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e+e− Annihilation Cross Section

● e+e− → µ+µ− is a fundamental electroweak processes. Same type of process, e+e− →
qq̄, will produce hadrons. Cross sections are roughly proportional.

● Since formation of hadrons is non-perturbative, how can PT give hadronic cross section?

This can be understood by visualizing event in space-time:

❖ e+ and e− collide to form γ or Z0 with virtual mass Q =
√

s. This fluctuates into qq̄,

qq̄g,. . . , occupy space-time volume ∼ 1/Q. At large Q, rate for this short-distance

process given by PT.
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❖ Subsequently, at much later time ∼ 1/Λ, produced quarks and gluons form hadrons.

This modifies outgoing state, but occurs too late to change original probability for event

to happen.

● Well below Z0, process e+e− → ff̄ is purely electromagnetic, with lowest-order (Born)

cross section (neglecting quark masses)

σ0 =
4πα2

3s
Q

2
f

Thus (3 = N = number of possible qq̄ colours)

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

P

q σ(e+e− → qq̄)

σ(e+e− → µ+µ−)
= 3

X

q

Q
2
q .

● On Z0 pole,
√

s = MZ, neglecting γ/Z interference

σ0 =
4πα2κ2

3Γ2
Z

(a
2
e + v

2
e) (a

2
f + v

2
f)
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where κ =
√

2GFM2
Z/4πα = 1/ sin2(2θW ) ≃ 1.5. Hence

RZ =
Γ(Z → hadrons)

Γ(Z → µ+µ−)
=

P

q Γ(Z → qq̄)

Γ(Z → µ+µ−)
=

3
P

q(a
2
q + v2

q)

a2
µ + v2

µ

● Measured cross section is about 5% higher than σ0, due to QCD corrections. For massless

quarks, corrections to R and RZ are equal. To O(αS) we have:

● Real emission diagrams (b):

❖ Write 3-body phase-space integration as

dΦ3 = [...]dα dβ dγ dx1 dx2 ,

α, β, γ are Euler angles of 3-parton plane,
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x1 = 2p1 · q/q2 = 2Eq/
√

s,

x2 = 2p2 · q/q2 = 2Eq̄/
√

s.

❖ Applying Feynman rules and integrating over Euler angles:

σqq̄g = 3σ0CF

αS

2π

Z

dx1 dx2

x2
1 + x2

2

(1 − x1)(1 − x2)
.

Integration region: 0 ≤ x1, x2, x3 ≤ 1 where

x3 = 2k · q/q2 = 2Eg/
√

s = 2 − x1 − x2.

❖ Integral divergent at x1,2 = 1:

1 − x1 = 1
2x2x3(1 − cos θqg)

1 − x2 = 1
2x1x3(1 − cos θq̄g)

Divergences: collinear when θqg → 0 or θq̄g → 0; soft when Eg → 0, i.e. x3 → 0.

Singularities are not physical – simply indicate breakdown of PT when energies and/or

invariant masses approach QCD scale Λ.

❖ Collinear and/or soft regions do not in fact make important contribution to R. To see

this, make integrals finite using dimensional regularization, D = 4 − 2ǫ with ǫ < 0.

Then

σ
qq̄g

= 2σ0

αS

π
H(ǫ)

Z

dx1dx2

(1 − ǫ)(x2
1 + x2

2) + ǫ(1 − x3)

(1 − x3)ǫ[(1 − x1)(1 − x2)]1+ǫ

where H(ǫ) =
3(1 − ǫ)(4π)2ǫ

(3 − 2ǫ)Γ(2 − 2ǫ)
= 1 + O(ǫ) .

4



Hence

σqq̄g = 2σ0

αS

π
H(ǫ)

»

2

ǫ2
+

3

ǫ
+

19

2
− π2 + O(ǫ)

–

.

❖ Soft and collinear singularities are regulated, appearing instead as poles at D = 4.

● Virtual gluon contributions (a): using dimensional regularization again

σqq̄ = 3σ0



1 +
2αS

3π
H(ǫ)

»

− 2

ǫ2
− 3

ǫ
− 8 + π2 + O(ǫ)

–ff

.

● Adding real and virtual contributions, poles cancel and result is finite as ǫ → 0:

R = 3
X

q

Q
2
q



1 +
αS

π
+ O(α

2
S)

ff

.

Thus R is an infrared safe quantity.

● Coupling αS evaluated at renormalization scale µ. UV divergences in R cancel to O(αS),

so coefficient of αS independent of µ. At O(α2
S) and higher, UV divergences make

coefficients renormalization scheme dependent:

R = 3 KQCD

X

q

Q2
q ,

KQCD = 1 +
αS(µ

2)

π
+
X

n≥2

Cn

„

s

µ2

«

 

αS(µ
2)

π

!n
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● In MS scheme with scale µ =
√

s,

C2(1) =
365

24
− 11ζ(3) − [11 − 8ζ(3)]

Nf

12

≃ 1.986 − 0.115Nf

Coefficient C3 is also known.

● Scale dependence of C2, C3 . . . fixed by requirement that, order-by-order, series should

be independent of µ. For example

C2

„

s

µ2

«

= C2(1) −
β0

4
log

s

µ2

where β0 = 4πb = 11 − 2Nf/3.

● Scale and scheme dependence only cancels completely when series is computed to all orders.

Scale change at O(αn
S ) induces changes at O(αn+1

S ). The more terms are added, the

more stable is prediction with respect to changes in µ.
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● Residual scale dependence is an important source of uncertainty in QCD predictions. One

can vary scale over some ‘physically reasonable’ range, e.g.
√

s/2 < µ < 2
√

s, to try to

quantify this uncertainty, but there is no real substitute for a full higher-order calculation.
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e+e− Shape Distributions

● Shape variables measure some aspect of shape of hadronic final state, e.g. whether it is

pencil-like, planar, spherical etc.

● For dσ/dX to be calculable in PT, shape variable X should be infrared safe, i.e. insensitive

to emission of soft or collinear particles. In particular, X must be invariant under

pi → pj + pk whenever pj and pk are parallel or one of them goes to zero.

● Examples are Thrust and C-parameter:

T = max

P

i |pi · n|
P

i |pi|

C =
3

2

P

i,j |pi| |pj| sin2 θij

(
P

i |pi|)2

After maximization, unit vector n defines thrust axis.

● In Born approximation final state is qq̄ and 1 − T = C = 0. Non-zero contribution at

O(αS) comes from e+e− → qq̄g. Recall distribution of xi = 2Ei/
√

s:

1

σ

d2σ

dx1dx2

= CF

αS

2π

x2
1 + x2

2

(1 − x1)(1 − x2)
.

Distribution of shape variable X is obtained by integrating over x1 and x2 with constraint

δ(X−fX(x1, x2, x3 = 2−x1−x2)), i.e. along contour of constant X in (x1, x2)-plane.
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● For thrust, fT = max{x1, x2, x3} and we find

1

σ

dσ

dT
= CF

αS

2π

"

2(3T 2 − 3T + 2)

T (1 − T )
log

„

2T − 1

1 − T

«

−3(3T − 2)(2 − T )

(1 − T )

#

.

This diverges as T → 1, due to soft and collinear gluon singularities. Virtual gluon

contribution is negative and proportional to δ(1 − T ), such that correct total cross section

is obtained after integrating over 2
3 ≤ T ≤ 1, the physical region for two- and three-parton

final states.

● Corrections up to O(α3
S) are known. Comparisons with data provide test of QCD matrix

elements, through shape of distribution, and measurement of αS, from overall rate. Care

must be taken near T = 1 where (a) hadronization effects become large, and (b) large

higher-order terms of the form αn
S log2n−1(1 − T )/(1 − T ) appear in O(αn

S ).
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● Figure shows thrust distribution measured at LEP1 (DELPHI data) compared with LO

theory for vector gluon (solid) or scalar gluon (dashed).

● To describe event shape distributions over a wider range, we must include higher-order

corrections and resum leading and next-to-leading logarithms of (1 − T ) to all orders

(NNLA).
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Resummation and Matching

● For resummation, it is convenient to introduce the event shape fraction

f(τ) =

Z 1

1−τ

dT
1

σ

dσ

dT
.

❖ This quantity satisfies exponentiation, by which we mean that

f(τ) = C(αS) exp G[αS, L] + D(αS, τ)

where L = ln(1/τ), C(αS) is a power series in αS,

G(αS, L) =
∞
X

n=1

n+1
X

m=1

Gnm

„

αS

2π

«n

Lm

≡ L g1(αSL) + g2(αSL) + αS g3(αSL) + · · ·

and the remainder D(αS, τ) vanishes as τ → 0. (We suppress dependence on

renormalization scale µ for the moment.)

● Whereas the event fraction itself has up to two factors of L for each power of αS, its

logarithm has only one extra factor of L for each αS. The double logs come purely from

the expansion of the exponential function.
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● The function g1(u = αSL) that resums leading logs is

g1(u) = − CF

πb2u
[(1 − 2bu) ln(1 − 2bu) − 2(1 − bu) ln(1 − bu)] .

where b, the first β-function coefficient, is (33 − 2Nf)/12π.

❖ At small u, g1(u) ∼ −CFu/π, giving

f(τ) ∼ exp(−αSCFL
2
/π)

in the limit αSL ≪ 1. We see that the dominant effect of resummation is to suppress the

event fraction at small τ (large L), leading to a turn-over instead of a divergence in the

distribution at high thrust.

❖ The NLL function g2(u) is also known. It has a dependence on the renormalization scale µ,

g2(u, µ) = g2(u, Q) − 2bu2dg1

du
ln

„

Q

µ

«

,

which cancels the NLL scale dependence of g1(αSL).

● To match the NLLA resummed shape fraction to the NLO fixed order prediction without

double counting, simplest procedure is the so-called log matching scheme, in which one

writes

ln f(τ) = K(αS) + G(αS, L) + H(αS, τ)

where K(αS) is a power series in αS and H(αS, τ) is a remainder that vanishes as τ → 0.
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● Writing the NLO prediction as

f(τ) = 1 +
αS

2π
A(τ) +

„

αS

2π

«2

B(τ) + O(α3
S) ,

we have

ln f(τ) =
αS

2π
A(τ) +

„

αS

2π

«2

B(τ) − 1

2
[A(τ)]2

ff

+ O(α3
S) .

● To match the predictions to NLO, we should add G(αS, L) to this expression after

subtracting its first- and second-order parts, which are already included in A(τ) and B(τ).

Hence the resummed prediction with K(αS) and H(αS, τ) evaluated to second order is

ln f(τ) = Lg1(αSL) + g2(αSL) +
αS

2π

h

A(τ) − G11L − G12L
2
i

+

„

αS

2π

«2
n

B(τ) − 1
2[A(τ)]

2 − G22L
2 − G23L

3
o

,

where the coefficients Gnm are obtained by expanding the functions g1 and g2 to second

order.

13



● Resulting expression (NLO+NLLA) fits the data over a much wider range than NLO alone

– in fact, better than NNLO.

ALEPH data
Ecm=91.2 GeV

fit range

NNLO, αs=0.1274 ±0.0003, χ2/ndof=0.44

NLO, αs=0.1446 ±0.0003, χ2/ndof=1.7

NLO + NLLA
αs=0.1271 ±0.0002, χ2/ndof=0.62

1/
σ 

dσ
/d

T

T

(d
at

a-
fi

t)
/d

at
a stat. ⊕  exp. uncertainty

statistical uncertainty
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ALEPH data
Ecm=91.2 GeV

fit range

NNLO, αs=0.1288 ±0.0004, χ2/ndof=0.57

NLO, αs=0.1437 ±0.0003, χ2/ndof=1.4

NLO + NLLA, αs=0.1235 ±0.0002, χ2/ndof=1.7

1/
σ 

dσ
/d

C
C

(d
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fi

t)
/d
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A Gehrmann-De Ridder et al., arXiv:0712.0327
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Jet Fractions

● To define fraction fn of n-jet final states (n = 2, 3, . . .), must specify jet algorithm.

● Most common is kT or Durham algorithm:

❖ Define jet resolution ycut (dimensionless).

❖ For each pair of final-state momenta pi, pj define

yij = 2 min{E2
i , E2

j}(1 − cos θij)/s

❖ If yIJ = min{yij} < ycut, combine I, J into one object K with pK = pI + pJ .

❖ Repeat until yIJ > ycut. Then remaining objects are jets.

● Variation of jet fractions with energy provides further evidence of running αS

❖ Fit is to NLO 2-jet fraction and mean number of jets, 〈N〉.

√s
¬
(GeV)

α s(
√s¬ )  OPAL

Measured αs values

αs(MZ)=0.1177
    σstat= ±0.0006
    σtotal=±0.0036

0.095

0.1

0.105

0.11

0.115

0.12

0.125

100 120 140 160 180 200
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● Jet fractions now calculated to O(α3
S), i.e. NLO for 4 jets, NNLO 3 jets, N3LO for 2 jets.

❖ Resummation of log ycut would improve the fit at small ycut.
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A Gehrmann-De Ridder et al., arXiv:0802.0813
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NLO QCD Calculations

● Consider m-jet cross section σJ , defined according to some (infrared-safe) jet definition. In

NLO, two separate divergent integrals:

σ
J
NLO =

Z

m+1

dσ
J
R +

Z

m

dσ
J
V

Must combine before numerical integration.

❖ Jet definition could be arbitrarily complicated:

dσ
J
R = dΦm+1|Mm+1|2F J

m+1(p1, . . . , pm+1)

How to combine without knowing F J?

❖ Two solutions: phase space slicing and subtraction method.
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● Illustrate with simple one-variable example

|Mm+1|2 =
1

x
M(x)

x could be gluon energy or two-parton invariant mass fraction (0 < x < 1).

❖ IR divergences regularized by D = 4 − 2ǫ dimensions (ǫ < 0).

|Mone-loop
m |2 =

1

ǫ
V

❖ Cross section in D dimensions is

σ
J

=

Z 1

0

dx

x1+ǫ
M(x)F

J
1 (x) +

1

ǫ
VF

J
0

❖ Infrared safety: F J
1 (0) = F J

0

❖ KLN cancellation theorem: M(0) = V
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Phase Space Slicing

● Introduce arbitrary cutoff δ ≪ 1:

σJ =

Z δ

0

dx

x1+ǫ
M(x)F J

1 (x) +

Z 1

δ

dx

x1+ǫ
M(x)F J

1 (x) +
1

ǫ
VF J

0

≃
Z δ

0

dx

x1+ǫ
VF

J
0 +

Z 1

δ

dx

x
M(x)F

J
1 (x) +

1

ǫ
VF

J
0

=

Z 1

δ

dx

x
M(x)F J

1 (x) + log(δ)VF J
0

❖ Two separate finite integrals: becomes exact for δ → 0 but huge cancellations

⇒ numerical errors blow up ⇒ compromise (trial and error).

❖ Systematized by Giele-Glover-Kosower: JETRAD, DYRAD, EERAD, . . .
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Subtraction Method

● Exact identity:

σJ =

Z 1

0

dx

x1+ǫ
M(x)F J

1 (x) −
Z 1

0

dx

x1+ǫ
VF J

0 +

Z 1

0

dx

x1+ǫ
VF J

0 +
1

ǫ
VF J

0

=

Z 1

0

dx

x

“

M(x)F
J
1 (x) − VF

J
0

”

+ O(1)VF
J
0

❖ Two separate finite integrals again.

❖ Much harder: subtracted cross section must be valid and calculable everywhere in phase

space.

❖ Systematized by Catani-Seymour-Dittmaier-Nagy-Trocsanyi: EVENT2, DISENT, MCFM,

NLOJET++, . . .
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Parton Branching

● Leading soft and collinear enhanced terms in QCD matrix elements (and corresponding

virtual corrections) can be identified and summed to all orders. Consider splitting of

outgoing parton a into b + c.

❖ Can assume p2
b, p2

c ≪ p2
a ≡ t. Opening angle is θ = θa + θb, energy fraction is

z = Eb/Ea = 1 − Ec/Ea .

❖ For small angles

t = 2EbEc(1 − cos θ) = z(1 − z)E
2
aθ

2
,

θ =
1

Ea

s

t

z(1 − z)
=

θb

1 − z
=

θc

z
.
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● Consider first g → gg branching:

❖ Amplitude has triple-gluon vertex factor

gf
ABC

ǫ
α
aǫ

β
b ǫ

γ
c [gαβ(pa − pb)γ + gβγ(pb − pc)α + gγα(pc − pa)β]

ǫµ
i is polarization vector for gluon i. All momenta defined as outgoing here, so pa =

−pb − pc. Using this and ǫi · pi = 0, vertex factor becomes

−2gf
ABC

[(ǫa · ǫb)(ǫc · pb) − (ǫb · ǫc)(ǫa · pb) − (ǫc · ǫa)(ǫb · pc)] .

❖ Resolve polarization vectors into ǫin
i in plane of branching and ǫout

i normal to plane, so that

ǫin
i · ǫin

j = ǫout
i · ǫout

j = −1

ǫ
in
i · ǫ

out
j = ǫ

out
i · pj = 0 .
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❖ For small θ, neglecting terms of order θ2, we have

ǫin
a · pb = −Ebθb = −z(1 − z)Eaθ

ǫin
b · pc = +Ecθ = (1 − z)Eaθ

ǫ
in
c · pb = −Ebθ = −zEaθ .

❖ Vertex factor proportional to θ, together with propagator factor of 1/t ∝ 1/θ2, gives 1/θ

collinear singularity in amplitude.

❖ (n + 1)-parton matrix element squared (in small-angle region) is given in terms of that for

n partons:

|Mn+1|2 ∼ 4g2

t
CAF (z; ǫa, ǫb, ǫc)|Mn|2
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where colour factor CA = 3 comes from fABCfABC and functions F are given below

ǫa ǫb ǫc F (z; ǫa, ǫb, ǫc)

in in in (1 − z)/z + z/(1 − z) + z(1 − z)

in out out z(1 − z)

out in out (1 − z)/z

out out in z/(1 − z)

❖ Sum/averaging over polarizations gives

CA 〈F 〉 ≡ P̂gg(z) = CA

»

1 − z

z
+

z

1 − z
+ z(1 − z)

–

.

This is (unregularized) gluon splitting function.

❖ Enhancements at z → 0 (b soft) and z → 1 (c soft) due to soft gluon polarized in plane

of branching.

❖ Correlation between polarization and plane of branching (angle φ):

Fφ ∝
X

ǫb,c

| cos φM(ǫ
in
a , ǫb, ǫc) + sin φM(ǫ

out
a , ǫb, ǫc)|2

=
1 − z

z
+

z

1 − z
+ z(1 − z) + z(1 − z) cos 2φ .

Hence branching in plane of gluon polarization preferred.
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● Consider next g → qq̄ branching:

❖ Vertex factor is

−igū
b
γµǫ

µ
av

c

where ub and vc are quark and antiquark spinors.

❖ Spin-averaged splitting function is

TR 〈F 〉 ≡ P̂qg(z) = TR [z
2
+ (1 − z)

2
] .

No soft (z → 0 or 1) singularities since these are associated only with gluon emission.

❖ Vector quark-gluon coupling implies (for mq ≃ 0) q and q̄ helicities always opposite (helicity

conservation).

❖ Correlation between gluon polarization and plane of branching:

Fφ = z2 + (1 − z)2 − 2z(1 − z) cos 2φ

i.e. strong preference for splitting perpendicular to polarization.
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● Branching q → qg:

❖ Spin-averaged splitting function is

CF 〈F 〉 ≡ P̂qq(z) = CF

1 + z2

1 − z
.

❖ Helicity conservation ensures that quark does not change helicity in branching.

❖ Gluon polarized in plane of branching preferred, polarization angular correlation being

Fφ =
1 + z2

1 − z
+

2z

1 − z
cos 2φ .
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Phase Space

● Phase space factors before and after branching are related by

dΦn+1 = dΦn

1

4(2π)3
dt dz dφ .

● Hence cross sections before and after branching are related by

dσn+1 = dσn

dt

t
dz

dφ

2π

αS

2π
CF

where C and F are colour factor and polarization-dependent z-distribution introduced

earlier. Integrating over azimuthal angle gives

dσn+1 = dσn

dt

t
dz

αS

2π
P̂ba(z) .

where P̂ba(z) is a → b splitting function.
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Four-Jet Angular Distribution

● Angular correlations are illustrated by the angular distribution in e+e− → 4 jets. Bengtsson-

Zerwas angle χBZ is angle between the planes of two lowest and two highest energy jets:

cos χBZ =
(p1 × p2) · (p3 × p4)

|p1 × p2| |p3 × p4|
.
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❖ Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend to follow

directions of primary qq̄.

❖ “Double bremsstrahlung” diagrams give negligible correlations.

❖ g → qq̄ give strong anti-correlation (“Abelian” curve), because gluon tends to be polarized

in plane of primary jets and prefers to split perpendicular to polarization.

❖ g → gg occurs more often parallel to polarization. Although its correlation is much weaker

than in g → qq̄, g → gg is dominant in QCD due to larger colour factor and soft gluon

enhancements.

❖ Thus B-Z angular distribution is flatter than in an Abelian theory.
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● Combining with fits to event shape distributions allows determination of the colour factors

CA and CF .
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Summary of Lecture 2

● e+e− annihilation cross section — an infrared-safe quantity.

❖ NNLO prediction shows good stability w.r.t. renormalization scale.

● e+e− shape distributions and jet fractions (suitably defined) also infrared safe.

❖ But require resummation of large logs, e.g. ln(1 − T ).

❖ Complete NNLO calculations now available.

● NLO (and beyond) calculations require special methods to deal with infrared divergences.

❖ Phase space slicing method — simpler but numerical problems.

❖ Subtraction method — more difficult but exact in principle.

● Parton branching approximation sums leading collinear enhanced terms.

❖ Formulated in terms of 1 → 2 parton splitting functions.

❖ Spin correlations explain qualitative features of 4-jet angular distribution.

31


