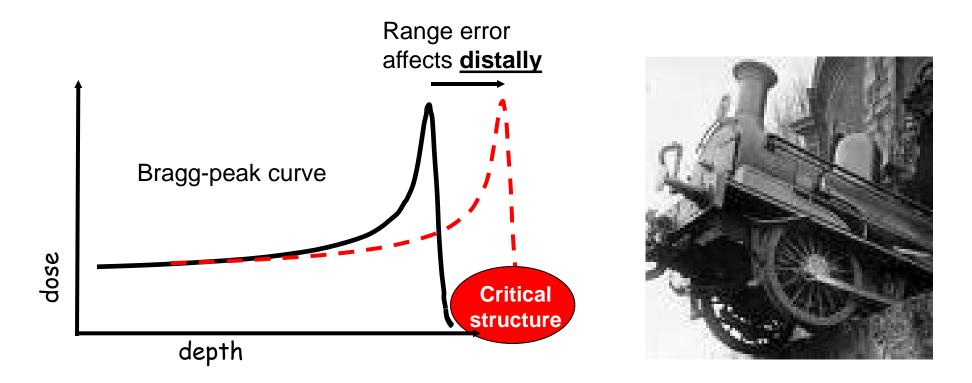


The use of 'planned overshoot' for reducing dose to healthy tissue and improve treatments robustness for scanned proton beams

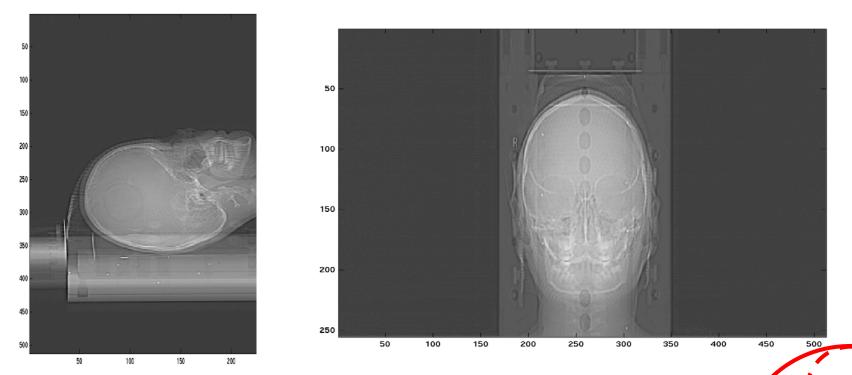
LV van Dijk, <u>**F Albertini**</u>, AC Knopf, C Ares, AJ Lomax Center for Proton Radiation Therapy Rationale: protons and uncertainties (range errors)

The advantage of using protons for radiotherapy is that they stop...



The use of ,planned overshoot' for scanned proton beams

ICTR-PHE, 14 February 2014


...the disadvantage of using protons for radiotherapy is that you don't always know where!

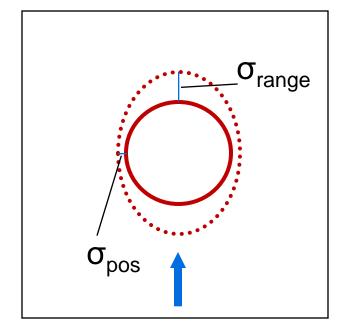
Range errors are generally **systematic** (i.e. these propagates through the course of the therapy)!

Rationale: Protons and uncertainties (set-up errors)

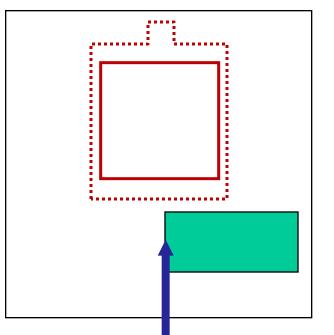
Set-up errors are <u>randomly</u> (i.e effect is washed out during the course of therapy) and <u>isotropically</u> distributed around the target volume (there is no "favourite misalignment direction")

Dealing with uncertainties: use of PTV

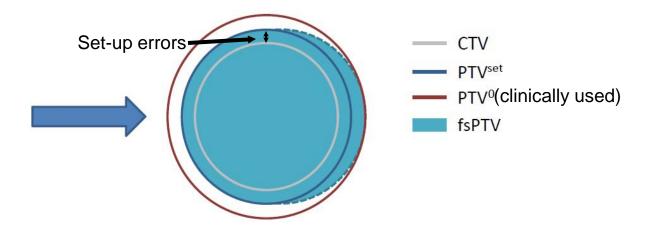
Definition of a PTV (isotropically expansion of the CTV) is conventional way of dealing with potential delivery errors (setup and range)


For <u>passive scattering</u> protons, PTV often not used, as uncertainties are dealt with through expansion of apertures and smoothing and smearing of compensator

For <u>scanned proton</u> beams: no collimators or compensator. Therefore current method is to define PTV

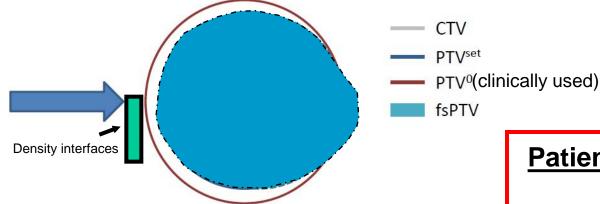

➤Is this necessarily the best approach?

Do we need field specific PTV's?



E.g. could be necessary if $\sigma_{pos} <> \sigma_{range}$

..or when passing along strong density interfaces (c.f. smearing of compensators)



Field Specific PTV:

- Pencil beams optimized on an artificially modified CT data set (HU +3%)
- 2) The dose is calculated on the nominal CT data set: this results in a <u>'planned-overshoot'</u> for each beam

Field Specific PTV:

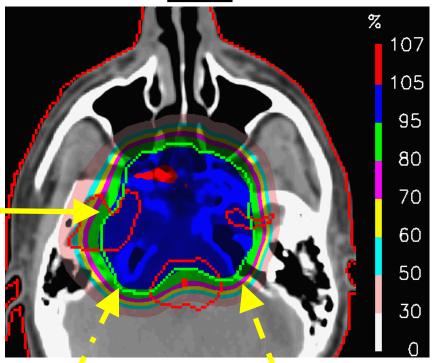
- Pencil beams optimized on an artificially modified CT data set (HU +3%)
- The dose is calculated on the nominal CT data set: this results in a <u>'planned-overshoot'</u> for each beam

Patient data:

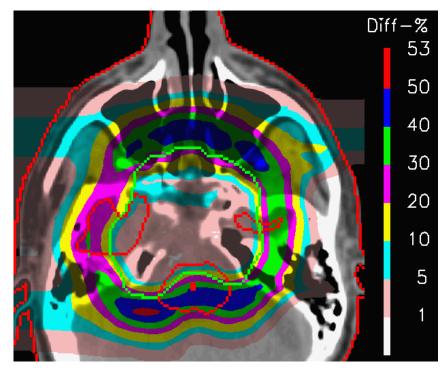
 10 cases planned with Single Field
Uniform Dose (SFUD) [and 10 cases with Intensity Modulated Proton Therapy (IMPT)]

 Dose distributions -PTV0 (isotropic) vs fsPTV - compared in terms of dose coverage of the CTV and sparing of healthy tissue.

 Plan robustness to range and set-up uncertainties have been assessed



Difference dose distribution (PTVfs – PTV0)


	CTV			SFUD			Healthy Tissue				>	
	5.(Patient		\mathbf{V}_{95}	$\mathbf{V}_{95}^{\mathrm{fsPTV}}$	Δ		Int	Int ^{fsPTV}	Δ		Proport	
	0.0 1	6	100,0	100,0	0,0		15,19	13,22	-1,97		-5,9 %	
	2		100,0	100,0	0,0		9,62	8,26	-1,36		-14,1 %	
	3		100,0	100,0	0,0		12,70	11,56	-1,14		-9,0 %	
	-5. 4		100,0	99,9	0,0		13,10	10,80	-2,29		-17,5 %	
	5		100,0	100,0	0,0		12,16	10,55	-1,61		-15,4 %	
	-10 6		99,8	99,6	-0,2		21,66	20,39	-1,27		-13,0 %	
	7		100,0	100,0	0,0		7,97	7,15	-0,82		-13,1 %	
Sec. 1	8		100,0	99,8	-0,2		4,67	3,95	-0,72		-13,2 %	
	-11 9		99,9	99,7	-0,3		11,99	10,02	-1,97		-16,4 %	
	10		100,0	99,8	-0,2		15,22	13,23	-1,99		-10.3 %	
	-20	±0,4			-0,1	±0,1			-1,5	±0,5	-13±3,	
ral dose reduction									Reduction in the integral dose			

L

Nominal dose distributions

Error-bar distribution

Assess plan robustness:

- 1. calculate n- 'error' dose distributions
- 2. reduce the data into an error-bar distribution

Albertini F et al, 2011 PMB

From 'error-bar distribution' it is ossible to extract Error –Bar Volume Histograms' and Aetrics (e.g. E5%)						100	80 i histogram farthest from "0-line": volume less robust histogram closest to "0-line":volume more robust							
						60								
				S	SFUD	CTV								
	RANG	Eunderdosa	ertainties (S	6) SETUP under dosage uncertainties (%)										
patient	E ₂	E2fsPTV	Δ	E ₅	ESSPTV	Δ	E ₂	E ₂ fsPTV	Δ	E ₅	ESSPTV	Δ		
1	4,2	3,7	-0,5	2,5	2,3	-0,2	11,1	12,2	1,1	8,0	8,9	0,9		
2	1,8	2,1	0,3	1,4	1,8	0,4	11,2	15,9	4,7	8,0	12,9	4,9		
3	2,6	2,1	-0,5	1,4	1,6	0,2	13,4	14,6	1,2	9,2	10,2	1,0		
4	18,0	16,7	-1,3	12,6	12,5	-0,1	30,1	36,8	6,7	24,7	30,7	6,0		
5	2,6	3,1	0,5	1,8	2,4	0,6	12,9	23,0	10,1	9,6	15,5	5,9		
6	10,3	8,8	-1,5	6,3	6,2	-0,1	20,7	24,2	3,5	14,3	17,1	2,8		
7	9,9	8,0	-1,9	6,2	6,2	0,0	21,0	24,8	3,8	14,6	17,6	3,0		
8	9,5	8,4	-1,1	6,1	7,2	1,1	17,4	21,2	3,8	11,6	14,6	3,0		
9	2,4	3,0	0,6	1,6	2,2	0,6	6,4	9,6	3,2	4,9	7,8	2,9		
10	3,6	3,0	-0.6	2,6	2,2	-0,4	25,0	25,0	0.0	22,2	22,2	0,0		
			-0,6 ±0,9			0,2 ±0,5			4 ±3			3 :	±2	

Summary

- The use of a PTV achieved by isotropically expanding the CTV is not the optimal solution as range errors affect the dose distribution mainly in the distal part of the target.
- The fsPTV here proposed is easy to implement clinically AND it shows a great potential for reducing dose to healthy tissue and improving the morbidity of patients.
- The use of fsPTV improves the plan robustness to range uncertainties (for SFUD plans).

Limitations:

- Hypo-fractionation with big set-up uncertainties (impact of set-up and range errors are comparable)
- Critical for fields crossing high density and abutting against OAR
- IMPT plans

Thank you

