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A high-gradient accelerating structure. 

What the functional inside looks like. 

The behaviour of the electromagnetic fields we would like to understand.  
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We have looked rf structures in order to understand how to get an interaction between an 
rf field and a relativistic beam – the issues were mainly getting synchronism and getting 
the electric field to point in the right direction.  
 
Now we are going to push a little further into theory to describe how much acceleration 
the beam actually gets. 
 
We are going to study how much energy you transfer to the beam from a certain stored 
energy in a standing wave cavity or power flow in a travelling wave cavity.  
 
We approach this in steps. 
• First look at a dc gap,  
• then an rf gap 
 
 

Acceleration is typically measured in units of MV/m, the CLIC target is 100 MV/m. 
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Let’s look together for a moment at a simple capacitor plate (big enough one so we don’t 
have to worry about edge effects) to make sure we are familiar with all the relevant 
quantities in a simple case. 

ground -  P [V] 
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d [m] gap size, A [m2]area 
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Now an rf ‘cavity’ (without being specific about the details of what it is):  
 
The ‘voltage’ of an rf gap is of course more complicated because the fields are 
oscillating while the beam takes the time to cross the gap. Remember the definition of 
the transit time factor from section 1:  

 dzzEVacc )(

We will use the numerator again, which is the effective gap 
voltage: 
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The magnitude is the 
highest acceleration you 
get from the cavity. 
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For the stored energy in a cavity we need to include both the electric and magnetic field: 
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Putting the two terms we can define: 
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 Which has units of Ω. 

R/Q – relates the amount of acceleration (squared) you get for a given amount of stored 
energy.  If the electric fields are concentrated along the central axis of a cavity this term is 
large. You can use computer programs to get actual values. 
 
The numerator and denominator both scale with field squared, so it is independent of field 
level. It turns out that this term is independent of frequency as well for scaled geometries.  
 
You can do lots of useful calculations knowing this term. But let’s dig deeper. 
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Going a step further 

Our goal now is to derive and understand the loss factor, k. 
 
Accelerating a beam extracts energy from a cavity (and by the way that’s what we need 
to do to get high rf to beam efficiency). 
 
The beam gains energy when you accelerate so the rf fields must loose energy. 
 
We’ll attack this by considering the question “How much energy does a traversing beam 
leave behind in a particular mode of an empty cavity?” and then superimpose the 
solution on a filled cavity, which is how we normally think of acceleration. 
 



8 

In this section we will often consider the driven rf fields (driven by a klystron or 
whatever), consider the fields the beam leaves behind and add the two together to 
get our final answer – superposition of beam and rf fields. 
 
There is another subtlety we will use which is that you can break the problem up 
mode by mode, add them up and get the right answer. Another way of saying this is 
that all the eigenmodes of the cavity are orthogonal basis functions for all the possible 
fields in the cavity. You can expand reality as a Fourier series over all the cavity modes. 
 
We will also consider driving bunches, these are the real bunches of the problem with 
finite amount of charge, and witness charges. Witness charges are basically just 
integrals over fields but it is useful to think of charges which follow the main one but 
have almost no charge so don’t affect the fields themselves. 

Concepts we will use 
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A charge passing through a cavity leaves behind it the cavity with voltage in it, and hence 
filled with energy. The beam loses the same amount of energy. The loses energy through 
interacting with an electric field, which in fact comes from itself. 
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Something to think about: 
 
The charge interacting with the fields it makes itself is in direct analogy to the radiated 
electric field produced by a current that you see when discussing the retarded potential 
in free space. For a current in the y direction, 
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You normally think of currents producing magnetic fields but of course to transfer 
energy to an electromagnetic field there has to be movement of an electrical charge 
in the direction of an electric field. 
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The fundamental theorem of beam loading 

The fundamental theorem of beam loading says that the voltage seen by beam which 
has traversed a cavity is half the voltage it leaves behind, that is the one that a following 
witness bunch would see. 
 
A non-rigorous way of seeing this, is that the cavity is empty when the beam enters and 
only full when it leaves – so on average it sees the cavity only half full (or half empty, 
like the proverbial glass!). A more rigorous understanding requires the formalism of 
longitudinal wakefields we will cover in section 4. 
 
Is this easier to understand than the free-space case? 
 
But in the mean time let’s introduce a loss factor k which satisfies this factor of two. The 
voltage left is proportional to the charge so:  
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The loss factor k 

Let’s now consider conservation of energy, what 
the bunch loses the cavity gains: 
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So the higher the R/Q the more field left behind in a mode by a given charge. 

Equations we will 
use 
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Now let’s look at a cavity that already has 
fields in it 

Everybody’s first understanding is that the beam is just sees the accelerating fields that are 
there because we pump lots of microwaves into a cavity. But this is only true if the bunch 
charge is low, and we have negligible rf-to-beam efficiency. 
 
In a linear collider we have rf-to-beam efficiency in the range of 30% to deal with the 10’s of 
MW average power beams we need to accelerate.  
 
So let’s now look at a cavity with field in it that gives V0 and currents which are leaving 
fields which are non-negligible. 
 
The essential insight is that a passing bunch reduces the fields inside a filled cavity in 
exactly the same way as an empty cavity - superposition: 
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Checking consistency through energy balance 
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In a real cavity, we of course have the losses we saw in section 1. To deal with this we 
introduce the shunt impedance. We start with R/Q, which is independent of any losses, 

W

V

Q

R acc



2

 And take our definition of Q,  

lossP

W
Q


 To define the shunt impedance, 

loss

acc

P

V
R

2



The units of R are again Ω, and a typical normal conducting cavity has an R in the range of 
M Ω. Note that both numerator and denominator scale with field squared. R is a measure 
of the acceleration to the losses and is often a quantity you optimize when designing an rf 
cavity. 
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Now travelling wave structures 

We’ve just gone through an analysis where we have considered stored energy. This is 
straight forward to apply to standing wave structures 
 
You will be doing some numerical examples in homework problems. 
 
But the basic concepts remain the same for travelling wave structures. We have to 
extends things a bit and make sure we are accounting for all the energy going in and out 
of our problem.  
 
Firstly we are going to consider a single cell of an infinitely long periodic structure which 
has been tuned to vphase=c, i.e. a synchronous wave. This is quite reasonable since tuned 
cells are usually what we deal with.  
 
The fact that the phase and beam velocities are the same gives us the periodicity to 
easily do all of our calculations on a single cell. 
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Single cell electric field pattern 2/3 phase advance 
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Single cell magnetic field pattern 2/3 phase advance 
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Standing to travelling wave 

We will take over our definition of R/Q and shunt impedance and define it per cell, but 
then divide by the length of the cell, l, to get R’/Q and R’ which are per unit length. 
 
The other thing we will do is to put these quantities in terms of power flow rather than 
stored energy since this is the natural quantity for travelling wave structures. 
 
The relationship between power flow and stored energy is, 

WvP g

And we can get the relationship between accelerating gradient G, voltage per unit 
length (which is valid over one cell length), and power flow, 
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Power flow in disk loaded waveguide 2/3 phase advance 

Real part of complex 
Poynting vector 
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Now to meaningfully deal with travelling wave accelerating structures 
we will derive a differential equation which accounts for: 
 
• power flowing along the structure 
• power being transferred to the beam (acceleration) 
• power being lost to the cavity walls  
 

Seeing the derivation of the differential equation will give you insight 
into how to approach specific problems and give you practice using 
the terms we have introduced. 
 
In our initial analysis, we are only going to consider steady state 
conditions. We will generalize later. 
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The general differential equation in terms of gradient 

A. Lunin, V. Yakovlev, A. Grudiev PRSTAB, 14, 052001 (2011) 
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Solutions in closed form 
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An example of the solutions to this equation for constant gradient (all cells are 
the same): 

Ibeam
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Field goes down 
because power 
goes into beam. 
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losses. 

Wall losses 

Distance along structure 
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Now we ask ourselves – How efficiently have we converted rf power into beam power? 
To ask it using accelerator jargon – What is the rf-to-beam efficiency? 
This is one of the most important performance issues for a normal conducting linear 
collider since it directly affects the overall performance. 

Wall losses 

Output coupler 

Power into structure 

Power into beam ∆𝑃𝑏𝑒𝑎𝑚= 𝐼 𝐺 𝐿 
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Different amounts of beam loading and efficiency 
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More current, 
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Interesting question! 

Distance along structure 
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A high-gradient accelerating structure. 

What the functional inside looks like. 

The behaviour of the electromagnetic fields we would like to understand.  
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The CLIC accelerating structure 

Now that you have a feeling for the basic mechanisms which underlie  high-efficiency 
acceleration, we will look into the main features of the CLIC rf system.  
 
Let’s start by looking at the CLIC accelerating structure: 

The basic component: diamond 
turned and milled disk. We form 
a periodic structure by stacking 
them. The radial lines are 
damping waveguides  

An assembled high-power test structure. Made 
in a collaboration between CERN, KEK and SLAC. 
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How it looks 



EPFL presentation Walter Wuensch 10 October 2011 

How to make ‘em 

Machining: OFHC copper diamond milled and turned disks with micron 
precision.  

+- 5 micron tolerance lines 



Walter Wuensch KEK, 24 May 2013 

Micron precision turning and milling 

• Accelerating structure tolerances drive transverse wakefields and off-axis rf induced kicks 
which in turn leads to emittance growth – micron tolerances required. 

• Multi-bunch trains require higher-order-mode wakefield suppression – cells require 
milled features. 

• High-speed diamond machining also seems to be beneficial for high-gradient 
performance through minimizing induced surface stresses. 

Development done 
“in industry” 



Walter Wuensch IEEE NSS and MIC 30 October 2012 

Evolution of machining capability 

Up to the 1980’s 1980’s - 1990’s 2000’s - 2010’s 

• Larger machines 
• Multiple axis ( X/Y/Z and C) 

Future ? 

• Intelligent machines ? 
• Robotisation ? 

• Pallet machining? 
• Robotisation ? 

First machines at 
research institutes and 

universities 

Start of industrialization 
• Optical recording 
• contact lenses 

Single point diamond turning 

Up to the 1990’s 1990’s - 2000’s 2010’s Future ? 

Ultra precision diamond milling (lagging more than a decade behind on turning) 

Limited to fly cutting 
• mirror optics 
• Laser scanner mirrors 
 

First proto type machines 
• Micro fluidics 
• Accelerator parts 

Milling as add-on on lathes 
• Lens arrays 
• Intra ocular lenses 


