4th International Workshop on Mechanisms of Vacuum Arcs

Studies of breakdowns at high-gradients in TBTS/CTF3

Alexey Dubrovskiy

Alexey.Dubrovskiy@cern.ch

05.11.2013

Breakdowns reduce luminosity

- Breakdowns (only 10 μ m) will stop collisions in CLIC (48 km): scale 2:10¹⁰ \approx an ant stops the Earth;
- In CLIC there will be a breakdown every 2 sec, which is equivalent to the breakdown rate of 3×10^{-7} bd/pulse/m;
- CLIC should keep the maximum luminosity of 6×10^{34} cm⁻²s⁻¹ for 20 years (the total number of BD is $\sim 2 \times 10^8$).

Alexey Dubrovskiy

Objectives

- Breakdown rate at the nominal gradient of 100 MV/m;
- Evolution of the breakdown rate: conditioning and degradations;
- Beam-arc interactions;
- Evidences of any pre-cursor;
- Recovery after breakdowns;
- Breakdown locations and dependences;
- Breakdown dynamics.

SEM pictures of the surface after electrical discharges

Alexey Dubrovskiy

TBTS setup in CTF3

Accelerating structure (TD24)

RF Transmission

RF Breakdown

Cease of RF transmission

Breakdown location

The best match:

- The beginning of cease of transmission is at the same time as the beginning of reflection;
- Reflection follows the incident RF at the end of the pulse.

Alexey Dubrovskiy

Single breakdown

Alexey Dubrovskiy

Detuning of cell#5 during breakdowns

Alexey Dubrovskiy

Where is the location of BD?

Double breakdowns

Alexey Dubrovskiy

Location distribution of primary breakdowns

Breakdown rate (BDR)

Scaling low

Breakdown rate scaling low for any pulse shape:

$$BDR \propto \left(\int |E(t)|^{s_1/s_2} dt\right)^{s_2}$$

where E - field level and s1, s2 - const.

Scaling to a rectangular pulse

Yellow line – forward power; Red line – $(\int E(t)s1/s2 dt / 160)s2/s1$; Blue line – $\int E(t)s1/s2 dt / 100 s1/s2$.

 $\frac{s_1}{s_2} \approx 4$, it suggests that the breakdown rate strongly depends on the pulsed surface heating.

Alexey Dubrovskiy

Summary

TBTS facility is used to validate X-band technology with a particular interest to understand the breakdown phenomena. The presented work revised data of the tested structure TD24 and the following results have been obtained:

- Developed a technique to estimate time resolved S21-parameters of a breaking down cell-iris;
- Changes of S21-parameters during the breakdown can be associated with close to a linear detuning of the cell-iris;
- Revealed double breakdowns lead to substantial power losses and high-fields, which can be a source of the surface damage leading to higher breakdown rates;
- The "hot-cell" in TD24 is determined based on only primary breakdowns, the secondary breakdowns can flatten the distribution.

Alexey Dubrovskiy

TD24 parameters

	120º/cell	comments
f [GHz]	11.995	
S12	0.6542	
t _f [ns]	64.55	
Q ^{Cu}	5732	
Gradie	ent averaged o	over all cells
$V_{26} [V] @P_{in} = 1 W$	3340	2 matching +24 regular
$G_{26} [V/m]@P_{in} = 1 W$	14661	$\begin{array}{c} \text{cells} \\ \text{I} = 227.7 \text{ mm} \end{array}$
$P_{in} [MW] @$	46.5	$L_{acc} = 227.7 \text{ mm},$
Gradient av	veraged over n	regular cells only
$V_{24} [V] @P_{in} = 1 W$	3078	24 regular cells only
$G_{24} [V/m]@P_{in} = 1 W$	15390	$L_{acc} = 200.0 \text{ mm},$
$P_{in} [MW] @$	42.2	* A. Grudiev, 25/03/10
		11. Gr <i>uwer</i> , 20, 00, 10

Alexey Dubrovskiy

Single breakdown: measurements

Alexey Dubrovskiy