

Alpine Pixel detector

Thermal & static FEA results

IVW - Pixel meeting - 29th of April, 2013

P. Delebecque, N. Geffroy, T. Todorov, Z. Zhang

<u>Outline</u>

- Thermal studies:
 - Poco
 - TPG
 - Mountain
- Static study : design improvement
- Masses consideration
- Pixel design
- Conclusions
- Prospects

Thermal study – Poco 1/3

Status:

The baseline is a stave made of <u>K9-foam</u> (both for barrel and mountains)

Possible improvement:

Use of <u>**Poco-foam</u>** for mountains only, to enhance the sensor cooling. (thanks to a higher thermal Conductivity values)</u>

Study objectives:						
 Comparison of cooling for K9 and Poco-foam 						
<u>K9-foam :</u>	C = 40 W/mK	(isotropic)	d = 0.22 g/cc			
<u>Poco-foam :</u>	C = 135 or 45 W/mK	(orthotropic)	d = 0.55 g/cc			
Poco-HTC :	<u>C = 245 or 70 W/mK</u>	(orthotropic)	d = 0.9 g/cc			

Comparison for same mass of mountain !

<u>Thermal study</u> – Poco 2/3

Comparison for same mass of mountain leads to a modification of mountain design

NB: Please note that the <u>mountain angle is not changed</u>, <u>neither nor the face area dedicated to the module</u>.

Thermal study – Poco 3/3

Poco foam being an orthotropic material a parametric study has been carried out tofind <u>the best 1st orientation of material</u>

(1st orientation has higher thermal conductivity value)

<u>**NB**</u>: Best angle is 100° (106° being the sensor orientation with respect to the longitudinal face-plate)

Nicolas Geffroy

<u>Thermal study</u> – TPG 1/2

Status:

An independent CF laminate is glued on the face of the mountain (between foam and sensor).

Indeed it is laminate is not continuous between mountain backside and barrel region.

Possible improvement:

Use of another material to enhance the sensor cooling. (ie. with better thermal Conductivity values)

Study objectives:

• Evaluate the sensor cooling with TPG instead of CF laminate (K13C-RS3)

CF I	<u>lan</u>	<u>nin</u>	<u>ate</u>
ГРС	<u>; ;</u>		

96 / 0.5 / 0.5 W/m/K 1500 / 1500 / 10 W/m/K

<u>Thermal study</u> – TPG 2/2

Assumption:

TPG and CF laminate have the same thickness (0.145mm)

<u>Thermal study</u> – Mountain 1/6

Status:

Cooling is better if we use TPG instead of CF laminate (between foam and sensor).

Possible improvement:

Decrease the amount of K9 foam: optimization of mountains design

Study objectives:

• Evaluate the sensor cooling with different shapes of mountain (2 parameters)

- 1. Backside angle (Same base)
- 2. Smaller homothetic design (smaller base)

Thermal study – Mountain 2/6

Thermal study – Mountain 3/6

Thermal study – Mountain 4/6

Thermal study – Mountain 5/6

- 1. Backside angle (Same base)
- 2. Smaller homothetic design (smaller base)

Thermal study – Mountain 6/6

- 1. Backside angle (Same base)
- 2. Smaller homothetic design (smaller base)

Combination of both parameters :

homothetic design with increased base

(Radius of curvature for CF-laminate gluing)

Process of TPG / sensor gluing

Static study 1/9

What is the effect of mountains on static behavior (loose of stiffness ?)

Evaluation of relative stiffness between barrel and end-cap

For more facility: *barrel is the same than end-cap without mountains*

Note : obviously a continuous omega like for the barrel (no cuts for tiling assembly) would improve the static behavior...

Static study 2/9

Details of boundary conditions & loading

Stave fixed at both extremities (2 edges of omega)

<u>1N distributed on the</u> <u>flex location</u> (common faces to all models leading to the same loading !)

NB: 1N is an arbitrary loading

Nicolas Geffroy

Static study 3/9

<u>Model 1 :</u>

- No mountain
- Classical omega (cuts on 1 side)
- Continuous face plate

Laminate discontinuities in red

<u> Model 2 :</u>

- 3 mountains
- Classical omega (cuts on 1 side)
- Discontinuous face plate (independent laminate for the mountain face)

<u> Model 3 :</u>

- 3 mountains
- Symmetric omega (cuts on both sides)
- Discontinuous face plate

Static study 4/9

Static study 5/9

Model 1

U_{max} = 6 μm
Obviously the best (continuous FP)

<u>Model 3</u>

U_{max} = 20 μm
Influence of mountains not negligible

• U_{max} = 23 µm

Influence of both:

- discontinous back-plate
- U-like profile has lower inertia

<u>NB</u>: the loading does NOT dependent on the mass !

Static study 6/9

<u>Model 1 & 2</u>

Model 4

Cutting both sides of stave leads to a decrease of material.
Even with a lower inertia the U-backplate is maybe interesting.

Static study 8/9

Masses considerations 2/4

Details on module's components

Module Components	Thickness (mm)	Density (kg/m3)	Mass (g)
Parylen	0.05	1420	0.05
Grease	0.07	3000	0.15
FEI4-chip	0.15	2320	0.25
Bump bonding	0.02	1420	0.02
Sensor	0.23	2320	0.38

<u> Total mass = 0.85g</u>

- Chip and sensor assumed to be made of silicon
- <u>Mass of IBL planar module: **m** = **1.03g** (before assembly, ie. no grease neither nor parylen)</u>

Let's assume **1.2g** for the whole module in this study

Masses considerations 3/4

Smaller mountain in case of TPG :

Consequences on PIXEL design

The change of back-plate (U profile instead of Omega) leads to <u>spaces between staves</u>

Pixel design 2/3

The change of back-plate is only for the end-cap region

<u>View from Z_0 plane</u>: no change for the barrel

<u>3D view of the end-cap</u> (layers 2 & 3) spaces between staves

Pixel design 3/3

Conclusions

Criterion based on the eigen-frequency of the structure

As high as possible / bigger than 50Hz ?

Thanks to a continuous U - back plate :

- the stiffness K increases (a little bit)
- the mass M decreases.

It goes in the desired direction

Evaluate the global behavior (K and M):

not of a single stave BUT of global layer taking into account rings

(at Z₀, at the end of stave and intermediate supports)

Work on the support system in a global approach (one layer to begin) to identify if we need:

- to redesign the stave,
- to make an effort on rings design, number and locations
- redesign both : supports and stave

