

TOF-PET scanner configurations for quality assurance in proton therapy: a patient case study

Peter Dendooven

p.g.dendooven@rug.nl

in collaboration with F. Diblen, H.J.T. Buitenhuis, D.C. Oxley, A.K. Biegun, A.J. van der Borden, S. Brandenburg, P. Cambraia-Lopes, A. van der Schaaf, D.R. Schaart, S. Vandenberghe, A.A. van 't Veld

Geneva, 13 February 2014

QA via in-vivo dose delivery verification

Full exploitation of the dosimetric benefits of proton therapy needs in-vivo dose delivery verification !

Dose delivery verification:

- adds to quality assurance
- potentially allows
 - better treatment plans
 - treating new patient categories

How ? Imaging of secondary radiation:

- positron emission tomography (PET)
- imaging of prompt gamma rays

Work presented today:

- Monte Carlo simulation of a real patient case
- compare different time-of-flight PET scanners
 - geometry
 - coincidence resolving time

Simulations

- Planning CT translation to
 - density
 - elemental composition
- Geant4 simulation of
 - dose
 - secondary radiation

- positron emitters produced on C, N, O, P, Ca:
 - ¹⁵O, ¹¹C, ¹⁴O, ¹⁰C, ¹³N, ³⁰P, ³⁸K
 - experimental production cross sections
 - decay during irradiation
 - no biological washout
- PET scan simulation using GATE

treatment planning CT simulated dose, 1 field

spot scanning (Elekta XiO)

treatment planning CT oxygen-15 production

treatment planning CT potassium-38 production

5

PET scanner details and scan protocols

- in-situ: no delay after irradiation
 - clinical scanner, angular coverage 1, 2/3, 1/2
 - dual-head scanner (has an angular coverage of 1/2)
- > *in-room*: delay after irradiation: 30, 60 s
 - full-ring clinical scanner
- Scan duration: 120 s
- LSO crystals: 4x4x22 mm³
- energy window: 435-650 keV
- > coincidence time window: 4.1 ns
- > coincidence resolving time (CRT): 600, 300, 150 ps
 - 600 ps: first generation, since about 2006
 - 300 ps: present generation, arriving to the clinic
 - 150 ps: following generation (cfr. talk D.R. Schaart)

MLEM image reconstruction

Maximum Likelihood Expectation Maximization (MLEM)

- attenuation correction using CT
- TOF information
- ray tracing based on Siddon algorithm
- 2 mm and 4 mm voxel size

Comparison of PET images

dual head *in-situ* no delay

Correlation images - source

Pearson's correlation coefficient (PCC) between TOF-PET image and positron emitter decay distribution (for each geometry/protocol)

Number of coincidence events

*relative to the *in-situ* full ring with <u>3.36x10⁶ coincidences</u> for an SOBP dose of 0.46 Gy

Relative counts of each PET isotope

Conclusions

> dual-head in-situ and in-room full-ring clinical TOF-PET scanner deliver comparable image quality:

- they detect a comparable number of coincidences
- state-of-the-art TOF detector performance [1] can eliminate the limited-angle image artifacts of the dual-head scanner
- > advantages of the dual-head *in-situ* configuration:
 - minimizes the effect of biological washout
 - an economic solution: 1/6th detector area of a full-ring scanner

[1] CRT < 200 ps, van Dam H et al. 2013 Phys Med Biol **58** 3243

Acknowledgements

Funded in part by the foundation for Fundamental Research on Matter (FOM), grant 09NIG18. We thank the staff of the Millipede cluster of the University of Groningen (www.rug.nl/cit/hpcv/faciliteiten/HPCCluster) where the simulations were performed.

Outlook

- > under final analysis:
 - effect of smaller detector crystals
 - effect of depth-of-interaction capability
 - correlation of the detectability of unacceptable dose delivery errors (e.g. due to anatomical changes) with scanner properties
 - comparison production distributions PET and prompt gamma
- > outlook:
 - implementation of biological washout
 - studying different categories of patient cases
 - experimental verification with state-of-the-art TOF-PET hardware

