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Purpose  
• To develop a totally passive miniature 

radiation sensor based on optical fiber 
resonant cavity 
 

• Basic idea: radiation-induced effect on fiber 
material (SiO2) → refractive index variations→ 
prospectively absorbed dose measurements 

 



Background 
“Radiation domain” 

• Recent  technological advances 
in RT have increased the use of 
small fields (<4 cm x 4 cm) 
reinforcing the demand for 
novel dosimeter technology 

 R. Alfonso et al , Med. Phys. 2008 
 

• Among the available dosimetry 
systems none of them have the 
characteristics of an ideal 
dosimeter  

 J. Andersson et al, Med. Phys. 
2012 

“Optical fiber domain”  
• Optical fiber detectors as 

extrinsic sensors (transmission 
of light) 

 S. O’Keeffe et al  Sens. Rev. 2008, 
A. L. Huston et al Nucl. Instrum. 
Methods Phys. Res. 2001  

 
• Radioluminescent dosimeters  

based on doped SiO2 optical 
fiber as active sensors (light-
emitting fibers) but some 
limitations are present (i.e. 
“stem effect” for MV photons) 

 E. Mones et al Radiat. Meas. 2008, 
M. Aznar et al  Phys. Med. Biol. 
2004, I. Veronese et al Rad. Meas. 
2010  

 



Theories 
• Different theories on Ge-doped silica refractive index 

variations after exposure to IRs: 
 
– “color center model” → creation of defect centers by 

interaction of high-energy photons with OH radicals and 
Ge, naturally present in silica fibers, or with added 
dopants 

» Skuja L. et al, J. Non-Cryst. Solids 1998 
– “compaction effect” → a radiation induced densification 

process 
» Buscarino G. et al, J. Phys. Condens. Matter  2010 

– A combination of the above theories 
» Takshashi M. et al J. App. Phys.  2002 

 
 

 
 
 
 

 



Materials and methods 

• We employed totally passive Ge6%mol-doped 
optical fiber sensors based on special Bragg-
grating (FBG) cavity reflectors.  
   

transmitted signal   

input signal   

reflected signal   

Phase Shift FBG   

  

  

  

  

  

  
  

  

Λ= effB 2nλ

Bragg 
Peak reflectivity 

=Λ Grating pitch 

Any change in the grating 
pitch and/or refractive index 
results in a shift of λB 



Sensors characteristics (1) 

• The effective interaction volume of 
the sensor  

    = 6 x 10-4 mm3 

• Transmission and reflection 
spectrum with only one 
narrow mode at the center 
of Bragg curve 



Experimental apparatus: FBG irradiation 

Water-equivalent  
phantom 

Phantom  
with fiber 

2 sensors  with different spectral 
features: 
 FBG1 
 FBG2 (higher  reflectivity) 
 
The FBGs were inserted into a 
phantom irradiated  in standard 
conditions by a 6MV linac photon 
beam 
 
2 dose steps:  
 FBG1  with 10 Gy increments up 

to 30 Gy 
 FBG2 with 1 Gy and 2 Gy  

5 cm 
fiber 

SAD = 100 cm 

Field 
10 x 10 cm2 

SSD = 95 cm  
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Z Z/A I (eV) ρ (g/cm3) 
M 

(molar mass) 
(g/mol) 

Si 14 0.49848 173.0 2.330 28.086 

Ge 32 0.44071 350.0 5.323 72.63 

O 16 0.50002 95.0 1.332x10-3 15.999 

SiO2 2.63 60.08 

Sensors characteristics (2) 
d core=8 µm Ge-doped (6% mol) SiO2 
 
d cladding =125 µm SiO2  
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The mass attenuation coefficients (μm) and the effective atomic number (Zeff) of the 
sensors were calculated as function of the photon energy in the range 1-6 MeV 



Mass attenuation and the mass energy 
absorption coefficients vs photon energy 
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Interaction mechanisms of radiation within the sensor material  
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• The weighted average μm  = 0.044 cm2/g  (1-6 
Mev) 
 
 

• The weighted average  Zeff = 10.04  (1-6 Mev), 
“nearly water equivalent” (Zeff = 7,42) 
 



Experimental apparatus: high sensitivity interrogation scheme 

Laser Phase modulator 

PS-FBG Optical circulator 

Photodetector 

RF generator 

Wave 
Meter 

X Mixer 

Servo - Amp 
Temperature  

controlled chamber 

NTC thermistor 

λ 

T 
Wavelength vs  
Temperature  

DFB Laser 1560 nm 

1) Off-line measurement of wave-length shift  
 

2) The FBG is placed in a temperature controlled chamber (negative temperature coeff 
thermistor, 1 mK) 
 

3) To check if λ-shift were due to thermal shift, the temperature is scanned and the 
thermo-optic response ( λB vs T ) measured (uncertainty on thermoptic response≈ 
1pm/k) 





FBG-1 FBG-2 

RESULTS 
A net wavelength shift was measured after each irradiation 
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RESULTS 
Additional phenomenon: a radio-induced change of the fiber 
thermo-optic response measured by tuning the resonant 
mode wavelengths with temperature 

Dividing the dose response coefficient (FBG-2)  by the average value of the 
uncertainty on the single measurement of the thermo-optic response (1 pm/K) we 
obtain a final resolution of 0.16 Gy. 



Reproducibility 
Reproducibility test: repeated measurement of the 
thermo-optic response before irradiation 

Reproducibility ∼ 2 % 

FBG-2 



“To function as a radiation dosimeter, a sensor must 
possess at least one physical property that is a function of 
the measured dosimetric quantity and that can be used for 
radiation dosimetry with proper calibration” 

The observed effect of IRs delivered to the FBG 
sensor is two-fold  : 

  
1) A wavelength shift 

 
2) A change of the fiber thermo-optic 

response 

Conclusion 





It could work!!!!!!!!!! 
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1) wavelength shift : undesired effects of mechanical 
strains and temperature fluctuations on the fiber 
that may reduce the accuracy and even mask the 
desired information at small doses  
 

2) thermo-optic response : substantially immune to 
environmental conditions.   
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FBG1 vs FBG2:  
higher reflectivity of FBG-2 

 

higher resolution of FBG-2 
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