization e− + Cu → 2 e− + Cu+
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Particle-in-Cell Parallelism Emission processes

ArcPic2D parallelism

OpenMP multithreading
Shared memory
Requiring few code changes

Multi-stream RNG
Parallel neutral-neutral
collisions
Load balancing
Test case:

1.8 M neutral particles
5x5 µm cylinder
T=300 eV, ρ = 1017/cm3

Quite good scaling
Almost linear
Slower than ideal
due to serial sections

M
ain se ed

R
1

bs

R
2

bs

R
1

1
R

2
1

R
3

1
R

4
1

[0...1]
[0...1]

[0...1]

R
1

1
R

2
1

R
3

1
R

4
1

[0...1]
[0...1]

[0...1]

Thread 2 Thread 1

Kyrre Sjobak ArcPIC 2D – arc ignition & development MevArc 2013 18 / 14



Particle-in-Cell Parallelism Emission processes

ArcPic2D parallelism

OpenMP multithreading
Shared memory
Requiring few code changes

Multi-stream RNG
Parallel neutral-neutral
collisions
Load balancing
Test case:

1.8 M neutral particles
5x5 µm cylinder
T=300 eV, ρ = 1017/cm3

Quite good scaling
Almost linear
Slower than ideal
due to serial sections

1

z

r

2 3 4 5 6 7 8
9 10111213141516
1718192021222324
2526272829303132
3334343637383940
4142434445464748 CPU 1

CPU 2
CPU 3
CPU 4

Kyrre Sjobak ArcPIC 2D – arc ignition & development MevArc 2013 18 / 14



Particle-in-Cell Parallelism Emission processes

ArcPic2D parallelism

OpenMP multithreading
Shared memory
Requiring few code changes

Multi-stream RNG
Parallel neutral-neutral
collisions
Load balancing
Test case:

1.8 M neutral particles
5x5 µm cylinder
T=300 eV, ρ = 1017/cm3

Quite good scaling
Almost linear
Slower than ideal
due to serial sections

Kyrre Sjobak ArcPIC 2D – arc ignition & development MevArc 2013 18 / 14



Particle-in-Cell Parallelism Emission processes

ArcPic2D parallelism

OpenMP multithreading
Shared memory
Requiring few code changes

Multi-stream RNG
Parallel neutral-neutral
collisions
Load balancing
Test case:

1.8 M neutral particles
5x5 µm cylinder
T=300 eV, ρ = 1017/cm3

Quite good scaling
Almost linear
Slower than ideal
due to serial sections

Kyrre Sjobak ArcPIC 2D – arc ignition & development MevArc 2013 18 / 14



Particle-in-Cell Parallelism Emission processes

Fowler-Nordheim emission
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Cutoff at Elocal = 12 GV/m
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Particle-in-Cell Parallelism Emission processes

Yamamura-Tawara sputtering
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