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Abstract:

This lecture series will first review the elementary processes and techniques
on which particle detectors are based. These must always be kept in mind
when discussing the limits of existing technologies and motivations for
novel developments. Using the examples of LHC detectors, the limits of
state of the art detectors will be outlined and the current detector R&D
trends for the LHC upgrade and other future experiments will be discussed.
This discussion will include micro-pattern gas detectors, novel solid state
detector technologies and trends in microelectronics.
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Outline

1) History of Instrumentation
Cloud Chambers/Bubble Chambers/Geiger Counters/Scintillators/Electronics/Wire 

Chambers

2) Electro-Magnetic Interaction of Charged Particles with Matter
Excitation/ Ionization/ Bethe Bloch Formula/ Range of Particles/ PAI model/ Ionization 

Fluctuation/ Bremsstrahlung/ Pair Production/ Showers/ Multiple Scattering

3) Signals/Gas Detectors
Detector Signals/ Signal Theorems/ 

Gaseous Detectors/ Wire Chambers/ Drift Chamber/ TPCs/ RPCs/ Limits of Gaseous 

Detectors/ Current Trends in Gaseous Detector Development

4) Solid State Detectors
Principles of Solid State Detectors/ Diamond Detectors/ Silicon Detectors/ Limits of Solid 

State Detectors/ Current Trends in Solid State Detectors

5) Calorimetry & Selected Topics
EM showers/ Hadronic Showers/ Crystal Calorimeters/ Noble Liquid Calirimeters/ Current 

Trends in Calorimetry
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Electro-Magnetic Interaction of Particles with Matter
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Various aspects of the penetration of charged particles in matter have occupied the 

thoughts of some of the finest physicists of the last century. 

E.g. Thomson 1903, Rutherford 1911, Bohr 1913, 1915, 1948, Bethe 1930, 1932, Mott, 1931, 

Bloch 1933, Fermi 1940, Landau 1944

In the first half of the 20th century, the energy loss of the charged particles and the related 

stopping power of materials was the prime issue.

Nowadays, the actual amount of scintillation light and/or charge produced by the passing 

particle, and the fluctuations of these quantities, are the important quantity because these 

are the quantities produce the signals in particle detectors and their fluctuations are 

responsible for the resolution limits of the detectors.

We will therefore summarize the basic mechanisms that are responsible for the creation of  

excitation and ionization and will explain the models that are implemented in modern 

simulation programs like GEANT and HEED. 



Z2 electrons, q=-e0
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Interaction with the 

atomic electrons. The 

incoming particle 

loses energy and the 

atoms are excited or  

ionized.

Interaction with the 

atomic nucleus. The 

particle is deflected 

(scattered)  causing 

multiple scattering of 

the particle in the 

material. During this 

scattering a 

Bremsstrahlung 

photon can be emitted.

In case the particle‟s velocity is larger 

than the velocity of light in the medium, 

the resulting EM shockwave manifests 

itself as Cherenkov Radiation. When the 

particle crosses the boundary between 

two media, there is a probability of the 

order of 1% to produced and X ray 

photon, called Transition radiation. 

Electromagnetic Interaction of Particles with Matter

M, q=Z1 e0



While the charged particle is passing another charged particle, the Coulomb Force 

is acting, resulting in momentum transfer

The relativistic form of the transverse electric field doesn‟t change the momentum 

transfer. The transverse field is stronger, but the time of action is shorter

The transferred energy is then

 The incoming particle transfer energy only to the atomic electrons !

Interaction of Particles with Matter
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Target material: mass A, Z2, density  [g/cm3], Avogadro number NA

A gramm  NA Atoms:  Number of atoms/cm3 na =NA /A       [1/cm3]
Number of electrons/cm3 ne =NA Z2/A  [1/cm3]

With  E(b)  db/b = -1/2 dE/E   Emax= E(bmin) Emin = E(bmax)

Emin  I  (Ionization Energy)

Interaction of Particles with Matter



Nonrelativistic Collision Kinematics, Emax
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φ
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Relativistic Collision Kinematics, Emax



Specific Energy Loss
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This formula is up to a factor two identical with the correct QM formula.

The specific Energy Loss 1/ρ dE/dx 

• decreases at 1/2 of the incoming particle

• increases like ln  for  =1  

• is  independent of M (M>>me)

• is proportional to Z1
2 of the incoming particle 

• is  independent of the Material (Z/A  const.)

•dE/dx  1-2 x ρ [g/cm3]  MeV/cm



Crossection
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Crossection :  Material with Atomic Mass A and density   contains 
n Atoms/cm3

E.g. Atom (Sphere) with Radius R: Atomic Crossection   = R2

A volume with surface F and thickness dx contains N=nFdx Atoms.
The total ‘surface’ of atoms in this volume is N . 

The relative area is  p = N /F = NA   /A dx =
Probability that an incoming particle hits an atom in dx. 

What is the probability P that a particle hits an atom between distance x and x+dx ?
P = probability that the particle does NOT hit an atom in the m=x/dx material layers and that the 
particle DOES hit an atom in the mth layer

Mean free path 

Average number of collisions/cm

F

dx
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Differential Crossection:

 Crossection for an incoming particle of energy E to lose an energy between E’ and E’+dE’

Total Crossection:

Probability P(E) that an incoming particle of Energy E loses an energy between E’ and E’+dE’ 
in a collision:

Average number of collisions/cm causing an energy loss between E’ and E’+dE’ 

Average energy loss/cm:

Differential Crossection
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A particle of mass M and charge Z1e0  is scattering off a scattering center of 

charge Z2e0 by interaction through the Coulomb force. 

The differential crossection for finding the particle scattered into a solid angle 

dΩ is given by ( p=γβ Mc and v = βc).

The incoming particle is typically much heavier than the atomic electrons 

excitation and ionization, and much lighter than the nucleus   Multiple 

scattering.

Rutherford Scattering

http://upload.wikimedia.org/wikipedia/en/0/0e/ScatteringDiagram.svg
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Jackson, 13.1: Assuming that the incoming particle is much heavier than the 

atomic electrons (M >> me), the collision is best viewed as elastic Coulomb 

scattering in the rest frame of the incident particle. Expressing the scattering 

angle in terms of energy transfer E‟ of the incoming particle to the electron we 

find 

The energy loss is therefore

This is exactly the same result that we found before. In order to shed light on the 

question of atomic binding we have to treat the problem with QM.

Rutherford Scattering off Electrons



For large energy transfers  E‟>η ~ 50keV the electrons can be considered 

quasi free and the relativistic formula for the scattering of a spin 0 particle of 

mass M and Charge Z1e0 on a free electron can be used (Bhabha 1938)

For small energy transfers E‟<<Emax this is equal to the Rutherford 

crossection. For large energy transfers i.e. very small impact parameters 

(close encounters), the electron spin gives rise to a correction.

The energy loss due to these high energy collisions is then

For small energy transfers E‟ the atomic excitations have to be taken into 

account. Bethe 1930, 1932 gave a fully QM treatment of the problem. The 

main steps of the derivation are outlined in the following:

QM Treatment of Energy Loss



The QM system consists of the incoming particle and the atom. The 

interaction between the two is defined by Vint
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M, K, Z1 r

r1

r2

Z2 electrons

QM Treatment of Energy Loss, Bethe 1930



The probability, and associated crossection, that an incoming particle with 

momentum hK excites the atom to state n and is leaving with momentum hK‟ can 

be calculated to first order by applying Born‟s approximation. 

This expression can be transformed into 
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QM Treatment of Energy Loss



For elastic scattering, where the incoming particle doesn‟t lose energy, we set n=0 and 

have 

where F is the atomic form factor (dependent on q) from the theory of X-ray scattering. 

Expressing the elastic crossection by the scattering angle we find

This is again the Rutherford crossection for scattering off the Nucleus that is partially 

„shielded‟ by the electrons. We will use it later for calculation of multiple scattering.
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QM Treatment of Energy Loss



For inelastic scattering, where the incoming particle excites the Atom, we set n>0 

and have 

The (lengthy) evaluation of this expression for the nonrelativistic case (Bethe 1930) 

and the relativistic case (Bethe 1932), using exact expressions for the Hydrogen 

atom and sum rules for the higher Z atoms, leads to the energy loss assuming 

energy transfers E‟ < η

Adding the expressions for E‟< η and E‟> η leads to the final expression for the 

Energy loss

The entire complexity of the atomic physics ends up in the average ionization 

potential I. 
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QM Treatment of Energy Loss



For Z>1, I 16Z 0.9 eV

Bethe Bloch Formula

For very high momenta the polarization of 

the medium by the strong transverse field, 

which reduces the Engery loss, must be 

taken into account.

At large Energy transfer (delta electrons) 

the produced electron can leave the 

material. In reality, Emax must therefore be 

replaced by Tcut and the energy loss 

reaches a plateau.

We distinguish three distinct regions of 

energy loss as a function of the particles 

momentum

1) 1/2 region with Minimum at  3

2) Relativistic Rise

3) Density Effect und Saturation

The Energy loss depends on the particle‟s 

velocity and is independent of it‟s Mass

Density effect



Für Z  0.5 A

1/ dE/dx  1.4 MeV cm 2/g fur ßγ  3

Example 1:
Scintillator: Thickness = 2 cm; ρ = 1.05 g/cm3

Particle with βγ = 3 and Z=1 
1/ρ dE / dx ≈ 1.4 MeV
dE ≈ 1.4 * 2 * 1.05 = 2.94 MeV

Example  2:
Iron: Thickness = 100 cm; ρ = 7.87 g/cm3

dE ≈ 1.4 * 100* 7.87 = 1102 MeV = 1.1GeV

Example 3:
Energy Loss of Carbon – Ions with Z=6 and 
Momentum of 330 MeV/Nucleon
in Water, i.e. βγ = p/m = 330/940 ≈ .35
β ≈ .33
dE/dx ≈ 1.4 Z2 /β2 ≈ 460 MeV/cm→
Cancer Therapy !

1
/

ßγ

This number must be multiplied with the 
material density ρ [g/cm3] 
 dE/dx [MeV/cm]

Bethe Bloch Formula



Kaon

Pion

Pion

Pion

W. Riegler/CERN
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Discovery of muon and pion

Cosmis rays: dE/dx α Z2

Large energy loss
 Slow particle

Small energy loss
 Fast particle

Small energy loss
 Fast Particle



Bethe Bloch Formula, Particle ID

The energy loss as a function of the particle 
velocity is a universal function for particles 
of different masses. 

The energy loss as a function of particle 
momentum P= Mcβγ IS depending on the 
particle’s mass M.

By measuring the particle momentum 
(deflection in the magnetic field) and the 
energy loss of the particle, particles can be 
identified in certain momentum regions.



Particle of mass M and kinetic Energy E0 enters matter and looses energy until it 

comes to rest at distance R. 

Bragg Peak:  For >3 the energy 
loss is  constant (Fermi Plateau)

If the energy of the particle falls 
below =3 the energy loss rises as 
1/2

Towards the end of the track the 
energy loss is largest  Cancer 
Therapy.

Independent of 
the material

Energy Loss by Excitation and Ionization
24W. Riegler/CERN

Range of Particles



Average Range: Example

Kaon, p=700 MeV/c in Water:

=1 [g/cm3], Mc2=494 MeV 

=1.42  /Mc2 R = 396g/cm2 GeV

R=195cm

In Pb:  =11.35  R=17cm
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Range of Particles
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Luis Alvarez used 
the attenuation of 
muons to look for 
chambers in the 
Second Giza 
Pyramid Muon 
Tomography

He proved that 
there are no 
chambers present.



Average Range:
Towards the end of the track the energy loss is largest  Bragg Peak  Cancer Therapy 

Photons 25MeV Carbon Ions 330MeV

Depth of Water (cm)

R
e
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)
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Range of Particles



Up to now we have calculated the average energy loss. The energy loss is 

however a statistical process and will therefore fluctuate from event to event. 

X X   X X    X

XX     X     X

X   X         X    

XXX   X     XX    

X       XXX   X

E E - 

P() = ? Probability that a particle loses an energy  when traversing a material of 

thickness D

We have see earlier that the probability of an interaction ocuring between distance x 

and x+dx is exponentially distributed 

x=0                 x=D

Fluctuation of Energy Loss



We first calculate the probability to find n interactions in D, knowing that the probability to 
find a distance x between two interactions is P(x)dx =  1/  exp(-x/) dx   with   = A/ NA 

Probability for n Interactions in D



For an interaction with a mean free path of  , the probability for n interactions on a distance D 
is given by 

Poisson Distribution !

If the distance between interactions is exponentially distributed with an mean free path of λ
the number of interactions on a distance D is Poisson distributed with an average of n=D/λ. 

How do we find the energy loss distribution ?
If  f(E) is the probability to lose the energy E’ in an interaction, the probability p(E) to lose an 
energy E over the distance D ?

Probability for n Interactions in D



If n is the average number of interactions in D and F(s) is the Laplace transform for f(E), giving 
the probability to lose the energy E in a collision, the probability p(E) to lose the energy E in D is 
given by

Landau used the Rutherford scattering crossection

The total crossection, using a lower cutoff energy is then

The probability to lose and Energy E in a collision is then

The Laplace transform of this probability density is

Which results in the energy loss distribution  

Probability for Energy Loss E in D



The previous expression can be rewritten as

Landau determined the lower cutoff energy by requiring the average energy loss to be equal to 
the Bethe Bloch theory

which gives

The Landau Distribution P(x) has a peak at 
x0= -0.2228  ~ C-0.8
and a full width of half maximum of 
Δx = 4.02

Landau Distribution



p(E): Probability for energy loss E 

in matter of thickness D. 

Landau distribution is very 

asymmetric. 

Average and most probable 

energy loss must be 

distinguished !

Measured Energy Loss is usually 

smaller that the real energy loss:

3 GeV Pion: E‟max = 450MeV  A 

450 MeV Electron usually leaves 

the detector. 

33W. Riegler/CERN

Landau Distribution



LANDAU DISTRIBUTION OF ENERGY LOSS:

For a Gaussian distribution: N ~ 21 i.p.

FWHM ~ 50 i.p.

0
0 500 1000

6000

4000

2000

N (i.p.)

Counts 4 cm Ar-CH4 (95-5)

5 bars

N = 460 i.p.

PARTICLE IDENTIFICATION 

Requires statistical analysis of hundreds of samples

0 500 1000

6000

4000

2000

N (i.p)

Counts

0

protons electrons

15 GeV/c

I. Lehraus et al, Phys. Scripta 23(1981)727

FWHM~250 i.p. 
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Landau Distribution



For calculation of the average energy loss, the integration 

can be performed without the explicit calculation of ψ due to sum rules that must 

be satisfied. 

For calculation of the differential energy loss and therefore the energy loss 

fluctuations, the explicit knowledge of ψ is necessary, which is however only 

explicitly possible for atomic Hydrogen 

How do we find P(E) for different Atoms and Molecules ?

d


(E
,E

’)
/d

E’
/ 


(E
)

Energy Loss Fluctuation



Fermi (Z. f. Physik 20. Oct 1924 !): 

Über die Theorie des Stosses zwischen Atomen und elektrisch geladenen Teilchen 

(On the theory of atomic collisions of charged particles).

Abstract: The electric field of a charged particle, which is flying by an atom, is 

harmonically decomposed and compared to light of the corresponding frequency 

distribution. We assume that the probability of atomic excitation and ionization by 

the passing particle is equal to atomic excitation and ionization of the equivalent 

radiation …

Bethe 1930:

“…Thus, for small collision vectors q (i.e. small changes in momentum of the 

colliding particle), the collision probability is proportional to the square of the 

coordinate matrix, i.e., proportional to the optical transition probability for the 

respective excitation of the atom …” (Bethe, 1930)

Knowing the optical photoabsorbtion crossection, if which detailed measurements 

are available ! 

Fermi Virtual Photon Method (FVP) or Photo 

Absorbtion Ionization Models (PAI, Allison & Cobb)



Allison & Cobb, Ann. Rev. Nucl. Part. Sci. 1980, 253-298: 

First they calculate the energy loss of a particle passing a homogenous medium 

with dielectric permittivity  =1+i2 . The result will therefore contain the density 

effect, i.e. the reduction of the energy loss due to polarization of the medium. Then 

they make a model for 2 by using the atomic photo absorption crossection.

Particle of charge e0 and velocity v (E.g. Landau and Lifshitz):

A plane light wave travelling along x is attenuated in in the medium if the 

imaginary part of  is different from zero. 

A photon interacting with material with an atomic crossection  has a mean free 

path of λ = A/NAρ. The probability of interacting after travelling a distance x is 

Fermi Virtual Photon Method (FVP) or Photo 

Absorption Ionization Models (PAI, Allison & Cobb)



This defines the imaginary part of the dielectric constant in terms of the atomic 

photoabsorption crossection for small k. For large k and expression is introduced in 

order to satisfy the Bethe Sum rule: 

Small k:                                 Large k:

The real part is uniquely related to the imaginary part by the Kramers-Kronig relations

We are therefore in a position to integrate the expression over k and have 

We can then reinterprete this equation in terms of a number of discrete collisions with 

energy transfer E=h and find the differential crossection for losing an energy E in a 

single collision

This is the model included in GEANT and HEED.

Fermi Virtual Photon Method (FVP) or Photo 

Absorption Ionization Models (PAI, Allison & Cobb)
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Fermi Virtual Photon Method (FVP) or Photo 

Absorption Ionization Models (PAI, Allison & Cobb)

The PAI model together with the good knowledge of the Photoabsorption 

Crossections allows the accurate calculation of primary ionization & the 

associated fluctuations (Straggling functions) 

Density Effect
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Z2 electrons, q=-e0

M, q=Z1 e0

If we set the imaginary part of the dielectric permittivity to zero, the energy loss in 

the PAI expression doesn‟t become zero – there is a term left, which describes the 

Cherenkov Radiation  This is a classic effect described by Maxwell‟s equations 

N is the number of Cherenkov Photons emitted per cm of material. The expression 

is in addition proportional to Z1
2 of the incoming particle.

This radiation is emitted if the velocity of the particle is larger than the velocity of 

light in the medium v=c/n (shock wave). It is emitted at the characteristic angle c .

Cherenkov Radiation



Cherenkov Radiation
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Ring Imaging Cherenkov Detector
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There are only „a few‟ photons per 

event one needs highly sensitive 

photon detectors to measure the 

rings !
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LHCb RICH
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Bremsstrahlung

Z2 electrons, q=-e0

M, q=Z1 e0

A charged particle of mass M and charge q=Z1e is deflected by a nucleus of charge Ze 

which is partially „shielded‟ by the electrons. During this deflection the charge is 

„accelerated‟ and it therefore radiated  Bremsstrahlung.

From Bethe‟s theory we have seen that the elastic scattering off the Nucleus is given by

Where F(q) describes the partial shielding of the nucleus by the electrons. Effective 

values for F are used in the following expressions. 



A charged particle of mass M and 

charge q=Z1e is deflected by a 

nucleus of Charge Ze. 

Because of the acceleration the 

particle radiated EM waves 

energy loss.

Coulomb-Scattering (Rutherford 

Scattering) describes the deflection 

of the particle. 

Maxwell‟s Equations describe the 

radiated energy for a given 

momentum transfer. 

 dE/dx
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Bremsstrahlung, Classical



Proportional to Z2/A of the Material.

Proportional to Z1
4 of the incoming 

particle.

Proportional zu  of the particle.

Proportional 1/M2 of the incoming 

particle.

Proportional to the Energy of the 

Incoming particle 

E(x)=Exp(-x/X0) – „Radiation Length‟

X0  M2A/ ( Z1
4 Z2)

X0: Distance where the Energy E0 of 

the incoming particle decreases 

E0Exp(-1)=0.37E0 .
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Bremsstrahlung, QM



Electron Momentum         5         50        500    MeV/c                     

Critical Energy: If dE/dx (Ionization) = dE/dx (Bremsstrahlung)

Myon in Copper:         p  400GeV

Electron in Copper:    p   20MeV
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For the muon, the second 

lightest particle after the 

electron, the critical 

energy is at 400GeV.

The EM Bremsstrahlung is 

therefore only relevant for 

electrons at energies of 

past and present 

detectors. 

Critical Energy



For E>>mec
2=0.5MeV :  = 9/7X0

Average distance a high energy 

photon has to travel before it 

converts into an e+ e- pair is 

equal to 9/7 of the distance that a 

high energy electron has to 

travel before reducing it‟s energy 

from E0 to E0*Exp(-1) by photon 

radiation. 
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Pair Production, QM
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Bremsstrahlung + Pair Production  EM Shower
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Multiple Scattering

Z2 electrons, q=-e0

M, q=Z1 e0

The „Rutherford scattering‟ of the incoming particle on the nuclei, that is also the 

reason for Bremsstrahlung, results in multiple small angle scattering scattering of the 

particles  when traversing material. 

The statistical analysis of the small angle scattering together with inclusion of the 

shielding effects by the electrons results in simple expressions for the multiple 

scattering angles of particles. 



Statistical (quite complex) analysis of multiple collisions gives:

Probability that a particle is defected by an angle  after travelling a 

distance x in the material is given by a Gaussian distribution with sigma of:

X0 ... Radiation length of the materials

Z1 ... Charge of the particle

p ...  Momentum of the particle
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Multiple Scattering



Limit  Multiple Scattering

Magnetic Spectrometer: A charged particle describes a circle in a magnetic field: 
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Multiple Scattering



ATLAS Muon Spectrometer:

N=3, sig=50um, P=1TeV, 

L=5m, B=0.4T

∆p/p ~ 8% for the most energetic muons at LHC
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Multiple Scattering



54W. Riegler/CERN

Multiple Scattering



Transition Radiation
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Z2 electrons, q=-e0
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Interaction with the 

atomic electrons. The 

incoming particle 

loses energy and the 

atoms are excited or  

ionized.

Interaction with the 

atomic nucleus. The 

particle is deflected 

(scattered)  causing 

multiple scattering of 

the particle in the 

material. During this 

scattering a 

Bremsstrahlung 

photon can be emitted.

In case the particle‟s velocity is larger 

than the velocity of light in the medium, 

the resulting EM shockwave manifests 

itself as Cherenkov Radiation. When the 

particle crosses the boundary between 

two media, there is a probability of the 

order of 1% to produced and X ray 

photon, called Transition radiation. 

Electromagnetic Interaction of Particles with Matter

M, q=Z1 e0

Now that we know all the Interactions we can talk about Detectors !
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Now that we know all the Interactions we can talk about Detectors !


