Search for Rare Z Decays into Two Reconstructed Photons at CDF

April 15 ${ }^{\text {th }}, 2013$
Baylor HEP Seminar
Karen Bland
for the CDF collaboration

Public webpage:
http://www-cdf.fnal.gov/physics/exotic/run2/Zgamgam/index.html

Outline

- Introduction
- Tevatron and CDF Detector
- Diphoton Event Selection
- Photon Selection
- Photon ID Efficiency
- Signal MC Samples
- Backgrounds
- Limit Calculation

Introduction

- Properties of the W and Z bosons have been studied extensively by collider experiments
- Most of the information we know about the vector bosons however comes from leptonic decays, $\mathrm{W} \rightarrow \mathrm{l}^{-} v$ and $\mathrm{Z} \rightarrow 1^{+} 1^{-}$
- In addition to hadronic W and Z decays, there has been interest by theorists to further understand properties of the vector (V) bosons by searching for $\mathrm{V} \rightarrow \mathrm{P}+\gamma$, where P is a pseudoscalar meson (such as a pion)
- Observation of such decays would be a sensitive probe of strong interaction dynamics and vector boson couplings to the photon

Introduction

- The challenge for these decay modes is the very small predicted branching ratios (BR), ranging from about $\sim 10^{-6}$ to $\sim 10^{-11}$ in the SM
- However, with an abundance of vector bosons produced at the Tevatron and LHC, further searches can improve the experimental upper bounds on these branching ratios that were obtained from LEP
- Furthermore, any significant deviations of the SM prediction of the $B R$ of these decays to observation could indicate new physics

Introduction

- In the analysis presented here, we focus on both rare and forbidden decays of the Z boson*
- Among the rare Z decays, we focus on $\mathrm{Z} \rightarrow \pi^{0} \gamma$, which is experimentally interesting because of the clean signature the decay products leave in the detector

[^0]
Introduction

- We also search for the forbidden decays, $Z \rightarrow \gamma \gamma$ and $Z \rightarrow \pi^{0} \pi^{0}$
- The Z boson is a spin-1 particle
- Along with conservation of angular momentum, the identity of the final-state particles in the $Z \rightarrow \gamma \gamma$ and $Z \rightarrow \pi^{0} \pi^{0}$ decays forbids them in the SM
- That the $Z \rightarrow \gamma \gamma$ decay is forbidden is due to the Landau-Yang theorem, which forbids a spin-1 particle decaying to two spin-1 particles*
- (Since the Higgs-like particle discovered at the LHC decays to two photons, it is not expected to be a spin-1 particle due to Landau-Yang theorem)
- There exist theory papers that motivate a search for a $Z \rightarrow \gamma \gamma$ decay as a test of Bose-Einstein statistics
*A recent paper gives an argument that would allow this process through an axial coupling (arxiv:1109.0926)

Introduction

- No limits from Tevatron or LHC on these decays

$\Gamma(\gamma \gamma) / \Gamma_{\text {total }}$

This decay would violate the Landau-Yang theorem.

- Most stringent limits in PDG on $\mathrm{Br}(Z \rightarrow \gamma \gamma)$ and $\mathrm{Br}\left(Z \rightarrow \pi^{0} \gamma\right)$ are from LEP
- Both are 5.2×10^{-5} at 95% C.L.
- No search has been performed for $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$

VALUE	CL\%	DOCUMENT ID		TECN
$<5.2 \times 10^{-5}$	95	62 ACCIARRI	95G	L3
$<5.5 \times 10^{-5}$	95	ABREU	94B	DLPH
$<1.4 \times 10^{-4}$	95	AKRAWY	91F	OPAL

$\Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }}$

VALUE	$C L \%$	DOCUMENT ID		TECN	
$<5.2 \times 10^{-5}$	95	61	ACCIARRI	$95 G$	L3
$<5.5 \times 10^{-5}$	95	ABREU	94 B	DLPH	
$<2.1 \times 10^{-4}$	95	DECAMP	92	ALEP	
$<1.4 \times 10^{-4}$	95	AKRAWY	$91 F$	OPAL	

PDG Particle Listings: Z Boson
J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)

Introduction

- π^{0} from the $\mathrm{Z} \rightarrow \pi^{0} \gamma$ or $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$ decay:
- Isolated (not in a jet)
- Decays 98.8% to a pair of photons
- High momentum π^{0} from the Z decay leads to collinear pairs of photons, which often appear as a single electromagnetic shower in the detector rather than separated showers
- Experimentally, the isolated π^{0} shower in the detector is nearly indistinguishable from the isolated γ shower
- For the $Z \rightarrow \gamma \gamma, Z \rightarrow \pi^{0} \gamma$, and $Z \rightarrow \pi^{0} \pi^{0}$ search then, we use already developed tools from $\mathrm{H} \rightarrow \gamma \gamma$ analysis at CDF to identify events with two reconstructed photons

Tevatron

- $\mathrm{p} \overline{\mathrm{p}}$ collisions at $\mathrm{V} s=1.96 \mathrm{TeV}$
- Shut down on Sept. 30 ${ }^{\text {th }}, 2011$
- $\mathcal{L} \approx 12 \mathrm{fb}^{-1}$ delivered

CDF Detector

CDF Detector and Particle Identification

e 's and γ 's interact in calorimetry via electromagnetic cascades

Hadrons interact in calorimetry via cascades of nuclear interactions

The CDF detector is designed to differentiate between many different types of final state particles

Summary of $H \rightarrow \gamma \gamma$ Techniques

- Event Selection:
- Isolated photon trigger (25 GeV cut)
- Identify two 15 GeV CEM photons using central NN selection
- Signal Model:
- Shape and acceptance from Pythia MC
- Isolated photon trigger and photon ID efficiency validated in $\mathrm{Z} \rightarrow \mathrm{e}+\mathrm{e}-$ data
- Background Model:
- Exploit resonant feature of H decay into photons
- Use sideband regions of diphoton mass to determine background shape and rate in signal region

Modifications for $Z \rightarrow \gamma \gamma / \pi^{0} \gamma$ Analysis

- Event Selection:
- Isolated photon trigger
(25 GeV cut)
- Identify two 15 GeV CEM photons using central NN selection
- Signal Model:
- Shape and acceptance from a modified (angle- or π^{0} efficiencyweighted) Pythia MC
- Isolated photon trigger and photon ID efficiency validated in $\mathrm{Z} \rightarrow \mathrm{e}+\mathrm{e}-$ data
- Background Model:
- Exploit resonant feature of Z decay into photons
- Use sideband regions of diphoton mass to determine background shape and rate in signal region
- Model Z \rightarrow e+e- from Pythia MC

Diphoton Event Selection

- Use data corresponding to $10.0 \mathrm{fb}-1$ of integrated luminosity
- Diphoton data collected from an inclusive photon trigger
- Single EM cluster with $\mathrm{E}_{\mathrm{T}}>25 \mathrm{GeV}$
- Trigger efficiency after offline selection obtained from trigger simulation software (TrigSim)
- MC samples corrected based on trigger efficiency
- Require two central reconstructed photons with $\mathrm{p}_{\mathrm{T}}>15 \mathrm{GeV}$
- Photon selection described in coming slides
- The Z boson mass signal region is chosen to be $80-102 \mathrm{GeV}$, where about 90% of the signal lies

Photon Identification

- Basic Photon Signature:
- Compact EM cluster
- Isolated
- No high momentum track associated with cluster
- Profile (lateral shower shape) consistent with that of a prompt photon
- Unlike that of $\pi^{0} \eta \rightarrow \gamma \gamma$ decays inside of jets (the largest background for prompt photons)

Photon Identification

- Three level selection
- (1) Loose requirements
- Fiducial in shower max detector
- Ratio of hadronic to electromagnetic transverse energy (Had/EM) < 12.5\%
- Calorimeter isolation
- $I=E_{T}^{\text {Tot }}(\Delta R<0.4)-E_{T}^{E M}$
- Cut slides with $E_{T}^{E M}$
- Track isolation
- (2) Track veto
- Number tracks ≤ 1
- If 1 , then $\mathrm{p}_{\mathrm{T}}{ }^{\text {trk } 1}<1 \mathrm{GeV}$
- (3) Cut on NN Output
- More details on next slides

Electron Identification

- Three level selection
- (1) Loose requirements
- Fiducial in shower max detector
- Ratio of hadronic to electromagnetic transverse energy (Had/EM) < 12.5\%
- Calorimeter isolation
- $I=E_{T}^{\text {Tot }}(\Delta R<0.4)-E_{T}^{E M}$
- Cut slides with $E_{T}^{E M}$
- Track isolation
- (2) Track veto
- Number tracks ≤ 2
- If 2 , then $\mathrm{p}_{\mathrm{T}}{ }^{\text {trk } 2}<1 \mathrm{GeV}$
- (3) Cut on NN Output
- More details on next slides
- No pure high statistics data sample of photons to validate ID efficiency
- Selection chosen so can be modified for electrons
- Then use $Z \rightarrow e^{+} e^{-}$decays (more detail later)

Photon Identification

NN discriminant constructed from seven well understood variables:

- Ratio of hadronic to EM transverse energy
- Shape in shower max compared to expectation
- Calorimeter Isolation
- Track isolation
- Ratio of energy at shower max to total EM energy
- Lateral sharing of energy between towers compared to expectation
- Relative to standard photon selection, increases photon signal efficiency by 5% and jet background rejection by 12\%

Trained using Monte Carlo (MC) simulated events with photons (blue) and events with jets (red)

Photon ID Efficiency

- ID efficiency checked in data and MC from $Z \rightarrow e^{+} e^{-}$decays
- Z mass constraint applied to get a pure sample of electrons to probe
- Effect of overlapping collisions (pile-up) seen through $\mathrm{N}_{\mathrm{vtx}}$ dependence
- Net efficiencies obtained by folding $\varepsilon_{\mathrm{vtx}}$ into $\mathrm{N}_{\mathrm{vtx}}$ distribution of diphoton data and signal MC (a weighted average)
- Net photon ID efficiency:

Data: 83.3\% MC: 88.2\%

- Correction factor of 94.4% applied to signal MC simulation
- Total systematic uncertainty of $\sim 2 \%$ applied from:
- Differences between electron vs photon response (checked in MC)
- Data taking period dependence
- Fits made to Z mass distribution
- Small uncertainties using this method!

π^{0} Photon ID Efficiency

- We use γ and π^{0} from (particle gun) MC samples to study the photon ID efficiency for neutral pions compared to neutral photons as a function of Et
- π^{0} 's from Z boson decays have an average Et around 45 GeV
- For this Et region, the photons from most π^{0} decays is highly collinear, appearing as a single EM shower rather than separated as two EM showers
- We find these isolated π^{0} 's to have an efficiency to our photon ID selection that is about 2% smaller on average than isolated photons

Signal MC Samples

- Pythia has no decay table for $Z \rightarrow \gamma \gamma$, so we first start with a $\mathrm{Z} \rightarrow v_{\mathrm{e}} \nu_{\mathrm{e}}$ Pythia sample and then convert the neutrino/antineutrino to photons before showering in Pythia and passing through CDF detector simulation
- This is called the " $\mathrm{Z} \rightarrow \gamma \gamma$ unweighted model"
- The photons of this sample have a generated angular distribution for that of the neutrino/ antineutrino

Signal MC Samples

- $\mathrm{Z} \rightarrow \pi^{0} \gamma$ Model
- Determined to have the same angular distribution as the neutrinos $\sim\left(\alpha+\cos ^{2} \theta\right)$ with α a constant
- Slightly different photon defection efficiency \rightarrow The π^{0} is then corrected for the observed 2% difference in π^{0} / γ efficiency
- $\mathrm{Z} \rightarrow \gamma \gamma$ and $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$ Models
- Determined to have different angular distribution as the neutrinos (but same as each other)
- We then correct the unweighted $\mathrm{Z} \rightarrow \gamma \gamma$ sample to the expected angular distribution of these decays $\sim\left(\beta-\cos ^{2} \theta\right)$ with β a constant
- The $\mathrm{Z} \rightarrow \pi^{0} \pi^{0} \mathrm{MC}$ sample is furthermore corrected based on the 2% difference observed in in π^{0} / γ efficiency
- The next dozen slides describe the method for obtaining angular distributions for each decay mode

Angular Distribution Formulas*

We consider the decay of a particle with spin s_{0} with polarization state m_{0} that decays into two particles that have helicities λ_{1} and λ_{2}. In the helicity basis, the angular distribution of a specific polarization and helicity state is taken to be proportional to a the square of the corresponding d-function:

$$
F_{m_{0} \lambda_{1} \lambda_{2}}(\theta) \propto\left|d_{m_{0} \lambda_{1}-\lambda_{2}}^{s_{0}}(\theta)\right|^{2}
$$

We obtain the net angular distribution by summing over all the polarization and helicity states considered, each weighted by the states probability:

$$
F(\theta)=\sum_{m_{0} \lambda_{1} \lambda_{2}} f_{m_{0} \lambda_{1} \lambda_{2}}\left|d_{m_{0} \lambda_{1}-\lambda_{2}}^{s_{0}}(\theta)\right|^{2}
$$

The following restriction is made on helicity states due to conservation of angular momentum:

$$
\left|\lambda_{1}-\lambda_{2}\right| \leq s_{0}
$$

We apply these formulas to Z boson decays...

Angular Distribution Formulas*

- Definition of angle θ :
- In Z boson rest frame, angle between momentum direction of first decay product and spin quantization axis of
Z boson (z-axis)

Z boson polarization from Drell Yan

A Z boson decay will have $s_{0}=1$. Since we model the Z production and decay using Pythia, the Z is expected to be polarized. For head-on collisions of (massless) quarks, conservation of total angular momentum and of the z-component in the lab frame imply the following longitudinal spin orientations:

ISR and UE cause quark collisions to have some angle $\neq 180^{\circ}$ which generate a finite transverse f_{0}, which we include as a contribution to the total angular distribution.

We then allow $m_{0}=+1,0$, and -1 , each occurring with probability f_{+}, f_{-}, and f_{0}, respectively. Due to symmetry, we assume $f_{+}=f_{\text {. }}$.

$\mathrm{Z} \rightarrow \boldsymbol{v}_{\mathrm{e}} \bar{\nu}_{\mathrm{e}}$ decay

With left-handed (massless) neutrinos and right-handed (massless) antineutrinos,

$\lambda_{\vec{v}}-\lambda_{v}=\frac{1}{2}-\left(-\frac{1}{2}\right)=1 \quad \boldsymbol{V}_{\mathrm{e}}$

where f_{-}, f_{0}, and f_{+}are the left-handed, longitudinal, and right-handed polarizations of Z, and θ is the angle between v_{e} and the z axis. From symmetry, $f_{-}=f_{+}$. For unpolarized $Z\left(f_{+}=f_{0}\right)$ the sum of the three angular distributions is a constant:

$$
\left(d_{1,1}^{1}\right)^{2}+\left(d_{1,0}^{1}\right)^{2}+\left(d_{1,-1}^{1}\right)^{2}=1
$$

For polarized $Z\left(f_{+} \neq f_{0}\right)$:

$$
\begin{equation*}
F_{v \bar{v}}(\theta)=f_{+}\left(d_{1,1}^{1}\right)^{2}+f_{0}\left(d_{1,0}^{1}\right)^{2}+f_{-}\left(d_{1,-1}^{1}\right)^{2}=\frac{f_{+}-f_{0}}{2}\left(\frac{f_{+}+f_{0}}{f_{+}-f_{0}}+\cos ^{2} \theta\right) \tag{26}
\end{equation*}
$$

Angular Distribution of Unweighted Z $\rightarrow \gamma \gamma$ MC Sample

$$
F_{v \bar{v}}(\theta)=\frac{\left(f_{+}-f_{0}\right)}{2}\left(\frac{f_{+}+f_{0}}{f_{+}-f_{0}}+\cos ^{2} \theta\right)
$$

We determine the unknown values of the f_{+}and f_{0} parameters by fitting to the neutrino angular distributions in the Z rest frame using the MC simulated data.

$$
\mathrm{Z} \rightarrow v_{\mathrm{e}} \bar{v}_{\mathrm{e}} \text { decay }
$$

We fit to the MC histogram with:

$$
F(\theta)=p_{0}\left(p_{1}+\cos ^{2} \theta\right)
$$

With best fit parameters of $\mathrm{p} 0=2811$ and p1 = 1.32, we obtain
$F_{v \bar{v}}(\theta)=2811\left(1.32+\cos ^{2} \theta\right)$
Which gives $f_{+}=7.26 f_{0}$.

$\mathrm{Z} \rightarrow \pi^{0} \gamma$ decay

λ_{γ} can be ± 1 and λ_{π} can be only zero. We then have the following spin states:

$$
\lambda_{r}-\lambda_{\pi}=1-0=1
$$

$\left(d_{-1,1}^{1}\right)^{2}=\left(d_{1,-1}^{1}\right)^{2}=\frac{1}{4}(1-\cos \theta)^{2}$
$\left(d_{0,1}^{1}\right)^{2}=\left(d_{1,0}^{1}\right)^{2}=\frac{1}{2} \sin ^{2} \theta$

$$
\left(d_{1,1}^{1}\right)^{2}=\frac{1}{4}(1+\cos \theta)^{2}
$$

The angular distributions are the same as with the neutrino decay. No neutrino to reweighting function is then needed to correct the unweighted $\mathrm{Z} \rightarrow \gamma \gamma$ (neutrino) angular distributions to the expected $\pi^{0} \gamma$ angular distributions.

$\mathrm{Z} \rightarrow \gamma \gamma$ decay

Angular momentum conservation ($\left|\lambda_{\gamma 1}-\lambda_{\gamma_{2}}\right| \leq s_{z}=1$) excludes parallel photon spins and $\lambda_{\gamma 1}=\lambda_{\gamma 2}=0$ scenarios are excluded because photons are massless. We then have:

$$
\left(d_{0,0}^{1}\right)^{2}=\cos ^{2} \theta
$$

$$
\left(d_{1,0}^{1}\right)^{2}=\frac{1}{2} \sin ^{2} \theta
$$

For unpolarized $Z\left(f_{+}=f_{0}\right)$ the sum of the three angular distributions is a constant:

$$
\left(d_{1,0}^{1}\right)^{2}+\left(d_{0,0}^{1}\right)^{2}+\left(d_{1,0}^{1}\right)^{2}=1
$$

For polarized $Z\left(f_{+} \neq f_{0}\right)$:

$$
F_{r \gamma}(\theta)=f_{+}\left(d_{1,0}^{1}\right)^{2}+f_{0}\left(d_{0,0}^{1}\right)^{2}+f_{-}\left(d_{1,0}^{1}\right)^{2}=\left(f_{+}-f_{0}\right)\left(\frac{f_{+}}{f_{+}-f_{0}}-\cos ^{2} \theta\right)
$$

Neutrino to Photon Angle-Weight Function

We insert $f_{+}=7.26 f_{0}$ (which we got from the $Z \rightarrow v v$ sample) into

$$
F_{r \gamma}(\theta)=\left(f_{+}-f_{0}\right)\left(\frac{f_{+}}{f_{+}-f_{0}}-\cos ^{2} \theta\right)
$$

to obtain the formula we expect for the photons from $Z \rightarrow \gamma \gamma$ in the Pythia sample:

$$
F_{r \gamma}(\theta)=2811\left(1.16-\cos ^{2} \theta\right)
$$

This gives the following neutrinos-to-photons reweighting function to be used to correct the unweighted $Z \rightarrow \gamma \gamma$ to what we expect for photons:

$$
w_{\gamma \gamma}(\theta)=\frac{F_{v \bar{v}}(\theta)}{F_{\gamma \gamma}(\theta)}=\frac{1.16-\cos ^{2} \theta}{1.32+\cos ^{2} \theta}
$$

Neutrino-photon angular weights correct the unweighted $Z \rightarrow \gamma \gamma$ sample to the expected angular distribution

> Unweighted
$\mathrm{Z} \rightarrow \gamma \gamma$ decay

Neutrino to Photon Angle-Weight Function

We insert $f_{+}=7.26 f_{0}$ (which we got from the $Z \rightarrow v v$ sample) into

$$
F_{\gamma \gamma}(\theta)=\left(f_{+}-f_{0}\right)\left(\frac{f_{+}}{f_{+}-f_{0}}-\cos ^{2} \theta\right)
$$

to obtain the formula we expect for the photons from $Z \rightarrow \gamma \gamma$ in the Pythia sample:

$$
F_{r \gamma}(\theta)=2811\left(1.16-\cos ^{2} \theta\right)
$$

This gives the following neutrinos-to-photons reweighting function to be used to correct the unweighted $Z \rightarrow \gamma \gamma$ to what we expect for photons:

$$
w_{\gamma \gamma}(\theta)=\frac{F_{v \bar{v}}(\theta)}{F_{\gamma \gamma}(\theta)}=\frac{1.16-\cos ^{2} \theta}{1.32+\cos ^{2} \theta}
$$

Neutrino-photon angular weights correct the unweighted $Z \rightarrow \gamma \gamma$ sample to the expected angular distribution

Angle-Weighted

$\mathrm{Z} \rightarrow \gamma \gamma$ decay

$$
\mathrm{Z} \rightarrow \pi^{0} \pi^{0} \text { decay }
$$

λ_{π} can be only zero. We then have the following spin states:

$\left(d_{-1,0}^{1}\right)^{2}=\left(d_{1,0}^{1}\right)^{2}=\frac{1}{2} \sin ^{2} \theta$

$$
\lambda_{\pi}-\lambda_{\pi}=0-0=0
$$

$$
\left(d_{0,0}^{1}\right)^{2}=\cos ^{2} \theta
$$

$$
\left(d_{1,0}^{1}\right)^{2}=\frac{1}{2} \sin ^{2} \theta
$$

The angular distributions are the same as with the $\mathrm{Z} \rightarrow \gamma \gamma$ decay. We then apply the neutrino to γ reweighting function to the $Z \rightarrow \pi^{0} \pi^{0}$ decay.

Signal MC Samples: Summary

- Unweighted $Z \rightarrow \gamma \gamma$ MC Sample
- Has angular distribution of neutrinos $\sim\left(\alpha+\cos ^{2} \theta\right)$ with α a constant
- $\mathrm{Z} \rightarrow \pi^{0} \gamma$ Model
- Determined to have the same angular distribution as the neutrinos
- Start with unweighted $\mathrm{Z} \rightarrow \gamma \gamma$ MC sample then, and correct for the observed 2% difference in π^{0} / γ efficiency
- $\mathrm{Z} \rightarrow \gamma \gamma$ and $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$ Models
- Determined to have different angular distribution as the neutrinos (but same as each other)
- Start with unweighted Z $\rightarrow \gamma \gamma$ MC sample, then correct to the expected angular distribution of these decays: $\sim\left(\beta-\cos ^{2} \theta\right)$ with β a constant
- The $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$ decay is furthermore corrected based on the 2% difference observed in in π^{0} / γ efficiency

Signal Diphoton Mass Shapes

- After all corrections, reconstructed mass shape of each decay is obtained
- Expected to be the same for each signal decay mode
- This is because the calorimeter response for π^{0} is found to be the same as that for isolated photons for π^{0} with Et around 45 GeV , determined by studying energy scale

Signal Acceptance \times Efficiency

- Both the angular distributions and the photon identification efficiency affect the fraction of $\mathrm{Z} \rightarrow \pi^{0} \gamma$, $\mathrm{Z} \rightarrow \gamma \gamma$ and $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$ that pass the full diphoton event selection
- Difference in acceptance \times efficiency for $\mathrm{Z} \rightarrow \pi^{0} \gamma$ relative to $\mathrm{Z} \rightarrow \gamma \gamma$ and $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$ is almost entirely due to difference in angular distribution
- Difference in acceptance \times efficiency for $\mathrm{Z} \rightarrow \gamma \gamma$ relative to $\mathrm{Z} \rightarrow \pi^{0} \pi^{0}$ is due to difference in π^{0} / γ photon ID efficiency

Signal Decay Mode	$Z \rightarrow \pi^{0} \gamma$	$Z \rightarrow \gamma \gamma$	$Z \rightarrow \pi^{0} \pi^{0}$
Acc * Eff $\left(\mathrm{m}_{\gamma \gamma}=80-102 \mathrm{GeV}\right)$	5.5%	7.6%	7.3%

Signal Yields

- In principle, could obtain signal yields from

$$
\begin{gathered}
N_{\mathrm{Z} \rightarrow \gamma \gamma}=\frac{\sigma(Z \rightarrow e e)}{\operatorname{Br}(Z \rightarrow e e)} \cdot \operatorname{Br}(Z \rightarrow \gamma \gamma) \cdot L \cdot(A \epsilon)_{Z \rightarrow \gamma \gamma}, \\
N_{\mathrm{Z} \rightarrow \pi^{0} \gamma}=\frac{\sigma(Z \rightarrow e e)}{\operatorname{Br}(Z \rightarrow e e)} \cdot \operatorname{Br}\left(Z \rightarrow \pi^{0} \gamma\right) \cdot L \cdot(A \epsilon)_{Z \rightarrow \pi^{0} \gamma}, \\
N_{\mathrm{Z} \rightarrow \pi^{0} \pi^{0}}=\frac{\sigma(Z \rightarrow e e)}{\operatorname{Br}(Z \rightarrow e e)} \cdot \operatorname{Br}\left(Z \rightarrow \pi^{0} \pi^{0}\right) \cdot L \cdot(A \epsilon)_{Z \rightarrow \pi^{0} \pi^{0}},
\end{gathered}
$$

where $\sigma(\mathrm{Z} \rightarrow$ ee $)$ is $250 \mathrm{pb}, \operatorname{Br}(\mathrm{Z} \rightarrow$ ee $)=0.034$, $\mathrm{L}=10.0 \mathrm{fb}-1$, and $\mathrm{A} \varepsilon$ is acceptance \times efficiency values from previous slide

- We assume no theoretical branching ratio however
- Later, signal branching ratios become a parameter of 95\% C.L. limit calculation

Background Model

- Resonant background (2% of total bkg)
- Drell-Yan
- Modeled with MC

- Smooth $\mathrm{m}_{\gamma \gamma}$ backgrounds ($\sim 98 \%$ of total bkg)
- Modeled from fit to $\mathrm{m}_{\gamma \gamma}$ sideband region
- Fit is made to Drell-Yan subtracted data
- Composition:
- $\gamma \gamma$ from QCD processes ($\sim 2 / 3$ of smooth bkg); irreducible
- $\gamma \mathrm{j}$ or jj : one or two jets faking a photon ($\sim 1 / 3$ of smooth bkg)

Drell-Yan Background

- Drell-Yan background arises from electrons faking photons
- Use inclusive $\mathrm{Z} \rightarrow \mathrm{e}+\mathrm{e}-$ Pythia MC sample
$\sigma=355 \mathrm{pb}$ and a k -factor $=1.4$
- $\mathrm{L}=10.0 / \mathrm{fb}$
- Acceptance \times diphoton efficiency, $\mathrm{A} \varepsilon_{\gamma v}$, for full mass range: 0.0031%
- N expected $=\sigma^{\bullet} \mathrm{k} \bullet \mathrm{L} \bullet \mathrm{A} \varepsilon_{\gamma \gamma}$

$$
=154 \text { events }
$$

for entire mass range

- 54 of these events expected in signal region, $m_{\gamma \gamma}=80-102 \mathrm{GeV}$

Non-Resonant Backgrounds

- We do not model the prompt diphoton and jet faking photons background separately
- Instead use mass sidebands to determine shape and yield in signal region
- First subtract Drell-Yan component from data
- Then fit to sideband regions of DY-subtracted data
- Fit is interpolated into signal region

Fit to DY-subtracted data (linear scale)

Non-Resonant Backgrounds

- We do not model the prompt diphoton and jet faking photons background separately
- Instead use mass sidebands to determine shape and yield in signal region
- First subtract Drell-Yan component from data
- Then fit to sideband regions of DY-subtracted data
- Fit is interpolated into signal region

Fit to DY-subtracted data (log scale)

Background Model versus Data

 Sideband and Signal Region

Background Model versus Data

Signal Region

$Z \rightarrow \gamma \gamma / \pi^{0} \gamma / \pi^{0} \pi^{0}$ Search	CDF Run II Preliminary, $10.0 \mathrm{fb}^{-1}$
Process	Number of Events for $80<m_{\gamma \gamma}<102 \mathrm{GeV}$
Drell-Yan	54 ± 5
$\gamma \gamma, \gamma j$, and $j j$	2251 ± 61
Total background	2305 ± 61
Data	2294

- No evidence for resonance in diphoton mass distribution
- So we set 95\% C.L. limits on the branching ratios of the signal
- The mass shapes and event yields shown here are inputs to this calculation

Limit Calculation

- Binned mass shapes given as inputs
- Use mclimit software to set a Bayesian 95\% C.L. upper limit on signal Br
- The binned likelihood as a function of
$f=\operatorname{Br}\left(\mathrm{Z} \rightarrow \pi^{0} \gamma\right), \operatorname{Br}(\mathrm{Z} \rightarrow \gamma \gamma)$, or $\operatorname{Br}\left(\mathrm{Z} \rightarrow \pi^{0} \pi^{0}\right)$:

$$
\begin{gathered}
L(f)=\prod_{i=1}^{N_{\text {bins }}} \frac{\mu(f)_{i}^{n_{i}} e^{-\mu(f)_{i}}}{n_{i}!} \\
\mu_{i}(f)=f s_{i}+b_{i}
\end{gathered}
$$

- $n_{i}=$ number of data (pseudodata) events for observed (expected) limit
- s_{i} is $\sigma L A \varepsilon$ of signal
- b_{i} is sum of backgrounds
- 95% confidence limit obtained by finding the value of f_{95} for which:

$$
0.95=\int_{0}^{f_{95}} L(f) d f
$$

- Truncated Gaussian priors for systematic uncertainties integrated out before this

Limit Calculation

CDF Run II Preliminary		$\int \mathcal{L}=10.0 \mathrm{fb}^{-1}$				
			Signal			kground
Systematic Uncertainties (\%)		$Z \rightarrow \gamma \gamma$	$Z \rightarrow \pi^{0} \gamma$	$Z \rightarrow \pi^{0} \pi^{0}$	Drell-Yan	Non-Resonant
Luminosity	6	\checkmark	\checkmark	\checkmark	\checkmark	
Z Cross Section	6	\checkmark	\checkmark	\checkmark	\checkmark	
PDF	5	\checkmark	\checkmark	\checkmark		
ISR/FSR	3	\checkmark	\checkmark	\checkmark		
Energy Scale	0.2	\checkmark	\checkmark	\checkmark		
Trigger Efficiency	1	\checkmark	\checkmark	\checkmark	\checkmark	
z-Vertex	0.2	\checkmark	\checkmark	\checkmark	\checkmark	
Photon ID Efficiency	4	\checkmark	\checkmark	\checkmark		
π^{0} / γ Efficiency	2 per π^{0}		\checkmark	\checkmark		
Electron Fake Rate	2				\checkmark	
Sideband Fit	2.7					\checkmark

- Drell-Yan: also bin-by-bin statistical uncertainties
- Dominant uncertainty is that for the non-resonant background

Limit Results

- We cannot distinguish the isolated photon from the isolated neutral pion
- We then calculate 95% C.L. limits on one at a time, assuming the other signals are not present

CDF Run II Preliminary		$\int \mathcal{L}=10.0 \mathrm{fb}^{-1}$				
Signal	Expected $\left(\times 10^{-5}\right)$					C.L. Limits
Process	-2σ	-1σ	Median	$+1 \sigma$	$+2 \sigma$	$\left(\times 10^{-5}\right)$
$\operatorname{Br}(Z \rightarrow \gamma \gamma)$	0.88	1.19	1.66	2.34	3.20	1.66
$\operatorname{Br}\left(Z \rightarrow \pi^{0} \gamma\right)$	1.21	1.63	2.28	3.21	4.37	2.28
$\operatorname{Br}\left(Z \rightarrow \pi^{0} \pi^{0}\right)$	0.93	1.23	1.72	2.41	3.29	1.73

- $\operatorname{Br}\left(\mathrm{Z} \rightarrow \pi^{0} \gamma\right)$ and $\operatorname{Br}(\mathrm{Z} \rightarrow \gamma \gamma)$ limits are more sensitive by factors of 3.1 and 2.3 over the previous limits
- The $\operatorname{Br}\left(\mathrm{Z} \rightarrow \pi^{0} \pi^{0}\right)$ limit is the first reported in this decay mode

Limit Results

Summary and Conclusions

- We report the most sensitive search to date for forbidden and exotic decays of the Z boson to a pair of photons, a pair of neutral mesons, or a neutral meson and a photon.
- $10 \mathrm{fb}^{-1}$ of diphoton data used in this search
- Observed 95\% C.L. upper limits are:
$-\operatorname{Br}\left(Z \rightarrow \pi^{0} \gamma\right) \quad<2.28 \times 10^{-5}$
$-\mathrm{Br}(\mathrm{Z} \rightarrow \gamma \gamma) \quad<1.66 \times 10^{-5}$
$-\operatorname{Br}\left(\mathrm{Z} \rightarrow \pi^{0} \pi^{0}\right) \quad<1.73 \times 10^{-5}$
- The $\operatorname{Br}\left(Z \rightarrow \pi^{0} \gamma\right)$ and $\operatorname{Br}(Z \rightarrow \gamma \gamma)$ limits are, respectively, 2.3 and $3.1 \times$ better than the previous limits
- The $\operatorname{Br}\left(\mathrm{Z} \rightarrow \pi^{0} \pi^{0}\right)$ limit is the first reported in this decay mode
- Future plans: consider rare Z decays involving eta mesons

Backup

Landau-Yang Theorem

- To construct a spin 1 Z from two spin 1 photons, the total $\mathrm{J}=1$ spin function for the Z would be constructed from antisymmetric spin functions.
- For example, the $\mid 1,1>\mathrm{Z}$ state would come from | $1,1>|1,0>-|1,0>| 1,1>$ photon states.
- Then, assuming that the photons conserve linear momentum in the rest frame of the Z , the spatial part of their wave function is symmetric, giving an overall antisymmetric wavefunction.
- Which is not allowed for a total $\mathrm{J}=1$ state, which should be symmetric.

Summary of $\mathrm{H} \rightarrow \gamma \gamma$ Techniques

- Event Selection:
- Isolated photon trigger (25 GeV cut)
- Identify two 15 GeV CEM photons using central NN selection
- Signal Model:
- Shape and acceptance from Pythia MC
- Isolated photon trigger and photon ID efficiency validated in $\mathrm{Z} \rightarrow \mathrm{e}+\mathrm{e}-$ data
- Background Model:
- Exploit resonant feature of H decay into photons
- Use sideband regions of diphoton mass to determine background shape and rate in signal region

Modifications for $Z \rightarrow \gamma \gamma / \pi^{0} \gamma$ Analysis

- Event Selection:
- Isolated photon trigger
(25 GeV cut)
- Identify two 15 GeV CEM photons using central NN selection
- Signal Model:
- Shape and acceptance from a modified (angle- or π^{0} efficiencyweighted) Pythia MC
- Isolated photon trigger and photon ID efficiency validated in $\mathrm{Z} \rightarrow \mathrm{e}+\mathrm{e}-$ data
- Background Model:
- Exploit resonant feature of Z decay into photons
- Use sideband regions of diphoton mass to determine background shape and rate in signal region
- Model Z \rightarrow e+e- from Pythia MC

Photon Identification

- EM calorimeter segmentation:
- $\Delta \eta \times \Delta \varphi \sim 0.1 \times 15^{\circ}(|\eta|<1)$
- Not fine enough to distinguish π^{0} / η and photon showers
- Shower max detector
- ~ 6 radiation lengths into EM calorimeter
- Finely segmented: Position resolution $\sim 1 \mathrm{~mm}$
- Gives resolution to better distinguish $\pi^{0} \eta \rightarrow \gamma \gamma$ from γ at low Et
- For π^{0} with sufficiently high Et, collinear photons like single γ

51

Photon ID Efficiency Scale Factors

- Photon ID efficiency calibrated with $\mathrm{Z} \rightarrow \mathrm{e}+\mathrm{e}-$
- Data (MC) efficiency indicated with points (lines)

Central p18-p23 Data Efficiencies

Revisiting the Z polarization from Drell-Yan

We considered all polarization states. In the limiting case (where the collision is of head-on (massless) quarks) only the two states here would be considered:

In this limit $\mathrm{f}_{0}=0$, and then the angular distributions in the Z rest frame for $\mathrm{Z} \rightarrow \mathrm{vv}$ and $Z \rightarrow \gamma \gamma$ events becomes

$$
\begin{aligned}
& F_{v \bar{v}}(\theta)=f_{+}\left(d_{1,1}^{1}\right)^{2}+f_{-}\left(d_{1,-1}^{1}\right)^{2}=f_{+}\left(1+\cos ^{2} \theta\right) \\
& F_{r \gamma}(\theta)=f_{+}\left(d_{1,0}^{1}\right)^{2}+f_{-}\left(d_{1,0}^{1}\right)^{2}=f_{+}\left(1-\cos ^{2} \theta\right)
\end{aligned}
$$

The corresponding weight function would then be:

$$
w_{r \gamma}(\theta)=\frac{F_{v \bar{v}}(\theta)}{F_{\gamma \gamma}(\theta)}=\frac{1-\cos ^{2} \theta}{1+\cos ^{2} \theta}
$$

[^0]: * CDF has already performed a search for $W \rightarrow \pi^{ \pm} \gamma$ using $4.3 \mathrm{fb}^{-1}$ of data and improved the LEP branching ratio upper limit by a factor of 10.. Phys. Rev. D 85, 032001 (2012)

