Light stops and deconstructed transverse mass variables

Ahmed Ismail SLAC

April 30, 2013

AI, Ariel Schwartzman, Reinhard Schwienhorst, Joe Virzi, Devin Walker 1305.xxxx

Supersymmetry hasn't turned up yet...

Large ED (ADD) : monojet + E, miss

*Only a selection of the available mass limits on new states or phenomena shown

UED : diphoton + E_{T,miss}

Large ED (ADD) : monophoton + E_{T,miss}

Large ED (ADD) : diphoton & dilepton, $m_{_{YY}/||}$

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)

1.93 TeV M_c (δ=2)

ATLAS

Mass scale [TeV]

(though nor has anything else)

...and light-flavor squarks and gluinos are increasingly constrained!

Motivates development of searches for other sparticles

Searching for stops

- Low mass suggested by naturalness (see talk by T. Eifert)
- Colored production, unlike gauginos
- Usually assumed to decay to t + neutralino LSP, characterized by b-jets + MET; can require leptons in final state
- Can be produced either directly or through gluino decays

Challenges

- No MET in compressed region where stop is close in mass to top + LSP
- Often searches are geared towards decay mode stop → t + neutralino, but b + chargino decay may be quite common, particularly in natural scenarios
- Other possible decay modes, e.g. R-parity violating/extremely compressed stops
- Use all information about final states to construct signal regions

stop → b chargino

- Natural SUSY requires light higgsinos, but the MSSM higgsino multiplet contains two neutralinos and a chargino
- If the LSP is a neutral higgsino, there is likely to be a nearby charged higgsino with mass splitting
 a few GeV
- So, in addition to the t + neutralino decay mode of light stops, should also consider b + chargino
- Such a chargino is effectively MET in the detector, as all decay products are soft

stop → b chargino

- If LSP is neutral wino, again the b + chargino mode is important because of the charged wino; here, the mass splitting can be < 1 GeV!
- b-jets + MET signature of stop pair production with this decay is probed by direct sbottom searches
- Stop search regions which rely on a top in the final state lose effectiveness
- Should no longer require leptons, additional jets, or try to reconstruct hadronic top

Some current ATLAS searches

Small chargino-neutralino splitting assumed

ATLAS-CONF-2013-001

lepton veto

Chargino mass = 2 x neutralino mass assumed

ATLAS-CONF-2013-037

exactly one lepton required

Stops in the pMSSM

Matthew Cahill-Rowley, JoAnne Hewett, AI, Tom Rizzo

Mixed decays

- Pure b chargino decays are covered by direct sbottom searches
- What about mixed decays where stops are pair produced and decay to t b chargino neutralino?
- Hard b on chargino side, softer lepton on neutralino side

$$r_{p_T} = \frac{p_{Tb_1} - p_{T\ell}}{p_{Tb_1} + p_{T\ell}}$$

M.L. Graesser and J. Shelton 1212.4495

Rethinking transverse mass

- One lepton stop searches typically cut on \mathbf{M}_{T} , the transverse mass of the lepton
- $M_T^2 = 2 p_T E_T^{miss} (1 \cos \phi)$ combines information about the magnitudes of the lepton/missing momenta and their directions
- Compressed stops tend to decay to leptons that fail such a cut, as there's not much additional MET from the neutralino
- Goal: modify the traditional transverse mass cut to search for stops better

Deconstructed transverse mass variables

- $M_T^2 = 2 p_T E_T^{miss} (1 \cos \phi)$ combines information about the magnitudes of the lepton/missing momenta and their directions
- Introduce new variable $Q = 1 M^2 / 2 p_T E_t^{miss}$, where M is fixed
- Q → 1 for large MET, and depends only on the magnitudes of the momenta
- Use $\cos \phi$, ϕ = angle between lepton and MET
- Aim to replace M_{τ} cut with cut in Q-cos ϕ plane

The Q-cos ϕ plane

Area above red line corresponds to traditional transverse mass cut of $M_{\scriptscriptstyle T} > M = 140~{\rm GeV}$

Can improve cut in this plane beyond a simple transverse mass cut! Use to construct stop analysis

The Q-cos oplane

Top reconstruction

- In semileptonic tt, the neutrino momentum can be reconstructed, up to a twofold ambiguity
- If we try to reconstruct the neutrino longitudinal momentum from a semileptonic stop pair event, assuming the event is tt, the reconstruction usually fails, i.e. we'll obtain a quadratic equation with no real solutions
- Introduce new variable that is the discriminant of this quadratic equation, so that the top reconstruction fails if and only if this variable is negative

Top reconstruction

$$\chi_{t} = p_{blL}^{2} A^{'2} + (E_{bl}^{2} - p_{blL}^{2}) (A^{'2} - 4E_{bl}^{2} E_{T}^{2})$$

$$A' = m_{t}^{2} - M_{bl}^{2} + 2 \vec{p}_{blT} \cdot E_{T}^{2}$$

- Get χ_t < 0 for signal because neutralino is additional source of MET
- Get $\chi_{\rm t}$ < 0 for background from detector effects only
- Optimize exact position of χ cut

Constructing a stop search

- Use 8 TeV 13 fb⁻¹ ATLAS one lepton stop search as basis for our signal regions
- Four jets with $p_{\scriptscriptstyle T}$ > 25 GeV and $|\eta|$ < 2.5
- Exactly one lepton with $p_{_{T}} > 25$ GeV and $|\eta| < 2.47/2.4$ (electron/muon), no other leptons with $p_{_{T}} > 10$ GeV
- Assume 75% b-tagging efficiency, and require at least one b-jet
- Require successful reconstruction of hadronic top with 130 GeV < $m_{_{\rm III}}$ < 205 GeV

Constructing a stop search

- After these common requirements, simultaneously optimize Q—cos ϕ plane, χ_t , and MET cuts for each of the three benchmark points (m_{stop}, m_{LSP}) = (500, 300), (700, 0), (700, 300) GeV to maximize signal significance
- Yields three different signal regions that should cover $m_{\text{stop}} m_{\text{LSP}}$ plane well

The Q-cos \phi plane

Area below red line corresponds to traditional transverse mass cut of $M_{\scriptscriptstyle T} < M = 140~{\rm GeV}$

Selecting only events in this triangle optimizes the signal significance, after further cuts are applied

The Q-cos \phi plane

Area below red line corresponds to traditional transverse mass cut of $M_{\scriptscriptstyle T}$ < M = 140 GeV

For large stop-neutralino mass splittings, the best region in the Q-cos ϕ plane approaches the standard M₊ cut

Top reconstruction

Choose χ_t cut to get best separation between signal and background, given background smearing and stop, LSP masses

Preliminary exclusion

Can improve significantly over current ATLAS limits

Still to study: stops lighter than top + LSP

Summary

- Stop searches have received much interest, bolstered by natural SUSY
- Methods to see light stops include looking at alternate decay modes, and the development of new observables
- By deconstructing the typical transverse mass cut, we can improve the reach of the one lepton stop search considerably for compressed stops

Backup

Shape analysis

- MET distribution shape is different for hadronic stop production than for top background
- For semileptonic stop production, consider lepton transverse mass
- Now implemented in latest 1l stop search ATLAS-CONF-2013-037

D.S.M. Alves et al. 1205.5805

Jet substructure

- Can tag hadronic tops by using fat jets and undoing clustering, looking for mass drop
- After lepton veto, largest remaining background is tt with one t going to a hadronic τ

D.E. Kaplan, K. Rehermann, D. Stolarski 1205.5816

Stransverse mass

- Two invisible particles in dileptonic stop pair production
- Powerful, but geared toward scenarios with hard leptons, and expensive to compute $M_{T2}^{\ell} = \min$
- M_{T2} variants are now used in ATLAS stop searches

$$\left\{ \bigcup_{\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_T^{\text{miss}}} \max \left[m_T(\mathbf{p}_T^{\ell_1}, \mathbf{p}_1), m_T(\mathbf{p}_T^{\ell_2}, \mathbf{p}_2) \right] \right\}$$

Y. Bai et al. 1304.3148