

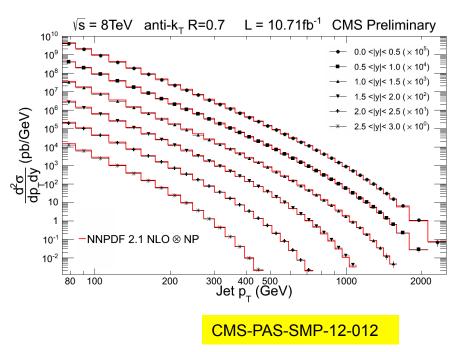
Outline

- **1. Strategies and techniques**
- 2. Dijet searches with light quarks & gluons
- 3. Dijet searches with heavy quarks
- 4. Searches with jets and leptons
- 5. Monojets
- 6. Jet Extinction
- **7.** W' \rightarrow tb search
- 8. Summary & Conclusions

Techniques and Strategies (1)

Many beyond-SM phenomena result in final states with quarks and gluons

- Manifest themselves as states with one or more jets
- Also have states with jets, charged leptons and neutrinos

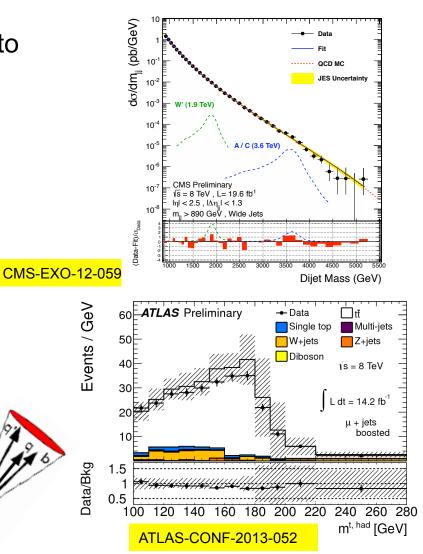

So very natural to search for new particles with jet final states

- Invariant mass "bumps"
- Signals in angular distributions
- Threshold phenomena

Fundamental challenge is the very high rate of multijet final states from SM QCD

Cross section for inclusive jets

- $\sigma \sim 0.5 \ \mu b$ for $p_T > 1 \ TeV$
- Gives intrinsic QCD background for objects with masses > 2 TeV of order



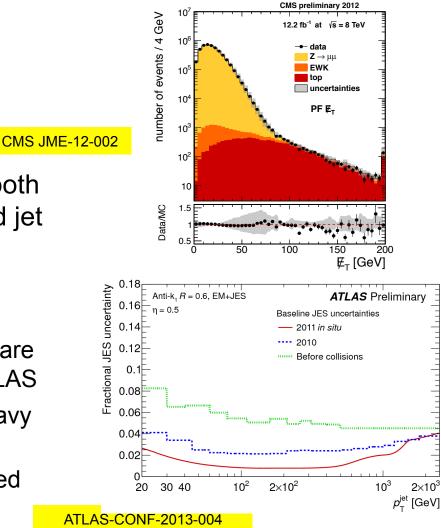
• 7-10 million multijet events

Techniques and Strategies (2)

Searches for exotic phenomena have to overcome this large background

- Develop reliable background estimation tools
 - Look for kinematic signal above a background
 - Examples are dijet resonance searches
- Develop techniques to reject light quark and gluon jets
 - Use b-tagging and jet substructure techniques
 - Examples are the Z' and g_{KK} "boosted" top quark searches

Techniques and Strategies (3)


LHC has run extraordinarily well

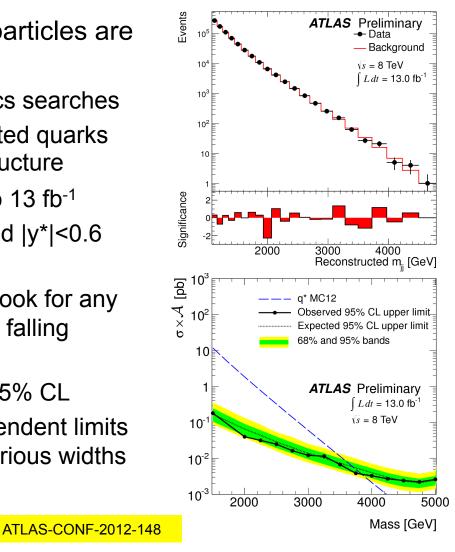
- Have ~5 fb⁻¹ sample at 7 TeV
- Have ~20 fb⁻¹ sample at 8 TeV

These data samples have enabled both CMS and ATLAS to develop detailed jet and E_T^{miss} reconstruction

- CMS has shown "particle-flow" techniques are very powerful
- Jet energy scale (JES) uncertainties are now 1-4% for 40<p_T<750 GeV in ATLAS
- Many new techniques for tagging heavy flavour jets

These and other innovations have opened up many avenues for exotics searches

Selection of Jet+X Results

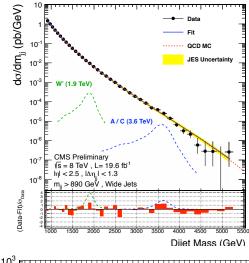

I've chosen to focus on a subset of all possible "Jet+X" results

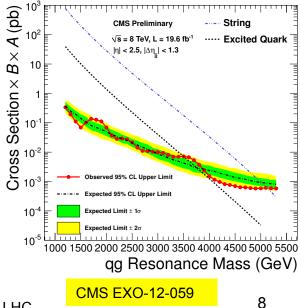
- Reflect where I believe advances are still occuring
- Illustrate the wide range of topics and techniques that are employed
 - 1. Search for resonances in dijet events
 - 2. Search for Z' and g_{KK} resonances in fully hadronic t-tbar decays
 - 3. Search for Z' and g_{KK} resonances in lepton+jets t-tbar decays
 - 4. Search for Dark Matter (DM) in monojets
 - 5. Search for evidence of Jet Extinction
 - 6. Search for W' bosons decaying to t-bbar

ATLAS Dijet Resonance Search

Expect dijet resonances if massive particles are produced in pp collisions

- The "work-horse" final state for exotics searches
 - Many possible models: e.g., excited quarks q*, black holes, and quark substructure
- ATLAS analysis has been updated to 13 fb⁻¹
 - Require m_{ii} > 1 TeV, |y_{jet}|<2.8 and |y*|<0.6</p>
 - Acc > 48% for m_{ij} > 2 TeV
 - Use "BumpHunter" technique to look for any significant signal above smoothly falling background
- ATLAS excludes $m_{q^*} < 3.84$ TeV at 95% CL
 - Also provides more model-independent limits assuming Gaussian signals of various widths




CMS Dijet Resonance Search

CMS has performed similar searches using a 19.6 fb⁻¹ data set of 8 TeV collisions

- Selection designed to reduce QCD backgrounds .
 - Require $m_{ii} > 1$ TeV, $|y_{jet}| < 2.5$ and $|\Delta \eta| < 1.3$
 - Start with Anti- k_T jets with D=0.5
 - Recluster with D=1.1 to reduce effects of final state radiation
 - Look for signal above smooth background
- Test various models m_{q*} <3.50 TeV at 95 % CL ٠

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]
E_6 Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]
Z' Boson (Z')	qq	[1.20,1.68]	[1.20,1.87]
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]

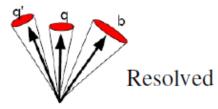
Pekka Sinervo

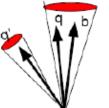
HB2013: Searches for Exotics with Jets + X at the LHC

Searches for X->ttbar

A number of theories beyond the SM predict resonance states

- Masses > 0.5 TeV with widths ranging from 1-2% to 10-20%
- Decay preferentially to ttbar final states


Two "benchmark" scenarios have been used

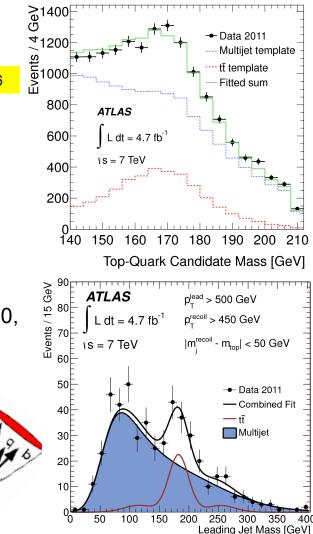

- A narrow Top Colour Z' boson (Γ/m = 1.2%)
- A broader Kaluza-Klein excitation of gluon (Γ /m = 17%)
- Expected σ 's are 2 pb at m=1 TeV to 5 fb for m=2 TeV
- Experimental mass resolution is about 10%

Lead to top-quark pair final states characterized by high- p_T , "boosted" top quarks

- p_T of top quark determines signature for hadronic top decays
- Searches have used "lepton+jets" with boosted topologies and fully hadronic boosted searches

Hadronic top decay:

Transition region


Monojet

ATLAS Boosted Hadronic Search (I)

ATLAS implemented several top-tagging techniques in 7 TeV pp data

ATLAS, JHEP 01 (2013) 116

- 1. HEPTopTagger
 - Two CA jets with D=1.5, p_T>200 GeV and |η|<2.5, split into sub-jets (up to five retained)
 - Reclustered into three sub-jets required to be consistent with top quark (140 < m_{iet} < 210 GeV)
 - Require a D=0.4 anti-k_T cluster to be b-tagged
- 2. Top Template Tagger
 - Two anti- k_T jets with D=1.0, p_T >450 GeV and $|\eta|$ <2.0, leading jet p_T >500 GeV
 - Require jet to be consistent with top quark through "template overlap" technique
 - Require a D=0.4 anti-k_T cluster to be b-tagged
 - Multijet backgrounds estimated from data
 - Limited by SM ttbar background

ATLAS Boosted Hadronic Search (2)

} ອີ ບິ

8 300

Events / 250 200

150

100

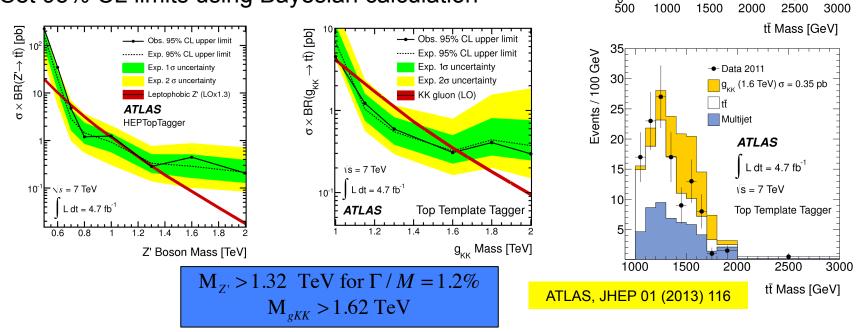
50

Data 2011

∏tī

Multijet

ATLAS $\int L dt = 4.7 \text{ fb}^{-1}$


√s = 7 TeV

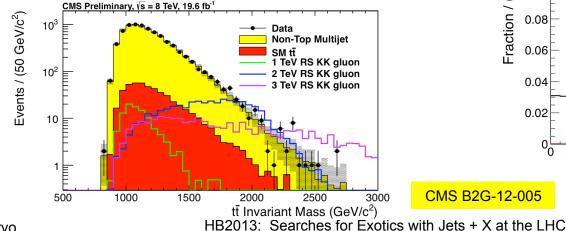
HEPTopTagger

Z' (1 TeV) σ = 1.3 pb

Backgrounds estimated using data-driven and MC calculations

- Multijet backgrounds estimated by mistag rates
- SM ttbar estimated with MC@NLO+HERWIG showers Estimate systematic uncertainties
- Set 95% CL limits using Bayesian calculation

Latest CMS Hadronic Search (I)


CMS has completed Z'/ g_{KK} search in 19.6 fb⁻¹ of 8 TeV collisions


Selecting two jets ("1+1")

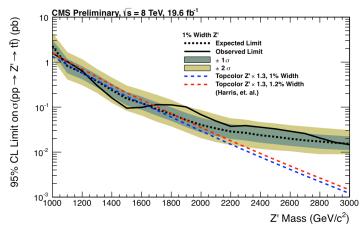
- Use Cambridge-Achen D=0.8 clusters
- Require 2 jets with $p_T > 400$ GeV and |y| < 2.5
 - Each jet has to have 3 sub-jets, m_{jet} consistent with top quark (140-250 GeV)
 - Min pair-wise mass of 2 sub-jets > 50 GeV

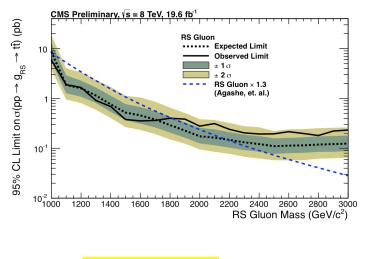
Several other kinematical cuts

|Δy|<1.0 to reduce multijet background

Latest CMS Hadronic Search (2)

Backgrounds come from

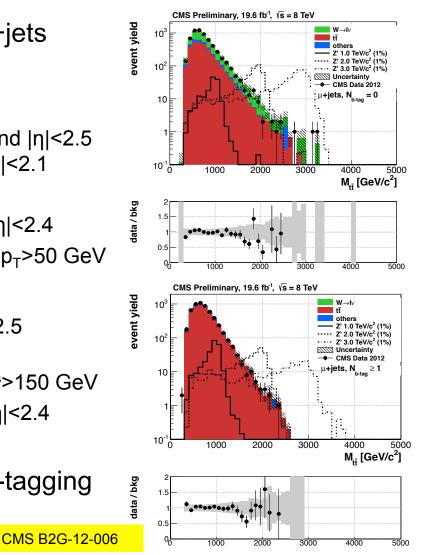

- Multijet final states estimated using data-driven mis-tagging probability
 - Folded in with observed multijet events
- Standard Model ttbar
 - Estimated using MADGRAPH+HERWIG showers


Estimate systematic uncertainties

 Dominant sources are multijet background, ttbar normalization

Set 95% CL limits using Bayesian calculation

 $m_{Z'} > 1.70$ TeV for Γ / m = 1.2% $m_{gKK} > 1.80$ TeV


CMS Boosted I+jets Search (I)

CMS has performed search in lepton+jets channel with two analyses

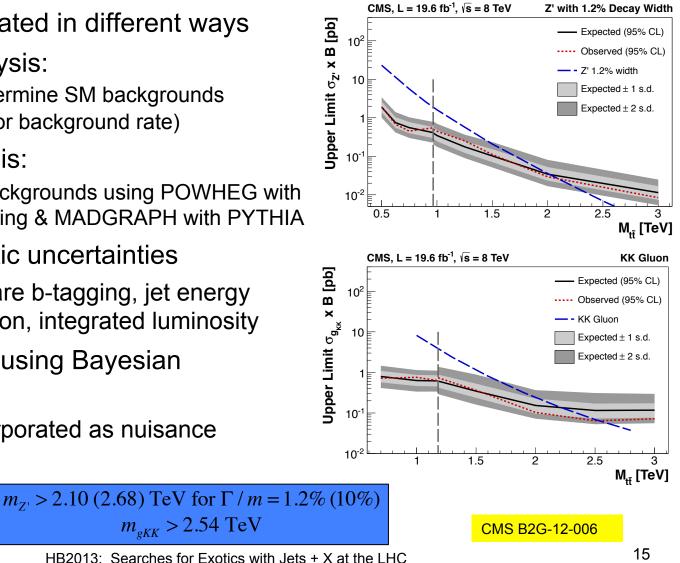
- 1. Threshold analysis:
 - Isolated e candidate with p_T>30 GeV and |η|<2.5 Isolated μ candidate p_T>26 GeV and |η|<2.1
 - E_T^{miss}>20 GeV
 - Four jets with D=0.5, p_T >30 GeV and $|\eta|$ <2.4
 - Leading jet $p_T{>}70~\text{GeV}$ and 2^{nd} jet $p_T{>}50~\text{GeV}$
- 2. Boosted analysis:
 - e candidates with p_T>35 GeV and |η|<2.5 μ candidates p_T>45 GeV and |η|<2.1
 - E_T^{miss} >50 GeV and $H_T^{lep} = p_T^{lep} + E_T^{miss}$ >150 GeV
 - Two jets with D=0.5, p_T >50 GeV and $|\eta|$ <2.4
 - Leading jet p_T>150 GeV

Several other kinematical cuts, jet b-tagging

Limited by SM ttbar background

CMS Boosted I+jets Search (2)

Backgrounds estimated in different ways


- 1. Threshold analysis:
 - Use data to determine SM backgrounds (no use of MC for background rate)
- 2. Boosted analysis:
 - Estimate SM backgrounds using POWHEG with **PYTHIA showering & MADGRAPH with PYTHIA**

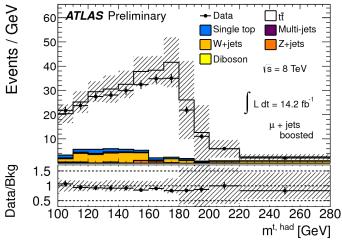
Estimate systematic uncertainties

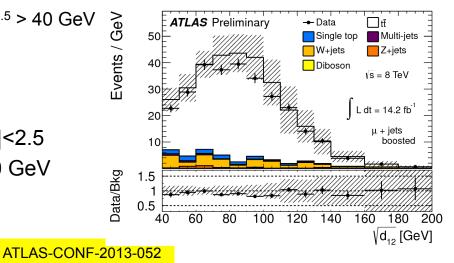
Largest sources are b-tagging, jet energy • scale and resolution, integrated luminosity

Set 95% CL limits using Bayesian calculation

Systematics incorporated as nuisance parameters

 $m_{gKK} > 2.54 \text{ TeV}$


ATLAS Boosted I+jets Search (I)


ATLAS has searched in 14.2 fb⁻¹ of 8 TeV data using lepton+jets channel with 2 analyses

- 1. Boosted analysis:
 - Isolated e candidate with p_T>25 GeV and |η|<2.47, with E_T^{miss}>30 GeV and m_T>30 GeV
 - Isolated μ candidate p_T>25 GeV and |η|<2.5, with E_T^{miss}>20 GeV and E_T^{miss}+m_T>60 GeV
 - \geq 1 D=0.4 jet with p_T>25 GeV and |η|<2.5
 - 1 D=1.0 jet with p_T>300 GeV and |η|<2.0
 - Must also have $1^{st} k_T$ splitting scale $(d_{12})^{0.5} > 40$ GeV and $m_{jet} > 100$ GeV
- 2. Resolved analysis:
 - Same lepton requirements
 - 3 or 4 D=0.4 jets with p_T >25 GeV and $|\eta|$ <2.5
 - If only 3 jets, one must have m_{iet}>60 GeV

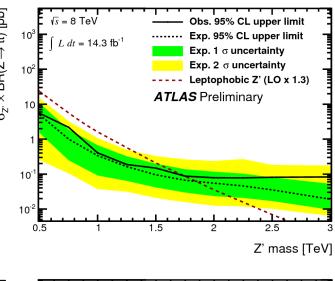
Also require at least one b-tagged jet

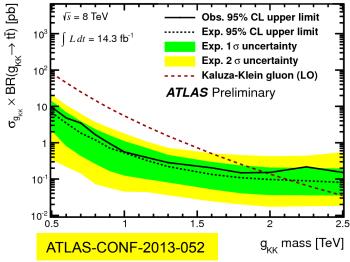
• Limited by SM ttbar background

ATLAS Boosted I+jets Search (2)

 $\sigma_{Z'} \times BR(Z' \rightarrow t\bar{t})$ [pb] Backgrounds estimated using data-driven and MC calculations

- W+jets determined using W+/W- charge asymmetry to separate from other sources
- Multijet background estimated by relaxing • lepton ID requirements
- SM ttbar estimated using MC@NLO+HERWIG • showering


Estimate systematic uncertainties


Largest sources are JES, ttbar normalization, **PDFs**

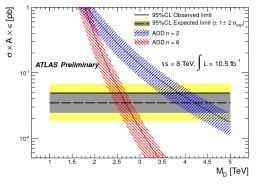
Set 95% CL limits using Bayesian calculation

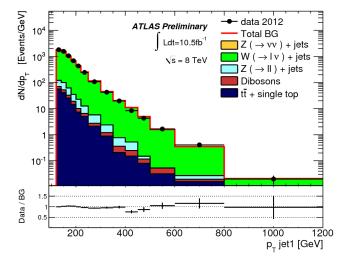
Systematics incorporated as nuisance parameters

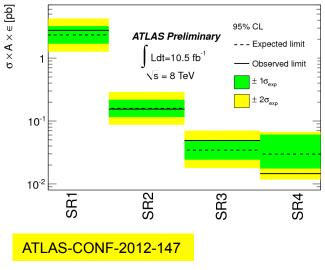
> $m_{T} > 1.80$ TeV for $\Gamma / m = 1.2\%$ $m_{gKK} > 2.00 \text{ TeV}$

ATLAS Monojet Search

Monojets arise in a number of theories, e.g.

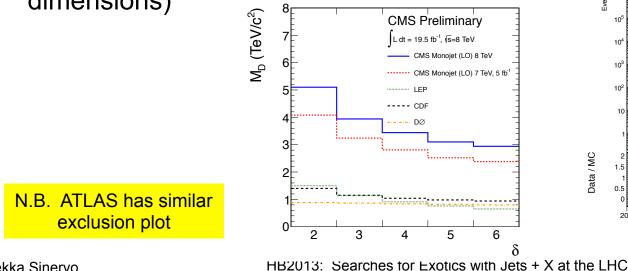

- Dark Matter (DM) -- more generally WIMPs
- Gauge-mediated SUSY-breaking models

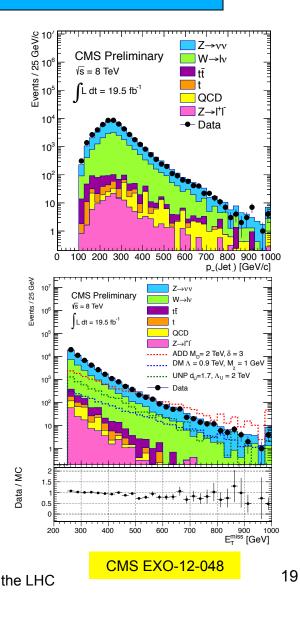

Search is a traditional one


- Look at events with \geq 1 jet & large E_T^{miss}
- Compare with expected backgrounds
- ATLAS has studied 10.5 fb⁻¹ of 8 TeV pp data
 - Consider 4 regions with $E_t^{miss} > 120, 220, 350 \& 500 \text{ GeV}$
 - Requires leading jet p_T with same pT threshold

See excellent agreement with expected SM

backgrounds


CMS Monojet Search


CMS has looked at monojets in 19.5 fb⁻¹

- Look in 7 regions with $E_{T}^{miss} > 250 \text{ GeV}$ • to E_{τ}^{miss} >550 GeV in 50 GeV steps
- Looks at events with only one recoil jet •
 - Leading jet pT distributions is used as control

Compare with expected SM backgrounds

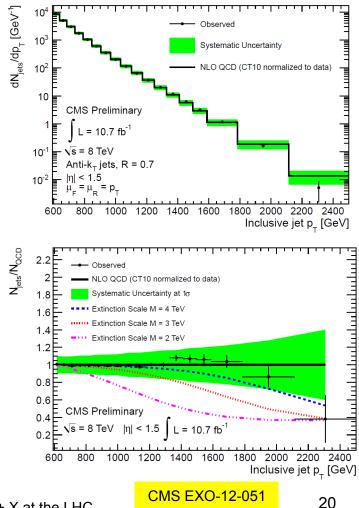
Set 95% CL limits on possible DM yield as a ۲ function of M_D and δ (number of extra dimensions)

Pekka Sinervo

CMS Search for Jet Extinction

Some Terascale gravity models predict reductions of high p_T jet production

 Look for reduction of high p_T jets relative to QCD predictions


CMS searched in 10 fb⁻¹ of 8 TeV collisions

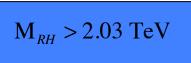
- Looked for evidence of a reduction in yield
 - Modelled this with a PYTHIA MC, using a Veneziano-type form factor
 - Extinction occurs beyond scale M
- Compared rate with NLOJet++ NLO calculation with CT10 PDFs

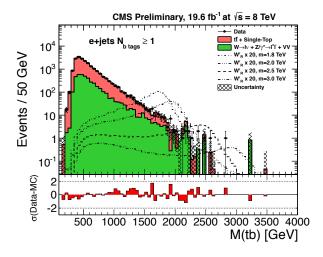
Systematic uncertainties dominated by JES and PDFs

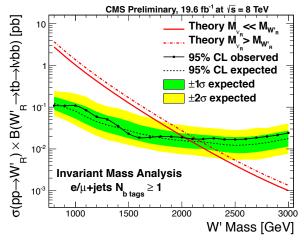
• Set frequentist 95% CL limits

HB2013: Searches for Exotics with Jets + X at the LHC

M > 3.3 TeV


CMS Search for W'→t-bbar


Numerous models predict W' bosons

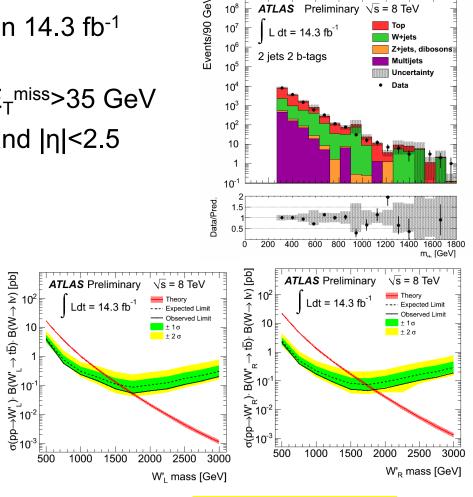

Most sensitive searches look
for hadronic decay W'→t-bbar

CMS searched in 19.6 fb⁻¹ of 8 TeV pp collisions

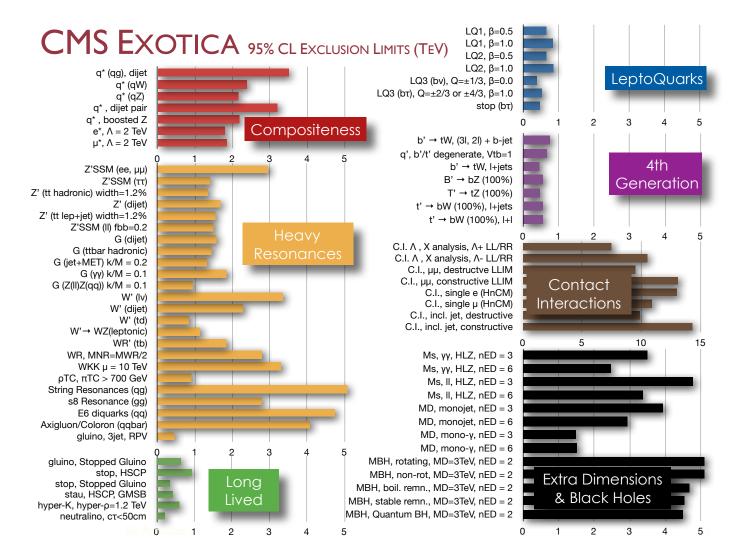
- Require e/μ with p_T >50 GeV and E_t^{miss} >20 GeV
- Require ≥ 2 jets with D=0.5, pT₁₍₂₎>120(40) GeV and |η|<2.4
 - At least 1 b-tagged jet
- Require top quark candidate with p_T >85 GeV and mass between 130 and 210 GeV
- Set Bayesian 95% CL limits fitting M(tb) distribution

CMS B2G-12-010

ATLAS Search for W'→t-bbar


ATLAS has performed similar search in 14.3 fb⁻¹ of 8 TeV pp collisions

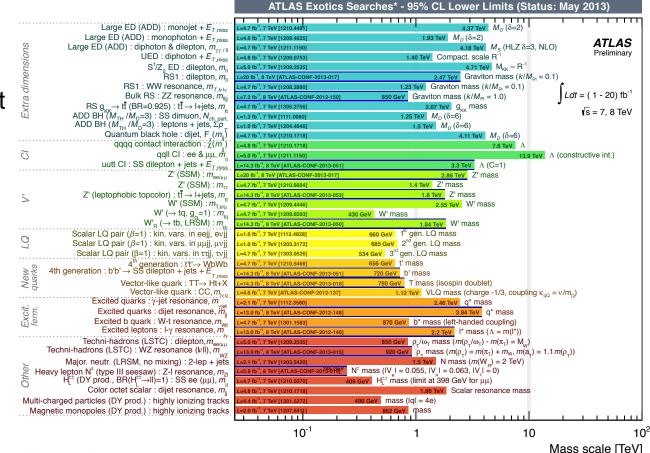
- Require e/ μ with p_T>25 GeV and E_T^{miss}>35 GeV
- Require \geq 2 jets with pT>25 GeV and $|\eta|$ <2.5
 - At least 1 b-tagged jet
- Use Boosted Decision Tree analysis on 2-jet & 3-jet samples


 $M_{IH} > 1.74 \text{ TeV}$ $M_{RH} > 1.84 \text{ TeV}$

Systematic uncertainties dominated by b-tagging, bkgds

• Set Bayesian 95% CL limits

CMS Exotica Summary



Summary and Conclusions

CMS and ATLAS successfully probing multi-TeV regime

- Summaries show that a large number of hypotheses tested
- Many analyses still underway with full 7/8 TeV samples

Next step is increase in pp energy and L coming in 2015

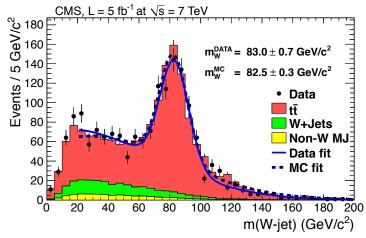
*Only a selection of the available mass limits on new states or phenomena shown

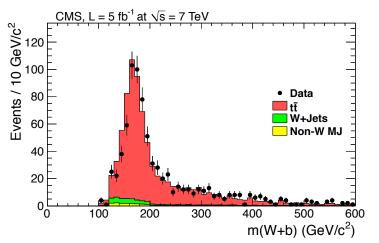
Backup Slides

CMS Initial Hadronic Search (I)

CMS performed the first fully hadronic search at the LHC

- 1. Two jets ("1+1")
 - Use Cambridge-Achen D=0.8 clustering
 - Require 2 jets with $p_T > 350$ GeV and |y| < 2.5


- Each jet has to have 3 sub-jets, m_{iet} consistent with top quark mass
- Min pair-wise mass of 2 sub-jets > 50 GeV
- 2. Three jets ("1+2")



- As above, but only one jet satisfying the substructure criteria
- Recoiling against 2 jets, one with p_T>200 GeV, with 2 sub-jets, m_{iet} consistent with W boson

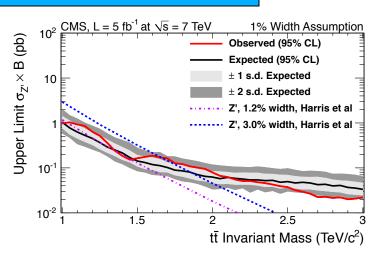
Several other kinematical cuts, no b-tagging

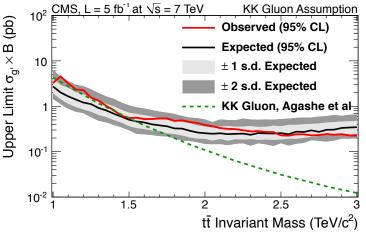
Limited by multijet background

CMS EXO-11-006, JHEP 09 (2012) 029

CMS Initial Hadronic Search (2)

Top-tagging eff 50-60% for p_T >500 GeV Backgrounds come from


- Multijet final states estimated using data-driven mis-tagging probability
 - Folded in with observed multijet events
- Standard Model ttbar
 - Estimated using MADGRAPH+HERWIG showers

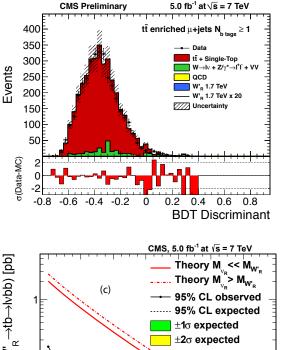

Estimate systematic uncertainties

Largest sources are sub-jet efficiency, JES and integrated luminosity at high M_{tt}

Set 95% CL limits using Bayesian calculation

- Systematics incorporated as nuisance parameters
- Cross section limits, but not strong enough to exclude Z' or g_{κκ} models

HB2013: Searches for Exotics with Jets + X at the LHC


CMS 7 TeV Search for W'→t-bbar

CMS performed an earlier search for hadronic W' decays

• W'→t-bbar

CMS has searched in 5.0 fb⁻¹ of 7 TeV pp collisions

- Require $e(\mu)$ with $p_T > 35(32)$ GeV and $E_T^{miss} > 35(20)$ GeV
- Require ≥ 2 jets with D=0.5, pT₁₍₂₎>100(40) GeV and |η|<2.4
 - At least 1 b-tagged jet
- Use Boosted Decision Tree analysis
- Set Bayesian 95% CL limits using CL_s method

 a_{C}^{α} $a_$

