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The INSIDE project 
 

An integrated monitoring system for the 
on-line assessment of particle therapy 

treatment accuracy 



The INSIDE project @CNAO 

Universita’ di Pisa, Bari Politecnico, Universita’ di Roma La 
Sapienza, Universita’ di Torino, INFN -> 40 researchers  
Duration 3 years from February 1st, 2013 

the INSIDE (Innovative Solutions for In-beam 
DosimEtry in hadrontherapy) project has the aim to 
build an in-beam, multimodal dose profiler for 
Hadrontherapy.  
Mechanics and operation is optimized to be inserted 
in the CNAO work-flow-> realistic environment  
The monitoring is based on the detection of different 
signal produced by the beam: 
• Annihilation gammas from β+ emitters (PET) 
• Prompt charged secondaries (mainly protons)  



INSIDE Project: synergies 
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Centro Fermi 
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Innovative Non 
Invasive Imaging 
of Dose Release in 

Hadrontherapy 
 

INFN RDH 
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Research & 
Developments for 
Hadrontherapy 



In-beam PET monitoring 

 
  

12C: E = 212 AMeV 
Target: PMMA 

15O, 11C, 13N ... 

11C, 
10C 

1H: E = 110 MeV 
Target: PMMA 

15O, 11C, 13N ... 

A possible method for the control 
of the geometrical accuracy of the 
treatment is PET imaging 
 
 Nuclear inelastic reactions 

between the hadron beam 
(both p & 12C) and nuclei in 
tissue 
 

 β+ emitting isotopes are 
produced with short half-lives 
like  
 11C (20.3 min), 
 13N (9.97 min), 
 150 (2.03 min). 
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In-beam/in-room dedicated 
instruments are necessary to: 
 Avoid data loss of very short living 

isotopes 
 Avoid metabolic wash-out 
 Avoid patient re-positioning 
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J Pawelke et al., Proceeding: Ion Beams 
in Biology and Medicine (IBIBAM), 26.-
29.09.2007, Heidelberg, Germany 



PET-based monitoring timing and specs 

In-beam (& In room) PET data taking time is highly 
dependent from patient, number of fields, beam 
features, treatment center work-flow… 
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Detector acceptance 
should be such to 
collect enough 
statistics in the beam-
on time 

DAQ must sustain the 
beam background rate 
(at least inter-spill) 

Reconstruction must 
not have biases from 
beam background 

 



• Test on p and 12C (LNS & CNAO) 
• Different phantoms irradiated  
• Dose tested from 1 to 20 Gy 
• In-beam vs off-beam tests 
• Activity determination 
• Comparison with FLUKA  

INSIDE PET System: 
Prototype and experiments 

 DO-PET INFN monitoring system 
 Two PET heads, each one  2x2 squared MA-

PMT H8500 coupled to matrices of the same 
size of LYSO:Ce  scintillating crystals 
(2×2×18 mm3 pixel dimensions).  

 One head total active area is 98x98 mm2 

 Maximum Likelihood Expectation Maximization 
reconstruction 



Off-beam: 12’ In-beam: 3’ 

in-beam 

off-beam 

In-beam vs off-beam β+ activity 

CATANA: 62 MeV proton 
beam on PMMA off-beam 
and in-beam acquisition 
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In-beam test of PET DAQ prototype 
INSIDE is designed to exploit single crystal trigger ( β+ 
coincidences made at 2nd level). We tested the DAQ operation 
at the irradiation condition rate.  

 LYSO crystal 3 x 3 x 10 mm3 

 RGB SiPM from AdvanSid 3x3 mm2 

 Front-end ASIC:TOFPET from LIP 
Portugal/INFN Torino, developed 
within FP7 ENDOTOFPET e PICOSEC 

 64 input channels 
 100 kHz/chn 
 Dyn range 200 pC 
 SNR 20 dB 
 Time resolution 500ps FWHM 
 Power consumption 10 mW/chn 

 

 

The LYSO crystals in contact with 
PMMA phantom (5 x 5 x 7 cm3) 

Proton beam 

SiPM 

PMMA 

Schematic view of the 
experimental set up 

LYSO 



DAQ rate and single rate spectrum 

 No dead time saturation observed 
during the spill 

 No energy spectrum distortion 
observed off-beam vs inter-spill 

After irradiation 
energy 
spectrum 

Interspill 
energy 
spectrum 

Rate of acquired 
events with time 

Time over threshold (ns) 

Time over threshold (ns) 

511 KeV 



HT monitoring vs charged particles 

Secondary charged particles produced by the beam and escaping 
the patient (mainly protons) have several nice features:  

 The detection efficiency is almost one 

 Can be easily back-tracked to the emission point-> can be 
correlated to the dose release profile & Bragg Peak position 

BUT… 
• They are not so many for 

12C, few for protons, in 
particular at large angle 
wrt the beam direction.  

• Energy threshold to 
escape ~ 100 MeV 

• They suffer multiple 
scattering inside the 
patient 

Agodi et al 2012 
PMB 57 5667  
Gwosch  et al2013 
PMB 58 3755 

beam 

Secondary 
charged 
particle 



Charged secondaries at 900 from 12C beam 
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Charged 
secondaries from 
PMMA target on 
220 AMeV  12C 
beam at GSI. 
Flux measured at 
900 wrt beam 

L.Piersanti et al. submitted to PMB 



Fragmentation & dose monitoring 

The emission point distribution of 100-150 MeV secondary 
protons provides info on the BP position. In particular this can be 
exploited for 12C beam 
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Simulated emission distribution shape of 
protons as detected ouside different 
PMMA thickness at 300 wrt the direction 
of 95 AMeV 12C beam 
E. Testa et al Phys. Med. Biol. 57 4655 

Measured emission distribution shape of 
protons as detected outside a 5 cm thick PMMA 
at 900 wrt the direction of 220 AMeV 12C beam 
L. Piersanti et al submitted to Phys. Med. Biol 

12C 



Efficiency and resolution on emitted protons 

Simulation of a “spherical head” 
with ICRU materials, with proton 
source placed at different depths: 
10 cm and 5 cm 

Low detection eff for emission 
near BP (low energy protons) 

M.S. in the patient rules out need 
for high resolution devices 

10 cm 20 cm 

ICRU brain 

ICRU cortical bone 

single track 
resolution 
 detection 

efficiency 
 

FLUKA sim. of tracker made of 6 
planes of 500 µm XY sci fi 



• Two planar panels each 10 cm x 20 cm2 wide. Each panel will 
be made by 2 x 4 detection modules (scalable) 

• Each module is composed of a pixelated LYSO scintillator 
matrix 16 x 16 pixels, 3x3 mm2  crystals, 3.1 mm pitch, for a 
total sensitive area of 5x5 cm2  

• One SiPM array ( 16x16 pixels) is coupled one-to-one to each 
LYSO matrix 

• DAQ sustains annihilation and prompt photon rates during the 
beam irradiation, Each crystal acquired as single trigger 

The INSIDE PET detectors 

Aluminum case 
306x235x171,5 (mm3)  

thin window 
20x10 cm2 

LYSO 
crystals 
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The INSIDE charged tracker 

 6 XY planes with 2 cm spacing. Each 
plane  made of 2 stereo layers of 192 
0.5x0.5 mm2 square scintillating fibers 

 2x0.5 mm squared fibers read out by 
Hamamatsu 1mm2 SiPM : S12571-050P 

 32 SiPM feed a 32 ch ASIC BASIC32 

 4x4  LYSO pixellated 
crystals. Each one: 50 x 
50 x 16 mm3  

 Plastic absorber 1.5 cm 
thick in front of LYSO to 
screen electrons 

 Crystals read out by 64 
ch Hamamatsu 
MultiAnode 



The INSIDE mechanics 

Sliding PET 
Head located 
below the 
couch 

Sliding PET 
Head located 
above the 
couch 

Charged 
tracker box: 
900-600 wrt 
the beam 

Tilting and 
sliding arm 

Beam 



INSIDE @ CNAO 

INSIDE rest 
position 

CNAO 
treatment 
room 1 



INSIDE @ CNAO 

CNAO 
treatment 
room 1 

INSIDE 
operation 
position 



INSIDE @ CNAO 
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treatment 
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Summary & conclusions 

The INSIDE collaboration  aims to develop an in-beam 
monitoring device for hadrontherapy that exploits 
the joint information from PET photons & prompt 
charged particle detection  

The system is designed to be put in operation in the 
CNAO treatment room and should be ready in early 
2016 

The twofold detected emission will be compared with 
TPS info and embedded in the general information 
system of CNAO.  

For INSIDE software and MC related features, see 
also the talk from P.Cerello on Wednesday 12th 
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