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Electrical breakdowns 

• Accelerating structure damage 
due to electrical breakdowns 

• Local field enhancement up to 
factor 100 

• Field enhancement caused by 
„invisible needles“ 

Electrical breakdown rate must be decreased under 310-7 1/pulse/m 
 

Accelerating  el. field 100-150 MV/m 

Electrical breakdowns at  CLIC accelerator accelerating structure materials 

M. Aicheler, MeVArc 2011 
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• High aspect ratio tips 
• Field emitters 

Dislocations and plastic 
deformation as source 

of emitters 

• Surface stress due to 
high electric field 

• Emission currents 

Subsurface voids, 
precipitates as stress 

concentrators 

The simulations of surface and 
bulk 

 

Bulk simulations: 
MD, FEM 

Fe precipitate (Simon 
Vigonski) 

Strongest/weakest 
nanostructure estimation 

Surface Simulations: 
Field emitters 

Surface reconstruction 

Electric field over 
surface: 

Emission currents 
Surface stress 

Comparison of simulation 
and experiment: 

Emission current 
measurements 



The stress concentrators 

• The void as source of dislocations 
– Void in material as stress concentrators 

• Spherical voids due to surface energy minimization 
• Single void in metal 

– Several mechanisms acting at once to produce the tip? 
– Understanding protrusion growth mechanism in the case 

of spherical void in DC electrical field 

• Precipitates as stress concentrators (Fe) 
 

• High aspect ratio field emitters as initiators of a 
breakdown 
– Thermal and electrical behavior of field emitters 
– Mechanical behavior of field emitters 

 



Current state of the model 

• Complete description of the breakdown requires 
combination of several phenomenon  
– Mechanical response of the material 

• Elastoplastic material model 
– Anisotropic material with surface stress model 

– Applied electric field 
– Emission currents 

• Fowler-Nordheim equation 
• (Generalized thermal field and Nottingham effect - future) 

– Electric currents in the material and material heating 
– Deformable geometries 
– (Density of neutrals near surface - future) 



Simulated systems 

• Coupled electric, mechanical, thermal interaction 
– Electric field deforms sample and  causes emission currents 
– Emission currents lead to current density distribution in the 

sample 
– Material heating due to the electric currents 
– Electric and thermal conductivity temperature and size 

dependent 
– (Deformed) sample causes local field enhancement 

 
 

h d 

• Dc El. field ramped up to 10 000 MV/m 
• Comsol Multiphysics 4.3b 

— Nonlinear Structural Materials Module 
— AC/DC module 

• Simulated materials: 
— Soft copper 
— Single crystal copper 
— Stainless steel  

 



Material model 
• Elastoplastic deformation of material, simulation of 

large strains 

• Validation of material model and parameters by 
conducting tensile stress simulations 

• Accurate duplication of the experimental results 
(tensile and nanoindentation test) 

• Parameters from tensile test are macroscopic, single 
crystal parameters are needed due to large grains in 
soft copper 

• Incorporation of surface effects to anisotropic elastic 
material model in progress 

Structural 
Steel 
 

Soft 
Copper 
(CERN) 

Single 
crystal 
copper [1] 

Often used 
copper 
parameters 

Young’s 
modulus 

200 GPa 3.05 
GPa 

57 GPa 110 GPa 

Initial yield 
stress 

290 MPa 68 MPa 98 MPa 70 MPa 

[1] Y. Liu, B. Wang, M. Yoshino, S. Roy, H. Lu, R. Komanduri,J. Mech. Phys. Solids, 53 (2005) 2718 



The surface stress model –  
from MD to FEM to experiment 

• Good scaling for linear elasticity 

• Anisotropic material model 

• Crystal plane dependent surface properties 

• The surface effects important below ~ 6-10 nm 

– Corrections for surface stress (surface tension) 

– Model complexity improved towards nonlocal 
simulations 

– Strongest/weakest nanostructure estimation 

• Plastic deformation 

– Accurate limits to be determined 

– Dependence from grain size, average 
dislocation length and plastic deformation 
activation volume 

– More complex model needed to account 
microstructure effects, dislocation densities etc. 



MD vs. FEM in nanoscale 

• MD – exaggerated el. fields 
are needed 

• MD simulations are 
accurate, but time 
consuming 

• FEM is computationally fast, 
but limited at atomistic scale 

• Very similar protrusion 
shape to MD 

• Material deformation starts 
in same region 



Void at max. deformation – 
different materials 

• Similar protrusion shape for all materials 
• Higher el. fields are needed to deform stronger materials 
• Slightly different maximum stress regions 
• Plastic deformation distribution highly dependent from material 



Field enhancement factor 

• Field enhancement factor to 
characterize protrusions shape 

• Soft copper  
– Elastic deformation affects field 

enhancement 
– Field enhancement increasing 

over whole el. field range 
– Field enhancement is continuous 

and smooth 

• Stainless steel, single crystal Cu 
– Field enhancement almost 

constant until critical field value 
– Very fast increase of the field 

enhancement factor 

• Maximum field enhancement  is 
2 times 

• Field enhancement corresponds 
to protrusion growth 

 

Soft Cu 

Steel 



E=0.01 MV/m σMises, max<< 1Pa 

Rising tip in el. field 

 

• Dynamic behavior of field enhancement 
factor 

• Elastic deformation up to ~56MV/m 

• Corresponding field enhancement factor 
35 

• Rising tip can cause significant increase 
of the field enhancement 

 

σMises, max=68 MPa E=56 MV/m 
E=75 MV/m σMises, max=165 MPa 

• Field emitting tip, raising from the 
surface is assumed 

• Simulation starts, when the 
emitter is ~40o angle 

• Simulation ends when fast 
increase of field enhancement 
factor starts 

Elastic limit 



Single tip deformation 

Plastic deformation 

Necking 

• Nanoscale tip under electric 
field induced stress 

• Simulations with FEM and MD 
• Constant temperature 
• No emission currents 
• Linear ramping of el. field 

• MD and FEM predict the same 
location for plastic deformation 

• Piece of material is removed 
from the tip 

 

• Plastic deformation in FEM 
• Dislocations in MD 
 
• Dislocations are carriers of 

plastic deformation 

FEM overestimates 
plastically deformed 
area! 



Heating and emission currents 

• Fast, exponential temperature rise in 
the tip 

• Emission currents concentrated to the 
top of the tip 

• Melting temperature reached at ~204 
MV/m 
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Local Fowler-Nordheim eq. 
for emission currents – 

connection to the experiment 

Emission 
current density 

 

• Size dependence of electric and thermal 
conductivity 

• Conductivity in nanoscale emitters is 
significantly decreased (more than 10x for 
sub-nanometer tip) 

• Knudsen number to characterizes nanoscale 
size effects 

• Wiedemann-Franz law for thermal 
conductivity 
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Field emitters as nanowires 



Selective heating of the tips 

• Simulation of two field emitters 
– Emitter 1 – height H fixed 

– Emitter 2 – height changed from 0.1H to 1H 

• Ramping of the el. field 

• Only the highest tip emits currents 

• Significant emission from smaller tip 
started, when its height was 85%-90% 
of the largest tip height 

 
Tip behavior under the el. field: 
• only the highest tips start to emit the 

current, when the field is turned on 
• longest tips heat, melt/vaporize, until 

they shorten to the height of the smaller 
tips 

• finally, all the emitters should have equal 
height 
 

Temperature of the tips, relative height 
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Single high aspect ratio 
emitter in electric field 

• Simulated emitter aspect ratio 2…60 
• Stop condition: 1000 oC reached 
• Tip temperature dependence from field 
• Mechanical stress due to el. field at 

simulation stop  always over yield strength 

• Nonlinear heat and electric conductivity 
lead to fast decrease of acceptable 
electric field 

• Limiting case for multiple field emitter 
simulations 
 

• High temperature dependence from 
aspect ratio 
• 100 MV/m limited to emitters with 

aspect ratio below 20 
• Maximum simulated aspect ratio – 60 

survives fields up to 40 MV/m 
• more complex field enhancing surface 

structures are needed 
 

 



Interaction of emitters at 
constant field 

• Electric field and emission current density 
at constant external field (500 MV/m) 

• Emitters have equal aspect ratio and 
shape, but different scale (0.5x scaling) 
– Equal emission current density expected 

• Close emitters act as single one 

• The field enhancement factor of smaller tip 
is affected up to the Tip separating 
distances 30-40 nm –  6-8 times of the 
height of the largest tip 

• The emission current densities from both 
tips are affected up to distances between 
the tips 60-70 nm – more than 10 times 
the height of the larger tip 

• The emission current from the smaller tip 
is reduced 2 times if, the distance between 
the tips is 20 nm (4 times the height of 
larger tip) 



Electric field distribution due to 
interacting emitters 

 

• Emission current sensityvity to 
the applied field 

• Local interactions on surface 
can have signifficant effect to 
the breakdowns 

 

• Small emitter „captures“ part of the 
field from large emitter 

• Smaller emitter is located in the low 
field region, created by tall emitter 
 



Interaction of the emitters – 
the breakdown limit 

• Electric field and emission current 
density at the breakdown condition 
(1000 oC reached in any emitter) 

• Simulated emitters have equal aspect 
ratio, but different scaling (0.5x) 

 

• Significant apex el. field and emission 
current density reduction at smaller tips 
– Shielding effect of larger emitters 

– 50% reduction of emission current density in 
~13 nm from taller tip (2.6x height) 

– Shielding effects disappear at 30 nm emitter 
separating distance 

• Can we use artificial „emitters“ to 
control the breakdowns? 

 



Mechanical interactions of emitters 

σMises, max=130 MPa 

σMises, max=60 MPa 

σMises, max << 1 Pa 

E=1V/m 

E=135 MV/m 

E=166 MV/m 

Nearby emitters interact  
The emitters repel due to 
the surface charge 

Elastic regime: 
• Reversible deformation 

of the emitters 

Plastic regime: 
• Highest stress is at inner 

side of the tip 
• Limiting effect to the 

density of emitters? 

• Two closely located 
emitters 

• Emitter aspect ratio  ~10 
• Distance between the 

emitters – 0.3H (H – height 
of the emitter) 

• Linear ramping of el. field 
 



Conclusions 

• FEM is a viable tool to simulate material defects 
– MD is still needed to determine physics behind the effects  

• Local interactions between the emitters can have 
significant influence to emission currents 
– Possibilities for controlling the breakdowns 

• Near field emitters interact due to surface charge 

• Significant field enhancement by rising emitter 

• Only the highest tips emit currents 
– Emitting tips are with equal height  



Thank You for Your attention! 


