4th International Workshop on Mechanisms of Vacuum Arcs

Studies of breakdowns at high-gradients in TBTS/CTF3

Alexey Dubrovskiy

Alexey.Dubrovskiy@cern.ch

Breakdowns reduce luminosity

CLIC Compact Linear Collider

- Breakdowns (only $10 \mu \mathrm{~m}$) will stop collisions in CLIC (48 km): scale 2:10 ${ }^{10} \approx$ an ant stops the Earth;
- In CLIC there will be a breakdown every 2 sec , which is equivalent to the breakdown rate of $3 \times 10^{-7} \mathrm{bd} / \mathrm{pulse} / \mathrm{m}$;
- CLIC should keep the maximum luminosity of $6 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ for 20 years (the total number of BD is $\sim 2 \times 10^{8}$).

Objectives

- Breakdown rate at the nominal gradient of $100 \mathrm{MV} / \mathrm{m}$;
- Evolution of the breakdown rate: conditioning and degradations;
- Beam-arc interactions;
- Evidences of any pre-cursor;
- Recovery after breakdowns;
- Breakdown locations and dependences;
- Breakdown dynamics.

TBTS setup in CTF3

Accelerating structure (TD24)

Structure

cells: 24 regular +2 matching
Dispersion curves for 24 cells

In the first order approximation the cells are linear time-invariant systems with a frequency response as the following:

$$
s_{21}(\Delta f)=\left\{\begin{array}{c}
\exp \left(\frac{2 \pi c}{3 v_{g}}\left(\left(i-\frac{1}{2 Q}\right) \frac{\Delta f}{f_{a}}-\frac{1}{2 Q}\right)\right), \quad f_{0}<f<f_{\pi} \\
0, \text { otherwise }
\end{array}\right.
$$

Group velocities for different frequencies

RF Transmission

Incident RF

Reflected RF

The frequency response of the structure:

$$
\frac{S_{21}(\Delta f)=\exp \left(\frac{2 \pi}{3} \sum_{1}^{24} \frac{c}{v_{g}}\left(\left(i-\frac{1}{2 Q}\right) \frac{\Delta f}{f_{0}}-\frac{1}{2 Q}\right)\right),}{\text { when } \max f_{0}<\frac{\omega}{2 \pi}<\min f_{\pi}}
$$

RF Breakdown

Incident RF

Reflected RF

Transmitted RF

Cease of RF transmission

Output response: injecting into different cells

Breakdown location

The best match:

- The beginning of cease of transmission is at the same time as the beginning of reflection;
- Reflection follows the incident RF at the end of the pulse.

Single breakdown

RF Fields

Detuning of cell \#5 during breakdown $\min _{\Delta f(t)}\left(\widehat{R F_{\text {inc }}} \cdot \prod_{\substack{n=1, n \neq 5}}^{24} s_{21}^{n}(f) s_{21}^{5}(f+\Delta f(t))-\widehat{R \overline{F_{\text {tran }}}}\right)$

Beginning of breakdown

Detuning of cell\#5 during breakdowns

Alexey Dubrovskiy
MeVArc'13, 05.11.2013

Where is the location of BD ?

RF measurements

There is no cell such that the sum of the transmitted and reflected RF matches the incident RF.

Cell \#10 canto
\square

The reflection does not match.

Double breakdowns

One of possible scenarios

Location distribution of primary breakdowns

Breakdown rate (BDR)

Scaling low

Breakdown rate scaling low for any pulse shape:

where E - field level and $s 1, s 2$ - const.
Scaling to a rectangular pulse

Yellow line - forward power;
Red line - ($\left.\int \mathrm{E}(\mathrm{t}) \mathrm{s} 1 / \mathrm{s} 2 \mathrm{dt} / 160\right) \mathrm{s} 2 / \mathrm{s} 1$;
Blue line $-\int \mathrm{E}(\mathrm{t}) \mathrm{s} 1 / \mathrm{s} 2 \mathrm{dt} / 100 \mathrm{~s} 1 / \mathrm{s} 2$.

Breakdown rate

$\frac{s_{1}}{s_{2}} \approx 4$, it suggests that the breakdown rate strongly depends on the pulsed surface heating.

Summary

TBTS facility is used to validate X-band technology with a particular interest to understand the breakdown phenomena. The presented work revised data of the tested structure TD24 and the following results have been obtained:

- Developed a technique to estimate time resolved S21-parameters of a breaking down cell-iris;
- Changes of S21-parameters during the breakdown can be associated with close to a linear detuning of the cell-iris;
- Revealed double breakdowns lead to substantial power losses and high-fields, which can be a source of the surface damage leading to higher breakdown rates;
- The "hot-cell" in TD24 is determined based on only primary breakdowns, the secondary breakdowns can flatten the distribution.

TD24 parameters

	120\% cell	comments
f [GHz]	11.995	
S12	0.6542	
t_{f} [ns]	64.55	
Q^{Cu}	5732	
Gradient averaged over all cells		
$\mathrm{V}_{26}[\mathrm{~V}] @ \mathrm{P}_{\text {in }}=1 \mathrm{~W}$	3340	2 matching +24 regular
$\mathrm{G}_{26}[\mathrm{~V} / \mathrm{m}] @ \mathrm{P}_{\text {in }}=1 \mathrm{~W}$	14661	cells
$\mathrm{P}_{\text {in }}[\mathrm{MW}] @<\mathrm{G}_{26}=100 \mathrm{MV} / \mathrm{m}>$	46.5	$=227.7 \mathrm{~mm}$,
Gradient averaged over regular cells only		
$\mathrm{V}_{24}[\mathrm{~V}] @ \mathrm{P}_{\text {in }}=1 \mathrm{~W}$	3078	24 regular cells only
$\mathrm{G}_{24}[\mathrm{~V} / \mathrm{m}] @ \mathrm{P}_{\text {in }}=1 \mathrm{~W}$	15390	$\mathrm{L}_{\mathrm{acc}}=200.0 \mathrm{~mm}$,
$\mathrm{P}_{\text {in }}[\mathrm{MW}] @<\mathrm{G}_{24}=100 \mathrm{MV} / \mathrm{m}>$	42.2	Gudiev 25/03/10

Alexey Dubrovskiy
MeVArc'13, 05.11.2013

Single breakdown: measurements

