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‘VOLUME” AND
‘SHAPE’

@ h principle, we can learn

the size and shape of XD
by measuring enough
Nnumber of KK—particles
and their interactions.

@® < need big energy to go

over the mass gap (~Eom
> 2/R for pair production
of the KK states),

dlso have to have a large
luminosity for precise
determination of the
spectrum.

@ nreality,

SO that we can set the
bounds on the size (and
the shape)

There are MANY
iInteresting models of
extra dimensions ..

..today, | only cover the
three models, namely

, RS and ADD models,
which can get directly
checked by the ILHGC



Randall,Sundrum (1999)

The bulk has a sizable
(negative) cosmological
constant .. AdSs

Warped geometry in an
interval (yuv, yir)~(0,y1)

The hierarchy problem is
solved by the large warping:
Aly)=Auve vy~TeV at IR
boundary

INn the original version, all
particles except gravitons
are on the IR boundadry...
they dll feel the low scale
gravity

L_ater, it is readlized that all
the particles except the
Higgs can live in the bulk.



UV brane

IR brane

By putting all the particles in
the bulk, the model can be a
beautiful model of flavor
hierarchy : top has a large
overlap with the higgs boson so
has a large Yukawa
coupling..light quarks small
overlap.

RS—GIM mechanism protects
severe FCNGC problems.

KK—gluon, W.,Z could be
produced (signatures depends
where the light fermions
locate..)

Microscopic black holes may
adlso be produced and decays
to multi—tops, Higgses, gluon
jets
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IN GENERAL..

In  "symmetric’ extra dimension, we can
iImmediately find a good geometric Zz symmetry:
the reflection about the middle point:

KK-PARITY



KK PARITY

@ N th KK excitation ~(—1)"

@ Thelightest Kk—odd particle (LKPP) is protected
by KK—parity so that stable. LKP can be a good
dark matter candidate (e.g, KK photon, KK Z, KK
Nneutrino .. (cf) neutralino or sneutrino LSP)

9‘6 KK—odd particle produced only in pairs (0—1-1)

9.6 KK—even states can be seen in resonances
(0—0—2)

@® e phenomenology shares many common features
with the MSSM+Rp (a.k.a. Bosonic supersymmetry)



GLUE TWO THROATS

RS

IR Uv IR



EFFECTIVELY
RS LOOKS LIKE VED!

Csaki, Heinonen, Hubisz, SCP, Shu, JHEP 1101 (2011) 089

RS ~=LUIED

_///\\

@®Putting two throats together, the geometry
becomes symmetric (25 : KK-P ARITY)

@ After integrating out the large region in UV, the IR
geometry is rather flat in an interval



5D Lorentz invariant

Gauge covariant Kinetic terms + Mass terms

S:/dyd4:1:£ +6(y— L)L +6(y+ L)Ly

ED

N/

BLKT

4D Lorentz invariant

Universdl Extra Dimension: Adll
Particles are in D>4 ..not a single
model but a family of models..

KK—parity (inversion symmetry about
the middle point of XD) is a good
symmetry by construction => KK DM

minimal UED model (MUED) is based on
S'/Z, orbifold = (—pi R/2, pi R/2).

For proper effective field theory
description, one may include 5D
masses for fermions (Dirac mass) and
boundary localized parameters (4D
|_orentz invariant) : Model parameters

(I/R, r, m)



some technical details

5D Lorentz invariant
Gauge covariant Kinetic terms + Mass terms

S = /dyd4:z:£ +6(y— L)L +0(y+ L)L,

My
SCP, Shu (2009)

4D Lorentz invariant
BLKT 7'[_‘,4

Carena, Ponton, Tait, Wagner
(2003)

@® Any theory in odd

dimension is vectorlike
(non—chiral).

INn 5D, the minimal
spinor representation
IS Dirac thus includes
both chiralities and
has Dirac mass.

Chiral theory is
obtained by boundary
conditions.
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3.0

KK-MASSES

vs (r,mu)

®large r => lighter
KK mass

heavier KK mass for
level—1
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UPPER BOUND ON /R
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UPPER BOUND ON /R
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Chen, Nojiri,SCF Shu, Takeuchi (2009)
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boundary
localized
kinetic term

—

G
-

Bound on |/R for universal rrmu

Flacke, Kong, SCP JHEP 1305 (2013) 111
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ADD

@ Arkani—Hamed, Dimopoulos, Dvali (1998)
@ c<tremely large XD

@® Only gravitons are in D>4 (others are
confined ona ~brane—world"

@® Gravity becomes strong at a TeV scale

@ icroscopic black holes ~multi— jets with a
large Pt—sum (scalar sum)



’

101?m n=1,

@ Arkani—Hamed, Dimopoulos, Dvali (1998)] 1mm =

|
N

I0nm n=3,
@ c<tremely large XD R S
103 fm n =25,
100 fm n =6,

| 20 fm n=T

@® Only gravitons are in D>4 (others are
confined ona ~brane—world"

@® Gravity becomes strong at a TeV scale

@ icroscopic black holes ~multi— jets with a
large Pt—sum (scalar sum)



Models /Theory

UED

__ RS ADD
(~2T RS)
only
Mk ~TeV ~TeV collectively
seen
(too high to
Mo S ~TeV ~TeV
be seen)
MET(LKP) Gkk resonance .
L_HGC oairs of 15t KK jet+MET JetFMET
Phenomenology peak of 2" KK gdwx—ttbar photon+MET
B BH(jets)

BH(tops, Hs..)




Models/ Experiment

split—UED
(w/5D
mass)

RS

ADD

1/R>700 GeV

M(graviton)
excluded (1.0—1.45)

collectively

LHG7 & 8 (Mm~1TeV) TeV seen
1302.4794
Strong | (too high to N/ A >4.3—6.2
Gravity(BH)| be seen) TeV




Models/ Experiment

split—UED
(w/5D RS ADD
mass)

M(graviton) .
1/R>700 GeV |excluded (1.0-1.45)| Collectively

(m~1TeV) TeV seen
1302.4794

| HG7 & 8

Strong | (too high to

Gravity(BH)| be seen) N/A

*should be careful in
INterpretation



ELACK HOLE

;ElPlu

2

| -, (v5)
(1 4 (0_72)2) D-3

1 1
dv Y, ) T
Opp—BH+X = /_ ) du/ , fo(v,s)fj( , 8)0ijBH,
Mp“/s u U ij v

In ADD and RS, gravity becomes
strong near TeV scale (no hierarchy)

when two colliding particles are close
enough they feel strong gravity and
forms a black hole

hoop con jecture b<rh(E)=(GE)"P™3

Cross section= T bmal = T (GE)%

D—3

Once produced, BH decays into SM
particles via Hawking radiation.
T=1/rn ..the hotter the smaller-..
Thermal radiation to all kinds of SM
particles

C‘rre\)bod\j §$actov

22

WS, W=SPn anqular qHs



search by CMS : bounds 4.3-6.2TeV with M=1.5-2.5 TeV
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NOot really black hole..

SCP, Phys.Lett. B701 (2011) 587-590

----------------------

-
-’.’
-
-
-
-
-
-

-
-
-
*
.

CMS Ex¢

....................

@ A large QG effect expected..

@® The CMS result still provides ~“model independent
bound” which would be useful.

@14 TeV run would be more reliable



RS BH

UV brane IR brane Frost, SCP (2013) in prep.
- 2 |
§ - _ [ RF=1.0
3 1.8 RF=0.1
N — ADD
o 1.6
. S
‘ 2 1.4
heavy quarks 5 E
1.2
1
0.8+
0.6
0.4f+ ! J —1
S IR . 5. 5= PN L SO [ T 1§ R - o P L P
16. =100 & 0 8 10

! 12l
15 20 25
Particle Type

20 -

®_ight quarks not contribute to BH formation :—(
@Gluon (the IR tip) dominate, 1/kL~1/30 suppressed ..
@®Decays mostly to heavy quarks, gluons and Higgs

@® Dedicated search is needed!



HIGGS 175 GEY

@ Here | focus on UED
model (~2T RS)

@® Higgs 125GeV is
regarded as the zero
mode of Higgs field in
5D..

@ cssume to have a flat
profile along 5D (can
be discarded)

26

@® <K top quarks
contribute to gluon
fusion => enhance the

Cross section ~
1+O(mt/mkk)2

@® <K tops and KK Ws
contribute to diphoton
decay => reduction

@ (enhance)’(reduce)
compete



top +KK-top in the loop

M=(#)/\§:S ( ZZEF m, )

top KK-top

F'— 1 when m,, > my,,

27



HIGGS WITH KK
TOP
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r,/L

BULK MASS +
BLKT

Flacke, Kong, SCP (2013)
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BULK MASS +
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Flacke, Kong, SCP (2013)
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BULK MASS +
BLKT

™t ‘icdt o T I Iy Ty I 10
’ “ -

Flacke, Kong, SCP (2013)

10

r/rr rvvvv'vvvv]vvvv

U]
‘900, /800

E

I",=0

T—r——
kp
I~ 0/)

o 3 ]
s R™'=500 GeV
4 —
2 —
. ry=1 ‘
0 | - | | P | |
0 2 4 6 8 10

*Region outside contours is disfavored
*The left-upper corner of each contour is excluded since KK photon is not LKP
there
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*Region outside contours is disfavored

*The left-upper corner of each contour is excluded since KK photon is not LKP

there

*Higgs data disfavors the right-bottom side (large mu, small r makes mKK heavy)
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SUMMARY

Large/highly warped XD can be tested at the
LHC.

KK-DM with KK-parity .. /R<[.5TeV in
UED

DM+LHC7&LHC8+EVWPT+Higgs already
started to probe a part of parameter space

LHC 14 and future DM searches(Direct/
Indirect) will give us more answers for XD

30



