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Deep Inelastic Scattering

● Consider lepton-proton scattering via exchange of virtual photon:

● Standard variables are:

x =
−q2

2p · q
=

Q2

2M(E − E′)

y =
q · p

k · p
= 1 − E′

E

where Q2 = −q2 > 0, M2 = p2 and energies refer to target rest frame.

● Elastic scattering has (p + q)2 = M2, i.e. x = 1. Hence deep inelastic scattering (DIS)

means Q2 ≫ M2 and x < 1.
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● Structure functions Fi(x, Q2) parametrise target structure as ‘seen’ by virtual photon.

Defined in terms of cross section

d2σ

dxdy
=

8πα2ME

Q4

»„

1 + (1 − y)2

2

«

2xF1

+(1 − y)(F2 − 2xF1) − (M/2E)xyF2

–

.

● Bjorken limit is Q2, p · q → ∞ with x fixed. In this limit structure functions obey

approximate Bjorken scaling law, i.e. depend only on dimensionless variable x:

Fi(x, Q2) −→ Fi(x).
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● Figure shows F2 structure function for proton target. Although Q2 varies by two orders of

magnitude, in first approximation data lie on universal curve.

● Bjorken scaling implies that virtual photon is scattered by pointlike constituents (partons)

— otherwise structure functions would depend on ratio Q/Q0, with 1/Q0 a length scale

characterizing size of constituents.
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● Parton model of DIS is formulated in a frame where target proton is moving very fast —

infinite momentum frame.

❖ Suppose that, in this frame, photon scatters from pointlike quark with fraction ξ of

proton’s momentum. Since (ξp+q)2 = m2
q ≪ Q2, we must have ξ = Q2/2p·q = x.

❖ In terms of Mandelstam variables ŝ, t̂, û, spin-averaged matrix element squared for

massless eq → eq scattering (related by crossing to e+e− → qq̄) is

X

|M|2 = 2e2
qe

4 ŝ2 + û2

t̂2

where
P

denotes average (sum) over initial (final) colours and spins.

❖ In terms of DIS variables, t̂ = −Q2, û = ŝ(y − 1) and ŝ = Q2/xy. Differential cross

section is then
d2σ̂

dxdQ2
=

4πα2

Q4
[1 + (1 − y)2]

1

2
e2

qδ(x − ξ).

❖ From structure function definition (neglecting M)

d2σ

dxdQ2
=

4πα2

Q4



[1 + (1 − y)
2
]F1 +

(1 − y)

x
(F2 − 2xF1)

ff

.

❖ Hence structure functions for scattering from parton with momentum fraction ξ is

F̂2 = xe
2
qδ(x − ξ) = 2xF̂1 .
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❖ Suppose probability that quark q carries momentum fraction between ξ and ξ + dξ is

q(ξ) dξ. Then

F2(x) =
X

q

Z 1

0

dξ q(ξ) xe2
qδ(x − ξ)

=
X

q

e
2
qxq(x) = 2xF1(x) .

❖ Relationship F2 = 2xF1 (Callan-Gross relation) follows from spin-12 property of quarks

(F1 = 0 for spin-0).

● Proton consists of three valence quarks (uud), which carry its electric charge and baryon

number, and infinite sea of light qq̄ pairs. Probed at scale Q, sea contains all quark flavours

with mq ≪ Q. Thus at Q ∼ 1 GeV expect

F em
2 (x) ≃ 4

9
x[u(x) + ū(x)] +

1

9
x[d(x) + d̄(x) + s(x) + s̄(x)]

where

u(x) = uV (x) + ū(x)

d(x) = dV (x) + d̄(x)

s(x) = s̄(x)
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with sum rules
Z 1

0

dx uV (x) = 2 ,

Z 1

0

dx dV (x) = 1 .

● Experimentally one finds
P

q

R 1

0
dx x[q(x)+ q̄(x)] ≃ 0.5.. Thus quarks only carry about

50% of proton’s momentum. Rest is carried by gluons. Although not directly measured in

DIS, gluons participate in other hard scattering processes such as large-pT jet and prompt

photon production.

● Figure shows typical set of parton distributions extracted from fits to DIS data, at

Q2 = 10 GeV2.
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Scaling Violation and DGLAP Equation

● Bjorken scaling is not exact. This is due to enhancement of higher-order contributions from

small-angle parton branching, discussed earlier.

● Incoming quark from target hadron, initially with low virtual mass-squared −t0 and carrying

a fraction x0 of hadron’s momentum, moves to more virtual masses and lower momentum

fractions by successive small-angle emissions, and is finally struck by photon of virtual

mass-squared q2 = −Q2.

● Cross section will depend on Q2 and on momentum fraction distribution of partons seen by

virtual photon at this scale, D(x, Q2).

● To derive evolution equation for Q2-dependence of D(x, Q2), first introduce pictorial

representation of evolution, also useful for Monte Carlo simulation.
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● Represent sequence of branchings by path in (t, x)-space. Each branching is a step

downwards in x, at a value of t equal to (minus) the virtual mass-squared after the

branching.

● At t = t0, paths have distribution of starting points D(x0, t0) characteristic of target

hadron at that scale. Then distribution D(x, t) of partons at scale t is just the x-distribution

of paths at that scale.

● Consider change in the parton distribution D(x, t) when t is increased to t + δt. This is

number of paths arriving in element (δt, δx) minus number leaving that element, divided

by δx.
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● Number arriving is branching probability times parton density integrated over all higher

momenta x′ = x/z,

δDin(x, t) =
δt

t

Z 1

x

dx
′
dz

αS

2π
P̂ (z)D(x

′
, t) δ(x − zx

′
)

=
δt

t

Z 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

● For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

Z x

0

dx′ dz
αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

Z 1

0

dz
αS

2π
P̂ (z)

● Change in population of element is

δD(x, t) = δDin − δDout

=
δt

t

Z 1

0

dz
αS

2π
P̂ (z)

»

1

z
D(x/z, t) − D(x, t)

–

.
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● Introduce plus-prescription with definition

Z 1

0

dz f(z) g(z)+ =

Z 1

0

dz [f(z) − f(1)] g(z) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

and obtain Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Beware! Note that
Z 1

x

dz f(z)g(z)+ =

Z 1

0

dz Θ(z − x)f(z)g(z)+

=

Z 1

x

dz [f(z) − f(1)]g(z) − f(1)

Z x

0

dz g(z)

● Here D(x, t) represents parton momentum fraction distribution inside incoming hadron

probed at scale t. In timelike branching, it represents instead hadron momentum fraction

distribution produced by an outgoing parton. Boundary conditions and direction of evolution

are different, but evolution equation remains the same.
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Quark and Gluon Distributions

● For several different types of partons, must take into account different processes by which

parton of type i can enter or leave the element (δt, δx). This leads to coupled DGLAP

evolution equations of form

t
∂

∂t
Di(x, t) =

X

j

Z 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) ≡ αS

2π
Pij ⊗ Dj

● Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave via

q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

 

1 + z2

1 − z

!

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]

● Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g).

Thus number arriving is
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δDg,in =
δt

t

Z 1

0

dz
αS

2π

(

P̂gg(z)

"

Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

#

+
P̂qq(z)

1 − z

"

Dq

„

x

1 − z
, t

«

+ Dq̄

„

x

1 − z
, t

«

#)

=
δt

t

Z 1

0

dz

z

αS

2π

(

2P̂gg(z)Dg

„

x

z
, t

«

+ P̂qq(1 − z)

»

Dq

„

x

z
, t

«

+ Dq̄

„

x

z
, t

«–

)

,

● Gluon can leave by splitting into either gg or qq̄, so that

δDg,out =
δt

t
Dg(x, t)

Z 1

0

dz
αS

2π

h

P̂gg(z) + NfP̂qg(z) dz
i

.

● After some manipulation we find

Pgg(z) = 2CA

"

„

z

1 − z
+ 1

2z(1 − z)

«

+

+
1 − z

z

+ 1
2z(1 − z)

#

− 2

3
NfTR δ(1 − z) ,
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Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF

1 + (1 − z)2

z
.

● Using definition of the plus-prescription, can check that

„

z

1 − z
+ 1

2z(1 − z)

«

+

=
z

(1 − z)+

+ 1
2z(1 − z) +

11

12
δ(1 − z)

 

1 + z2

1 − z

!

+

=
1 + z2

(1 − z)+

+
3

2
δ(1 − z) ,

so Pqq and Pgg can be written in more common forms

Pqq(z) = CF

"

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

#

Pgg(z) = 2CA

»

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

–

+
1

6
(11CA − 4NfTR) δ(1 − z) .
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Solution by Moments
● Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation means we

can compute its form at any other scale.

● One strategy for doing this is to take moments (Mellin transforms) with respect to x:

D̃i(N, t) =

Z 1

0

dx x
N−1

Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

Z

C

dN x
−N

D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of integrand.

● After Mellin transformation, convolution in DGLAP equation becomes simply a product:

t
∂

∂t
D̃i(x, t) =

X

j

γij(N, αS)D̃j(N, t)

where moments of splitting functions give PT expansion of anomalous dimensions γij:

γij(N, αS) =
∞
X

n=0

γ
(n)
ij (N)

„

αS

2π

«n+1

γ
(0)
ij (N) = P̃ij(N) =

Z 1

0

dz z
N−1

Pij(z)

14



● From above expressions for Pij(z) we find

γ(0)
qq (N) = CF

"

− 1

2
+

1

N(N + 1)
− 2

N
X

k=2

1

k

#

γ
(0)
qg (N) = TR

"

(2 + N + N2)

N(N + 1)(N + 2)

#

γ
(0)
gq (N) = CF

"

(2 + N + N2)

N(N2 − 1)

#

γ(0)
gg (N) = 2CA

"

− 1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)

−
N
X

k=2

1

k

#

− 2

3
NfTR .
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● Consider combination of parton distributions which is flavour non-singlet, e.g. DV =

Dqi
− Dq̄i

or Dqi
− Dqj

. Then mixing with the flavour-singlet gluons drops out and

solution for fixed αS is

D̃V (N, t) = D̃V (N, t0)

„

t

t0

«γqq(N,αS)

,

● We see that dimensionless function DV , instead of being scale-independent function of x

as expected from dimensional analysis, has scaling violation: its moments vary like powers

of scale t (hence the name anomalous dimensions).

● For running coupling αS(t), scaling violation is power-behaved in ln t rather than t. Using

leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

„

αS(t0)

αS(t)

«dqq(N)

where dqq(N) = γ(0)
qq (N)/2πb.

● Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus as t increases D̃V (N, t) is constant

for N = 1 (valence sum rule) and decreases at larger N .
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● Since larger-N moments emphasise larger x, this means that DV (x, t) decreases at large

x and increases at small x. Physically, this is due to increase in the phase space for gluon

emission by quarks as t increases, leading to loss of momentum. This is clearly visible in

data:
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● For flavour-singlet combination, define Σ =
P

i

`

Dqi
+ Dq̄i

´

. Then we obtain

t
∂Σ

∂t
=

αS(t)

2π
[Pqq ⊗ Σ + 2NfPqg ⊗ Dg]

t
∂Dg

∂t
=

αS(t)

2π
[Pgq ⊗ Σ + Pgg ⊗ Dg] .

● Thus flavour-singlet quark distribution Σ mixes with gluon distribution Dg: evolution

equation for moments has matrix form

t
∂

∂t

„

Σ̃

D̃g

«

=

„

γqq 2Nfγqg

γgq γgg

«„

Σ̃

D̃g

«

● Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± = 1
2[γgg + γqq ±

q

(γgg − γqq)2 + 8Nfγgqγqg] .

● Expressing Σ̃ and D̃g as linear combinations of eigenvectors Σ̃+ and Σ̃−, we find they

evolve as superpositions of terms of above form with γ± in place of γqq.
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Small x

● At small x, corresponding to N → 1,

γ+ → γgg → ∞ , γ− → γqq → 0 ,

Therefore we expect structure functions to grow rapidly at small x, which is as observed:
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● Higher-order corrections also become large in this region:

γ
(1)
qq (N) → 40CFNfTR

9(N − 1)

γ
(1)
qg (N) → 40CATR

9(N − 1)

γ(1)
gq (N) → 9CFCA − 40CFNfTR

9(N − 1)

γ
(1)
gg (N) → (12CF − 46CA)NfTR

9(N − 1)
.

● Thus we find

γ+ → 2CA

N − 1

αS

2π

»

1 +
(26CF − 23CA)Nf

18CA

αS

2π
+ . . .

–

=
2CA

N − 1

αS

2π

»

1 − 0.64Nf

αS

2π
+ . . .

–

where neglected terms are either non-singular at N = 1 or higher-order in αS. Thus NLO

correction is relatively small.
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● In general one finds (BFKL) that for N → 1

γ+ →
∞
X

n=1

n
X

m=0

γ(n,m)

(N − 1)m

„

αS

2π

«n

Each inverse power of (N −1) corresponds to a log x enhancement at small x. However, it

happens that γ(2,2) and γ(3,3) are zero. This is the main reason why substantial deviations

from NLO QCD are not yet seen in DIS at small x.
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Parton Showers

● DGLAP equations are convenient for evolution of parton distributions. To study structure

of final states, a slightly different form is useful. Consider again simplified treatment with

only one type of parton branching. Introduce the Sudakov form factor:

∆(t) ≡ exp

"

−
Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ (z)

#

,

Then

t
∂

∂t
D(x, t) =

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) +

D(x, t)

∆(t)
t

∂

∂t
∆(t) ,

t
∂

∂t

„

D

∆

«

=
1

∆

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) .

● This is similar to DGLAP, except D is replaced by D/∆ and regularized splitting function

P replaced by unregularized P̂ . Integrating,

D(x, t) = ∆(t)D(x, t0)

+

Z t

t0

dt′

t′
∆(t)

∆(t′)

Z

dz

z

αS

2π
P̂ (z)D(x/z, t

′
) .
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● This has simple interpretation. First

term is contribution from paths that

do not branch between scales t0 and

t. Thus Sudakov form factor ∆(t)

is probability of evolving from t0 to

t without branching. Second term

is contribution from paths which have

their last branching at scale t′. Factor

of ∆(t)/∆(t′) is probability of evolving

from t′ to t without branching.

● Generalization to several species of partons straightforward. Species i has Sudakov form

factor

∆i(t) ≡ exp

2

4−
X

j

Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ji(z)

3

5 ,

which is probability of it evolving from t0 to t without branching. Then

t
∂

∂t

„

Di

∆i

«

=
1

∆i

X

j

Z

dz

z

αS

2π
P̂ij(z)Dj(x/z, t) .
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Infrared Cutoff

● In DGLAP equation, infrared singularities of splitting functions at z = 1 are regularized

by plus-prescription. However, in above form we must introduce an explicit infrared cutoff,

z < 1 − ǫ(t). Branchings with z above this range are unresolvable: emitted parton is too

soft to detect. Sudakov form factor with this cutoff is probability of evolving from t0 to t

without any resolvable branching.

● Sudakov form factor sums enhanced virtual (parton loop) as well as real (parton emission)

contributions. No-branching probability is the sum of virtual and unresolvable real

contributions: both are divergent but their sum is finite.

● Infrared cutoff ǫ(t) depends on what we classify as resolvable emission. For timelike

branching, natural resolution limit is given by cutoff on parton virtual mass-squared, t > t0.

When parton energies are much larger than virtual masses, transverse momentum in a → bc

is

p
2
T = z(1 − z)p

2
a − (1 − z)p

2
b − zp

2
c > 0 .

Hence for p2
a = t and p2

b, p2
c > t0 we require

z(1 − z) > t0/t ,

that is,

z, 1 − z > ǫ(t) = 1
2 − 1

2

q

1 − 4t0/t ≃ t0/t .
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● Quark Sudakov form factor is then

∆q(t) ≃ exp

"

−
Z t

2t0

dt′

t′

Z 1−t0/t′

t0/t′
dz

αS

2π
P̂qq(z)

#

.

● Careful treatment of running coupling suggests its argument should be p2
T ∼ z(1 − z)t′.

Then at large t

∆q(t) ∼
„

αS(t)

αS(t0)

«p ln t

,

(p = a constant), which tends to zero faster than any negative power of t.

● Infrared cutoff discussed here follows from kinematics. We shall see later that QCD dynamics

effectively reduces phase space for parton branching, leading to a more restrictive effective

cutoff.

● Each emitted (timelike) parton can itself branch. In that case t evolves downwards towards

cutoff value t0, rather than upwards towards hard process scale Q2. Due to successive

branching, a parton cascade or shower develops. Each outgoing line is source of new

cascade, until all outgoing lines have stopped branching. At this stage, which depends on

cutoff scale t0, outgoing partons have to be converted into hadrons via a hadronization

model.

25



● Figure shows (schematically) a typical parton shower in Z0 → hadrons: for a resolution

scale t0 ∼ 1 GeV2, about 7 gluons are emitted.
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Soft Gluon Coherence

● Parton branching formalism discussed so far takes account of collinear enhancements to all

orders in PT. There are also soft enhancements: When external line with momentum p and

mass m (not necessarily small) emits gluon with momentum q, propagator factor is

1

(p ± q)2 − m2
=

±1

2p · q
=

±1

2ωE(1 − v cos θ)

where ω is emitted gluon energy, E and v are energy and velocity of parton emitting it,

and θ is angle of emission. This diverges as ω → 0, for any velocity and emission angle.

● Including numerator, soft gluon emission gives a colour factor times universal, spin-

independent factor in amplitude

Fsoft =
p · ǫ

p · q
where ǫ is polarization of emitted gluon. For example, emission from quark gives numerator

factor N · ǫ, where

Nµ = (6p + 6q + m)γµu(p)
ω → 0
→ (γνγµpν + γµm)u(p)

= (2pµ − γµ6p + γµm)u(p) = 2pµu(p) .

(using Dirac equation for on-mass-shell spinor u(p)).

● Universal factor Fsoft coincides with classical eikonal formula for radiation from current pµ,

valid in long-wavelength limit.
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● No soft enhancement of radiation from off-mass-shell internal lines, since associated

denominator factor (p + q)2 − m2 → p2 − m2 6= 0 as ω → 0.

● Enhancement factor in amplitude for each external line implies cross section enhancement

is sum over all pairs of external lines {i, j}:

dσn+1 = dσn

dω

ω

dΩ

2π

αS

2π

X

i,j

CijWij

where dΩ is element of solid angle for emitted gluon, Cij is a colour factor, and radiation

function Wij is given by

Wij =
ω2pi · pj

pi · q pj · q
=

1 − vivj cos θij

(1 − vi cos θiq)(1 − vj cos θjq)
.

Colour-weighted sum of radiation functions CijWij is antenna pattern of hard process.
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● Radiation function can be separated into two parts containing collinear singularities along

lines i and j. Consider for simplicity massless particles, vi,j = 1. Then Wij = W i
ij + W j

ij

where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq

− 1

1 − cos θjq

«

.

● This function has remarkable property of angular ordering. Write angular integration in polar

coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq. Performing azimuthal integration,

we find
Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq

if θiq < θij, otherwise 0.

i

j

Thus, after azimuthal averaging,

contribution from W i
ij is confined to

cone, centred on direction of i, extending

in angle to direction of j. Similarly, W j
ij,

averaged over φjq, is confined to cone

centred on line j extending to direction of

i.
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Angular Ordering

● To prove angular ordering property, write

1 − cos θjq = a − b cos φiq

where

a = 1 − cos θij cos θiq , b = sin θij sin θiq .

Defining z = exp(iφiq), we have

I
i
ij ≡

Z 2π

0

dφiq

2π

1

1 − cos θjq

=
1

iπb

I

dz

(z − z+)(z − z−)

where z-integration contour the unit circle and

z± =
a

b
±

s

a2

b2
− 1 .

Now only pole at z = z− can lie inside unit circle, so

Ii
ij =

s

1

a2 − b2
=

1

| cos θiq − cos θij|
.
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Hence

Z 2π

0

dφiq

2π
W i

ij =
1

2(1 − cos θiq)
[1 + (cos θiq − cos θij)I

i
ij]

=
1

1 − cos θiq

if θiq < θij, otherwise 0.

● Angular ordering is coherence effect common to all gauge theories. In QED it causes

Chudakov effect – suppression of soft bremsstrahlung from e+e− pairs, which has simple

explanation in old-fashioned (time-ordered) perturbation theory.

❖ Consider emission of soft photon at angle θ from electron in pair with opening angle

θee < θ. For simplicity assume θee, θ ≪ 1.

❖ Transverse momentum of photon is kT ∼ zpθ and energy imbalance at e → eγ vertex is

∆E ∼ k2
T/zp ∼ zpθ2 .
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❖ Time available for emission is ∆t ∼ 1/∆E. In this time transverse separation of pair will

be ∆b ∼ θee∆t.

❖ For non-negligible probability of emission, photon must resolve this transverse separation of

pair, so

∆b > λ/θ ∼ (zpθ)−1

where λ is photon wavelength.

❖ This implies that

θee(zpθ
2
)
−1

> (zpθ)
−1

,

and hence θee > θ. Thus soft photon emission is suppressed at angles larger than opening

angle of pair, which is angular ordering.

❖ Photons at larger angles cannot resolve electron and positron charges separately – they see

only total charge of pair, which is zero, implying no emission.

● More generally, if i and j come from branching of parton k, with (colour) charge

Qk = Qi + Qk, then radiation outside angular-ordered cones is emitted coherently by i

and j and can be treated as coming directly from (colour) charge of k.
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Coherent Branching

● Angular ordering provides basis for coherent parton branching formalism, which includes

leading soft gluon enhancements to all orders.

● In place of virtual mass-squared variable t in earlier treatment, use angular variable

ζ =
pb · pc

Eb Ec

≃ 1 − cos θ

as evolution variable for branching a → bc, and impose angular ordering ζ′ < ζ for

successive branchings. Iterative formula for n-parton emission becomes

dσn+1 = dσn

dζ

ζ
dz

αS

2π
P̂ba(z) .

● In place of virtual mass-squared cutoff t0, must use angular cutoff ζ0 for coherent branching.

This is to some extent arbitrary, depending on how we classify emission as unresolvable.

Simplest choice is ζ0 = t0/E2 for parton of energy E.

● For radiation from particle i with finite mass-squared t0, radiation function becomes

ω2

 

pi · pj

pi · q pj · q
− p2

i

(pi · q)2

!

≃ 1

ζ

„

1 − t0

E2ζ

«

,

so angular distribution of radiation is cut off at ζ = t0/E2. Thus t0 can still be interpreted

as minimum virtual mass-squared.
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● With this cutoff, most convenient definition of evolution variable is not ζ itself but rather

t̃ = E2ζ ≥ t0 .

Angular ordering condition ζb, ζc < ζa for timelike branching a → bc (a outgoing)

becomes

t̃b < z2t̃ , t̃c < (1 − z)2t̃

where t̃ = t̃a and z = Eb/Ea. Thus cutoff on z becomes

q

t0/t̃ < z < 1 −
q

t0/t̃ .

● Neglecting masses of b and c, virtual mass-squared of a and transverse momentum of

branching are

t = z(1 − z)t̃ , p
2
t = z

2
(1 − z)

2
t̃ .

Thus for coherent branching Sudakov form factor of quark becomes

∆̃q(t̃) = exp

2

4−
Z t̃

4t0

dt′

t′

Z 1−
√

t0/t′

√
t0/t′

dz

2π
αS(z

2
(1 − z)

2
t
′
)P̂qq(z)

3

5

At large t̃ this falls more slowly than form factor without coherence, due to the suppression

of soft gluon emission by angular ordering.
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● Note that for spacelike branching a → bc (a incoming, b spacelike), angular ordering

condition is

θb > θa > θc .

However, kinematics implies Ebθb > Eaθa and in this case Eb < Ea, so angular ordering

does not impose an extra constraint on branching. Therefore gluon emission is not

suppressed by coherence in spacelike branching.

❖ This permits the rapid rise of structure functions at small x.

❖ We shall see that the production of low-momentum hadrons in jet fragmentation, controlled

by timelike branching at small x, is quite different – strongly suppressed by QCD coherence.
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Summary of Lecture 3

● Deep inelastic lepton scattering (DIS) reveals parton structure of hadrons.

❖ Pointlike constituents ⇒ Bjorken scaling.

❖ Sum rules reveal properties of partons.

❖ Gluons inferred from missing momentum.

● Logarithmic violation of Bjorken scaling follows from QCD.

❖ Leading contribution due to multiple small-angle parton branching..

● Parton distributions evolve according to DGLAP equations.

❖ These involve convolutions ⇒ solve by taking moments (xN−1)

❖ Divergences as N → 1 lead to rapid increase in parton distributions at small x.

● Emitted partons can also branch, leading to parton showers.

❖ Showers determine broad structure of final state.

❖ Sudakov form factor gives probability of evolution without resolvable branching.

❖ Can follow parton showers until evolution scale becomes too low for perturbation theory ⇒
infrared cutoff. Then need hadronization model.

● Soft gluon emission also gives enhanced higher-order contributions.

❖ Must sum emission from different partons coherently.

❖ Main effect of coherence is angular ordering ⇒ use angular evolution variable.

❖ Soft gluon emission suppressed.

❖ Not a major effect in DIS (initial-state showers).
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