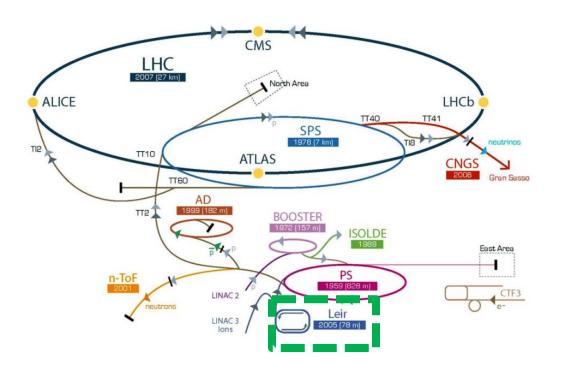


<u>A Biomedical Research Facility at CERN based on the Low</u> <u>Energy Ion Ring</u>


A. Garonna (CERN)

On behalf of D. Abler (University of Oxford and CERN), C. Carli (CERN), P. Collier (CERN), M. Dosanjh (CERN), D. Kuechler (CERN), S. Myers (CERN), J. Stafford-Haworth (CERN)

<u>Funding</u>: CERN and Marie Curie Initial Training Network Fellowship of the European Community's 7th Framework Programme under contract number PITN-GA-2008-215840-**PARTNER**.

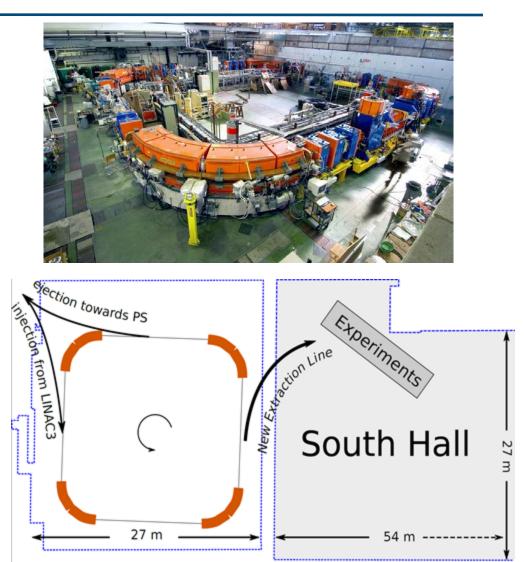
LEIR is a good candidate to provide needed beamtime

- Beamtime needed to develop full potential of hadrontherapy: radiobiology, fragmentation of ions, dosimetry, testing and developing of detectors for imaging, ...
- Brainstorming meeting (>200 experts from >20 countries) in 2012 in support of dedicated research facility at CERN

 Energy range matches that of clinical centers (max 6.7 Tm, i.e. 440 MeV/u for C)

- Existing accelerator to be maintained for LHC, but not used all the time

- Adjacent Hall (1500 m²)


Front-End

Slow Extraction

Beam lines

New hardware and modifications to existing hardware are needed

- LINAC3 front-end (source and injection) tailored for heavy ions
- Extraction system tailored for transfer of high-brightness short pulses (200 ns) for physics experiments
- South Hall presently used for storage -> new experimental area for wide range of biomedical experiments

Constraint : maintain the current operational performance for LHC and PS/SPS physics

operation.

Slow Extraction

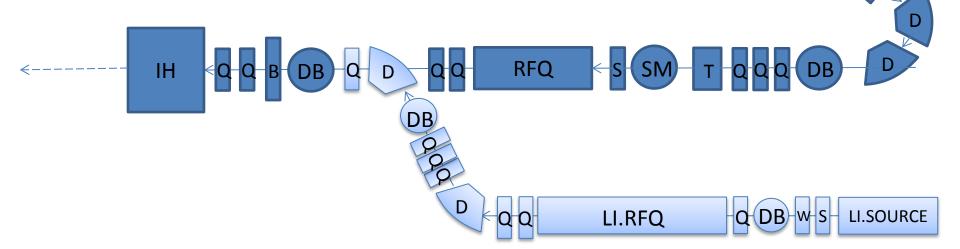
Beam lines

• Present heavy ion source (ECR) runs 6 months/year

• Time needed to swap between simple light ions and heavy ions is min 3 weeks

• Present RFQ not optimal for light ions (design: q/A=1/8, E= 2.5->250 keV/u)

New dedicated source and RFQ:


- flexibility,
- **faster switching** between species,
- operation during LHC run.

Slow Extraction

Beam lines

A new dedicated front-end is proposed

- ECR source (SuperNanogan, Pantechnik)
- H/H₂, He, C, N, O and Ne: previously extracted,
- B and Li: under development with Helmholtz-Berlin,
- RFQ (5-7.5 keV/u -> 250 keV/u) for q/A=1/4
- Switchyard and quadrupole added to present line (0.5 m longer)

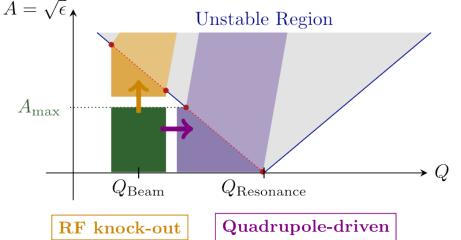
Legend: B - Buncher, D - Dipole, DB - Diagnostic Box, IH - Interdigital H accelerating structure, Q - Quadrupole, RFQ - Radio Frequency Quadrupole, S - Solenoid, SM - Steering Magnets, T - Beam transformer, W - Wien Filter

Introduction

Front-End

Slow Extraction

Beam lines

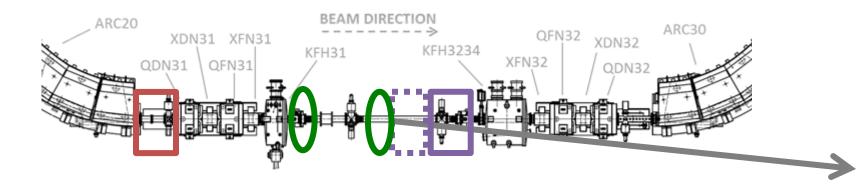

SOURCE

DB

Feasibility proven by tracking with extremal beam parameters

- Resonant slow extraction (1/3) allows to A = produce 1-10 s spills
- Two resonance driving mechanisms considered:
- Quadrupole-driven
- <u>RF-KO</u>

Reference Ion for Extraction Study	¹² C ⁶⁺	
Energy	20 MeV/u	440 MeV/u
Emittance RMS	5 µm	1 µm
Momentum Spread RMS	2·10 ⁻⁴	4 ·10 ⁻⁵

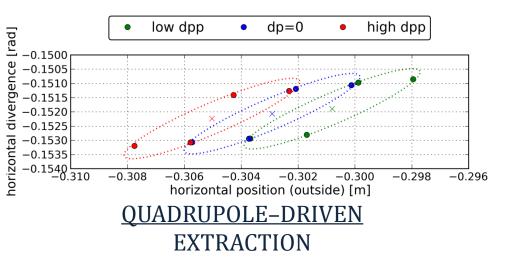


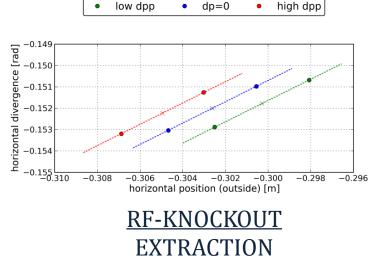
- Lowest extraction energy compatible with power converter stability from LEAR experience
- Highest extraction energy requires new power supplies (present limit is 4.8 Tm, i.e. 250 MeV/u C)

Front-End

Slow Extraction

Extraction is possible with minimal new hardware


Devices	Electrostatic Septum	Orbit Correctors X 2	Magnetic Septum ('thin')	Magnetic Septum ('thick')
Septum Apparent Thickness	0.1 mm	n.a.	9 mm	22 mm
Max Field Strength	8 MV/m	0.2 T	0.5 T	0.7 T
Availability	LEAR Spare	new	LEAR spare	new


Introduction

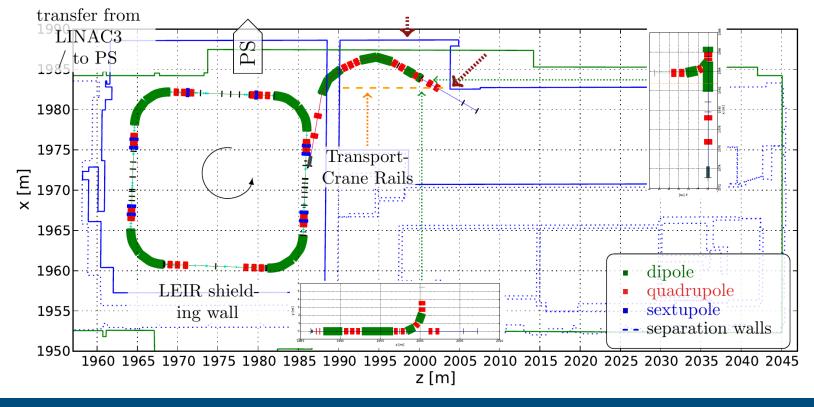
Slow Extraction

Beam lines

Conclusion

- + Easy to implement
- Intensity Fluctuations
- Varying beam parameters during spill

Easier to Implement


- + Smooth spill with fast on/off
- + Constant beam parameters during spill
- New hardware to be installed

Better beam quality

Slow Extraction

Two experimental beamlines are foreseen

- Horizontal beamline up to maximum energy and Vertical beamline up to 2.6 Tm (75 MeV/u C)
- Pencil beam 5-10 mm FWHM and broad beam 5x5 cm² considered
- 4 bending magnets (max 1.6 T, ± 40 mm gap) and 12 quadrupoles (max 23 T/m, max 40 mm radius) in total

CONCLUSION

FRONT-END

- Light ions source chosen with methods for H, He, C, O, Ne ready to go.
- Experiments to develop Boron and Lithium beams.
- RFQ design in progress.

SLOW EXTRACTION

- Feasibility of both quadrupole-driven and RF-KO extraction proven
- Minimal impact on LEIR and possibility to reuse spare devices
- Radioprotection study to be done: rooftop/intensity limit

EXPERIMENTAL BEAMLINES

- First proposal for vertical and horizontal beamline completed
- Alternative solutions under investigation: downwards vertical beamline, octupole transverse spreading, scanning system for horizontal beamline
- Biolabs available for experimental groups (cell culture in situ, analysis, imaging,...)

THANK YOU FOR YOUR ATTENTION