Summary of Higgs and BSM physics at ATLAS

HIGGS AND BEYOND 2013 TOHOKU WORKSHOP ON HIGGS AND BEYOND

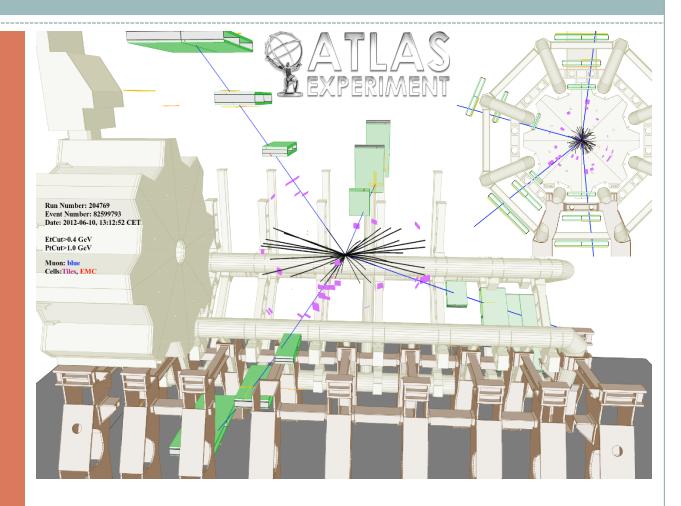
F. CONVENTI

(UNIVERSITA' DI NAPOLI "PARTHENOPE" AND INFN)

Overview:

Higgs:

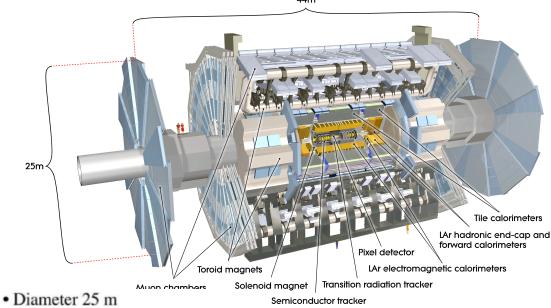
Observation


Decay Channels

Combined properties

BSM:

SUSY searches EXOTICS searches


HL-LHC

The ATLAS Detector

ATLAS is a general purpose detector, designed to be sensitive to a wide range of physical phenomena: EWK, Higgs, SUSY, BSM, Flavour physics (Excellent muon detection and tracking performance)

• Length : 46 m

- · Barrel toroid length 26 m
- Overall weight 7 000 tonnes
- ~ 100 million electronic channels
- ~ 3 000 km of cables

F. Conventi: Higgs and BSM physics at ATLAS

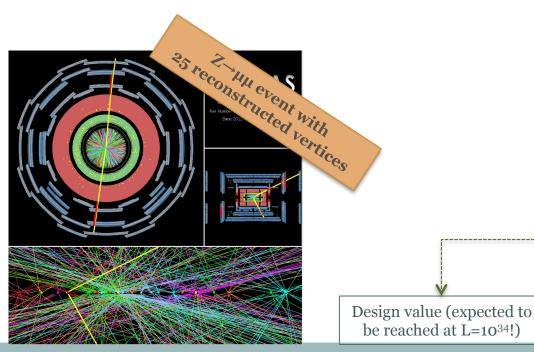
Inner tracker: $\sigma/p_T \approx 3.8 \times 10^{-4} p_T (GeV) + 0.015$

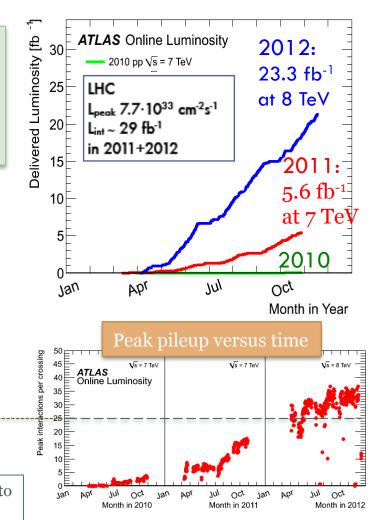
Calorimetry:

ECAL: $\sigma/E \approx 10\%/\sqrt{E} + 0.7\%$ HCAL: $\sigma/E \approx 50\%/\sqrt{E} + 0.03\%$

Muon spectrometer:

 $\sigma/p_T \ge 10\% @ 1 \text{ TeV}$ $\sigma/p_T \ge 2\% @ 100 \text{ GeV} \text{ (with ID)}$

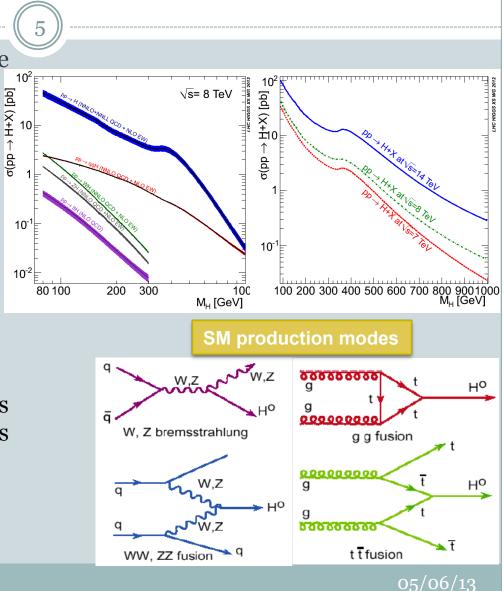

Magnets:


Solenoid: 2T Toroid: 0.5 T (barrel), 1T (endcap)

Trigger: 3 Levels, 40 MHz → 400 Hz

LHC and ATLAS performance

Excellent ATLAS performance Data-taking efficiency: 93% Good quality data fraction used for analysis: 95.8% Challenge: harsh pile-up conditions [trigger, computing, reconstruction of physics objects]



F. Conventi: Higgs and BSM physics at ATLAS

SM and BSM Higgs Boson searches

Measurements and searches in the context of SM Higgs boson search:
golden bosonic decay channels:
◇ γγ and ZZ→ 4l
◇ WW
◇ Zγ
• more high mass devoted:
◇ ZZ→ llqq,
◇ ZZ→ llvv, WW→ lvqq
• fermionic decay channels
◇ ττ, bbar, μμ

Combination of analyses across different production and decay modes gives information about couplings

SM and BSM Higgs Boson searches

Measurements and searches in the context of SM Higgs boson search:

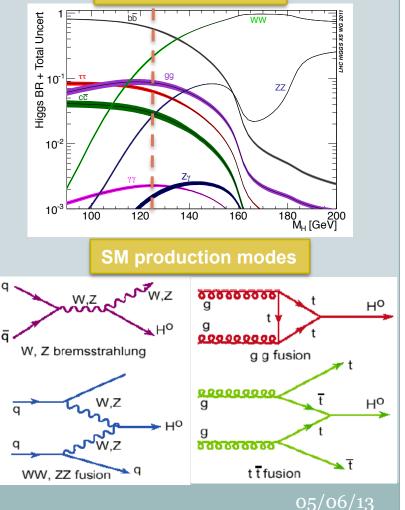
golden bosonic decay channels:

◇ γγ and ZZ → 4l
◇ WW
◇ Zγ

more high mass devoted:

◇ ZZ → llqq,
◇ ZZ → llvv, WW → lvqq

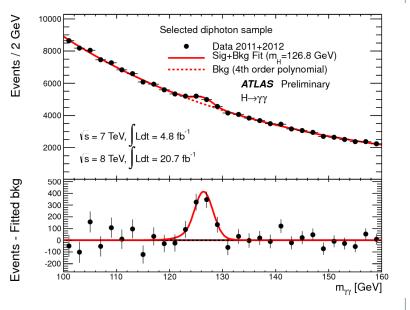
fermionic decay channels

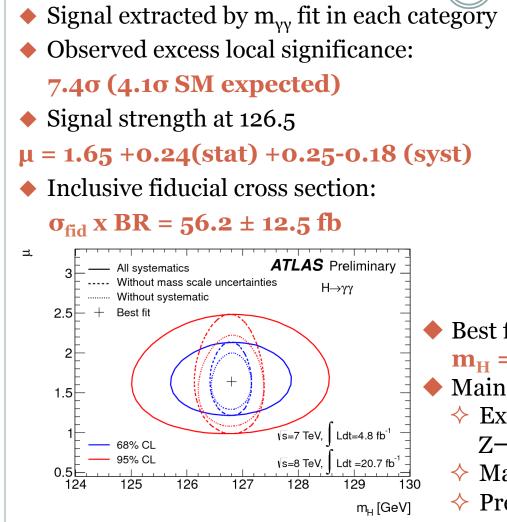

◇ ττ, bbar, μμ

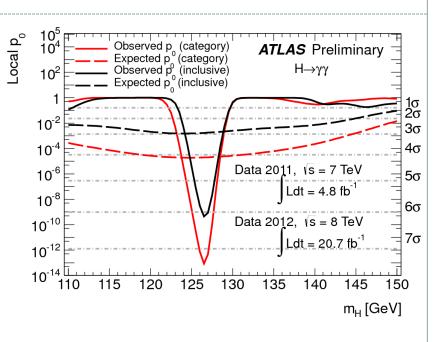
Production modes used both to enhance analysis sensitivity and to get information about couplings

♦ Generic BSM: invisible decays
♦ MSSM: A/H → ττ, H±→τν or csbar

F. Conventi: Higgs and BSM physics at ATLAS

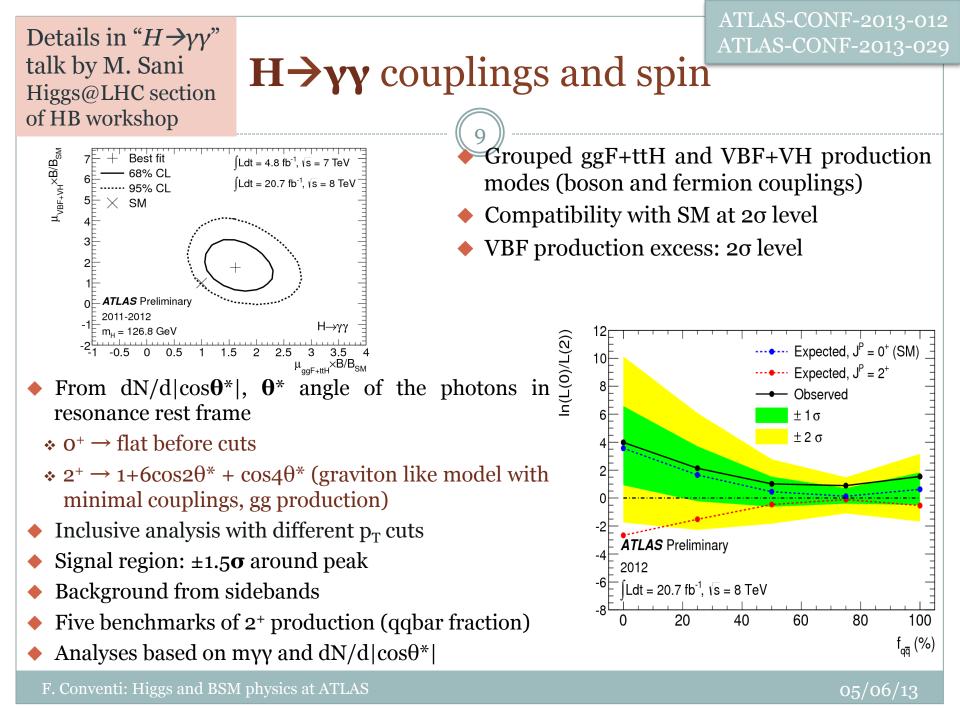



$H \rightarrow \gamma \gamma$ Overview

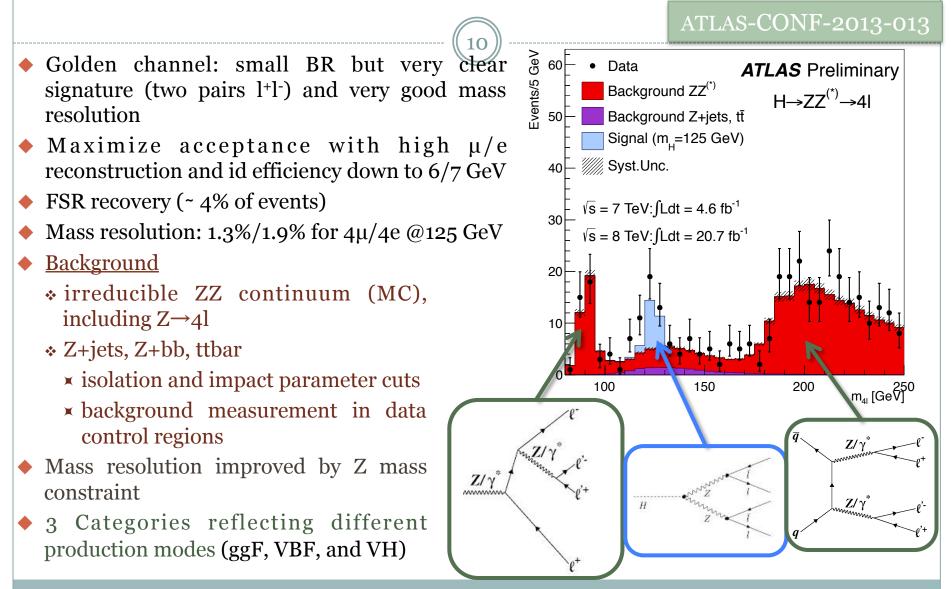

ATLAS-CONF-2013-012

- Low BR (~0.2%) but very distinctive signature
- Main production mode and decay through loops: sensitive to new physics
- High mass resolution channel: $\sigma_m \sim 1.7 7 \text{ GeV}$
 - stable against time and pileup
 - negligible uncertainty on primary vertex identification thanks to calorimeter pointing
- 14 categories targeting different production modes, VH (lepton, jets and MET) and two VBF categories. Different sensitivities and resolutions
- Main backgrounds: γγ continuum (75%), γ-jet, jet-jet events (25%)
 - tight photon identification and isolation
 - background parametrised by an analytic function in each category, model chosen with MC to minimise biases
 - background extrapolated from side-bands in data
 - S/B ~ 3% in mass window

$H \rightarrow \gamma \gamma$ signal strength and mass

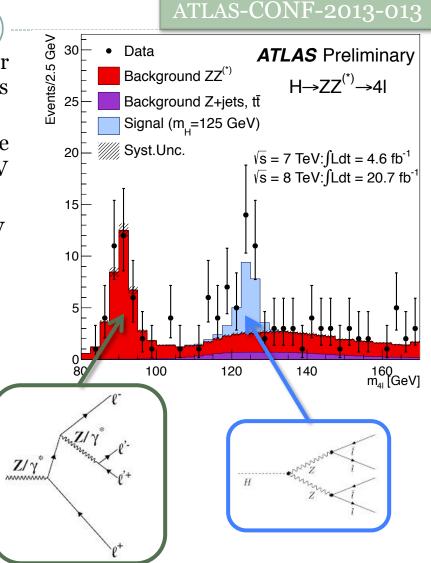

Best fit mass: $m_{\rm H} = 126.8 \pm 0$

 $m_{\rm H}$ = 126.8 ± 0.2 (stat) ± 0.7 (syst) GeV Main mass systematics: \diamond Extrapolation of γ energy scale from

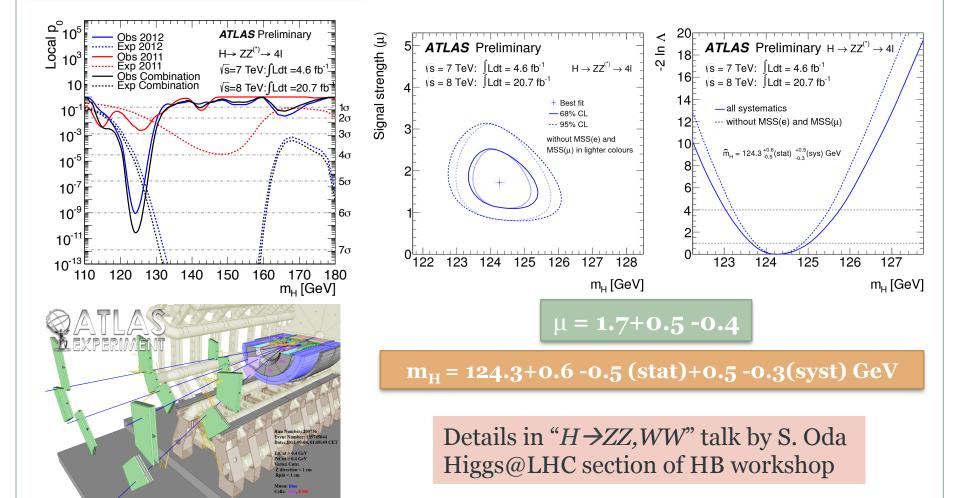

Z→ee (0.3%)

Material modeling (0.3%)

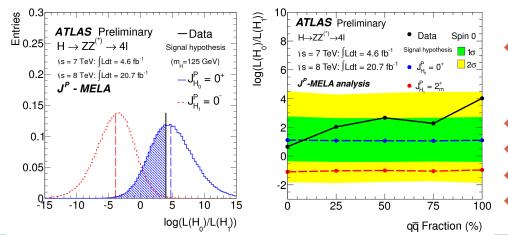
Presampler energy scale (0.1%)

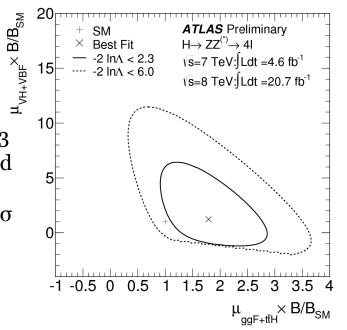

H→ZZ→4l Overview

H→ZZ→4l Overview


Golden channel: small BR but very clear signature (two pairs l+l-) and very good mass resolution

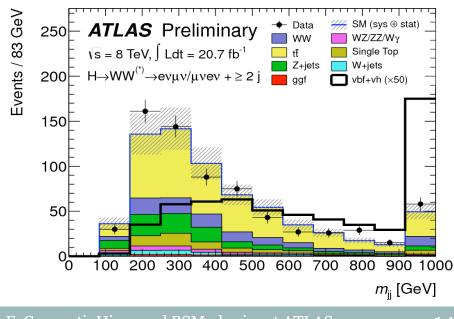
- Maximize acceptance with high μ/e reconstruction and id efficiency down to 6/7 GeV
- ▶ FSR recovery (~ 4% of events)
- Mass resolution: 1.3%/1.9% for 4μ/4e @125 GeV
- Background
 - * irreducible ZZ continuum (MC), including $Z \rightarrow 4l$
 - ✤ Z+jets, Z+bb, ttbar
 - \star isolation and impact parameter cuts
 - ➤ background measurement in data control regions
- Mass resolution improved by Z mass constraint
- 3 Categories reflecting different production modes

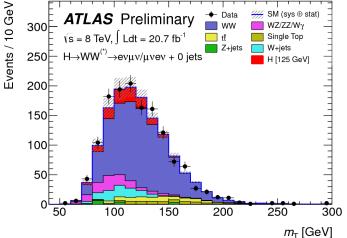

$H \rightarrow ZZ \rightarrow 4l$ signal strength and mass

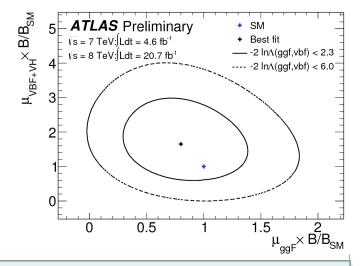

6.6 σ local significance excess

$H \rightarrow ZZ \rightarrow 4l$ couplings and spin

- Categorization dedicated to coupling studies
 - ♦ VBF: 2 high p_T jets $\Delta \eta_{ij}$ > 3 m_{ij} > 350 GeV
 - \diamond VH: additional lepton, non VBF
 - ♦ ggF: failing other categories
- m_{4l} > 160 GeV: 6 VBF events observed, expected 3.8±1.3
- $\diamond~$ 120 GeV < m_{4l} < 130 GeV: 1 event observed, expected from SM Higgs 0.71±0.10
- Signal strength per production mechanism: <2σ agreement with SM

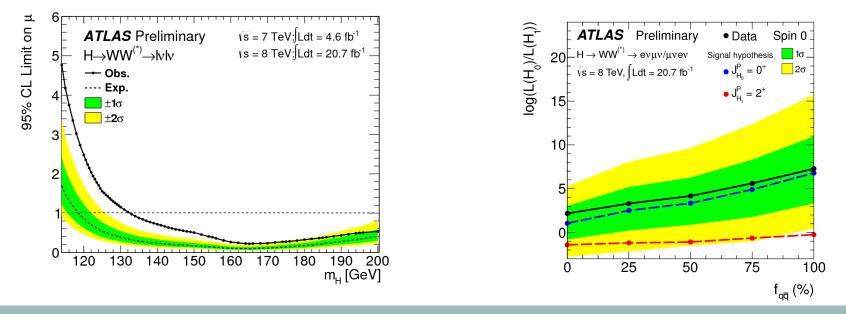

- Discriminants built from spin sensitive observables: Z1,Z2 masses, 2 production and 4 decay angles
- Tested on 43 events in signal region
- Pairwise JP test: 0⁺, 0⁻, 1⁺, 1⁻, 2⁺, 2⁻
- $^{\circ}$ o⁻ and 1⁺ excluded at > 97.8% CLs
- o⁺ favored


ATLAS-CONF-2013-030


Details in "*H*→*ZZ*,*WW*" talk by S. Oda Higgs@LHC section of HB workshop

H→WW Overview

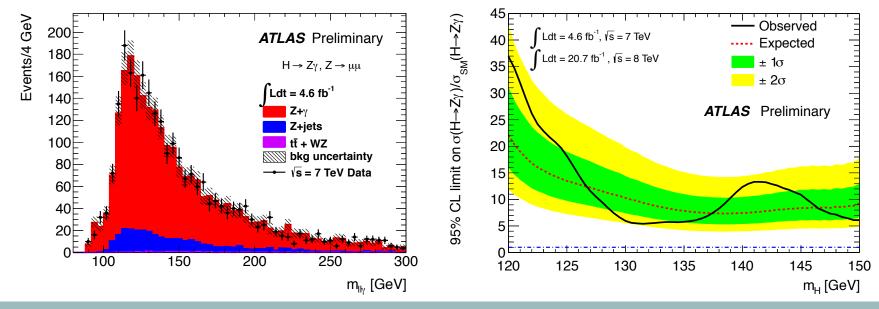
- Large BR (~ 20%) despite being below real WW decay around 125 GeV
- Full mass reconstruction not possible
- Clear dilepton signature
- VBF dedicated channels
- Main backgrounds: irreducible continuum WW, ttbar, W→lv
- Backgrounds estimated from control regions



excess observed: 3.8 σ VBF excess (signal + N_{jet} \geq 2): 2.5 σ VBF excess expected: 1.6 σ

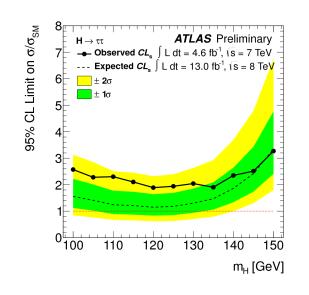
ATLAS-CONF-2013-030 ATLAS-CONF-2013-031

$H \rightarrow WW$ signal strength and spin

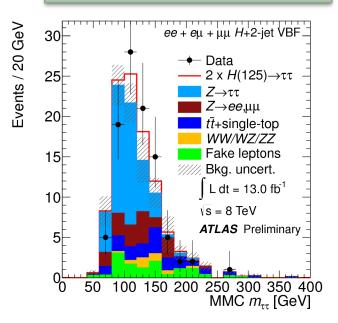

- μ = 1.0 ± 0.3
 Measured cross section @8TeV: σ x BR = 6.0 ± 1.5 pb SM expected = 4.8 ± 0.7 pb
 Spin tested exploiting angular distributions, main variables m_{ll} and Δφ_{ll}
 o⁺ and 2⁺ hypotheses tested, o⁺ favored against 2⁺ at 95% CLs
 Consistive in the formation where unclosed discrimination neuron
- Sensitive in the f_{qq} region where $\gamma\gamma$ looses discrimination power

 $H \rightarrow Z \gamma$

ATLAS-CONF-2013-009


- Low BR, decay through loops \rightarrow sensitivity to new physics
- Analysis with $Z \rightarrow ll (e/\mu)$
- Main backgrounds irreducible Z+γ and Z+jets
- Discriminating variable: $\Delta m = m_{ll\gamma} m_{ll}$
- Background estimated from sidebands fit and cross checked with data-driven methods
- No excess observed, limits set at 18.2 x σ_{SM} at 125 GeV (expected 13.5 x σ_{SM})

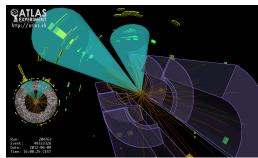
4.6 (7 TeV) + 13.0 fb⁻¹ (8TeV) dataset


Details in " $H \rightarrow \tau \tau$, $\mu \mu$ " talk by H. Fox 125 Higgs@LHC section of HB workshop

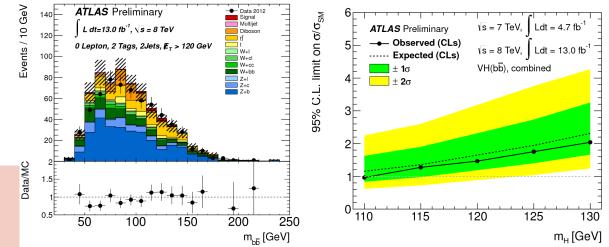
- Second in branching ratio for decays to fermions but highest sensitivity due to experimental signature
- VBF categories have more sensitivity than the non-VBF categories
- Hadronic tau decays reconstructed from calorimeter jets and identified with Boost Decision Tree discriminator based on tracking and calorimeter information
- to categories based on tau decay type (ll, lhad, hadhad) and jet/event topology (targeting different production modes)

Η→ττ

ATLAS-CONF-2012-160



- Irreducible $Z \rightarrow \tau \tau$ background from hybrid data-MC technique ($Z \rightarrow \mu \mu$ data events with muons replaced by simulated taus)
- Z+jets, W+jets, top from MC, normalised/checked in data control regions, diboson from MC
- Multijet fully data driven
- Mass reconstruction exploiting knowledge of tau decay kinematics (MMC)
- No significant excess above SM is observed, limit at 125 GeV: 1.9 x σ_{SM} (expected 1.2 x σ_{SM} , 1 sigma excess)


4.6 (7 TeV) + 13.0 fb⁻¹ (8TeV) dataset

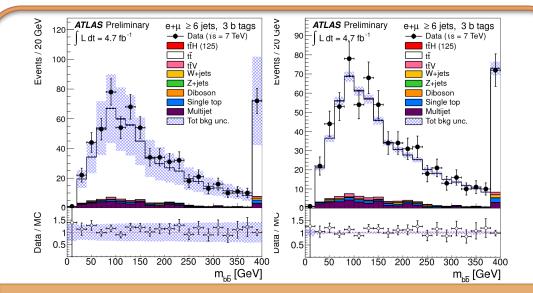
H→bb (VH production mode)

- H→bbar highest SM branching ratio, but experimentally difficult → need to exploit production modes
- Associated production: three channels 0, 1, 2 leptons targeting $Z \rightarrow vv$, $W \rightarrow lv$, $Z \rightarrow ll$
- 13 categories targeting different Higgs boost regime
- b-jets tagged combining information from different algorithms based on track impact parameter significance and or secondary decay vertex reconstruction
- Main backgrounds: top, W+jets and Z+jets
- Backgrounds taken from MC and normalised in control region (except multijets, fully data-driven and diboson, fully MC-driven)
- No excess observed, limit at 125 GeV on σ_{SM} xBR 1.8 (1.9 expected)
- Cross checked method with 4 σ observation of WZ, ZZ with Z \rightarrow bbar

Details in "*H*→*bb*" by T. A. Du Pree Higgs@LHC section of HB workshop

F. Conventi: Higgs and BSM physics at ATLAS

18


ATLAS-CONF-2012-135

4.6 (7 TeV) + dataset

ttH, H→bb

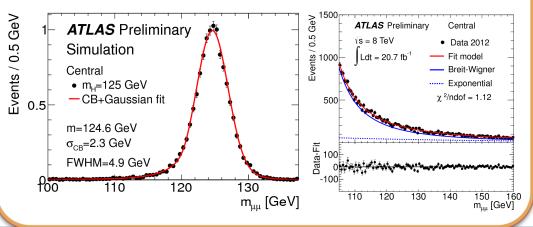
$ttH \rightarrow W+bW-b \ bb \rightarrow l+vb \ qqb \ bb$

- Events with \geq 6 jets, of which \geq 3 b-tagged
- Kinematic likelihood fitter used to assign objects in the detector to the objects above
- discriminating variable: mbbar
- Main background from ttbar
- Systematics due to b and c tagging efficiencies/mistag rate constrained in fit to data
- No excess observed, limit σ_{SM} x BR 13.1 (10.5 expected)

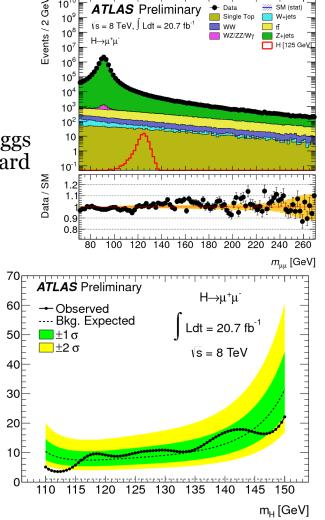
 m_{bb} combined e+jets and μ +jets channels with >= 6 jets and 3 b-tags before and after fitting of the nuisance parameters to data signal + background hypothesis)

05/06/13

Details in *"tth"* by M. Pianamonti Higgs@LHC section of HB workshop 06/06/2013


21 fb⁻¹ 8TeV dataset

Details in " $H \rightarrow \tau \tau$, $\mu \mu$ " talk by H. Fox 125 Higgs@LHC section of HB workshop

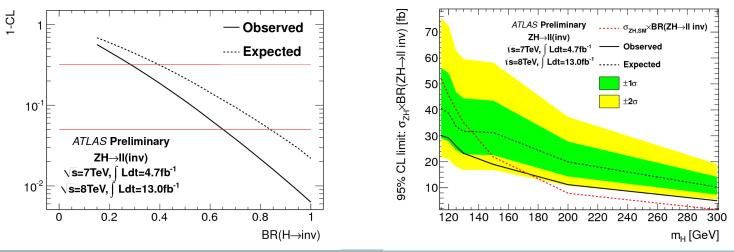

- Clean final state signature
- Testing couplings to second generation
- Branching ratio 28x10⁻⁵ 6x10⁻⁵
- Dominant irreducible Drell-Yan background
- 2 analysis categories depending on muon centrality
- The observed (expected) limit at the 95% CL for the Higgs boson with a mass of 125 GeV is 9.8 (8.2) times the Standard Model prediction.

```
Binned likelihood fit
```

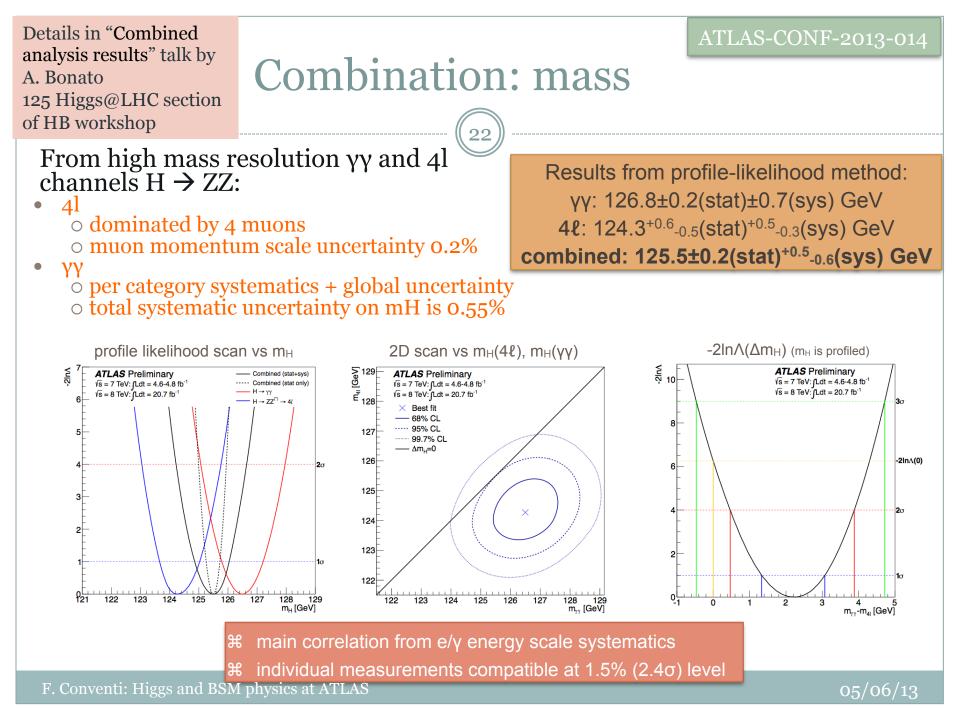
- background BW + exponential
- ♦ signal CrystalBall + gaussian

95% CL Limit on μ

F. Conventi: Higgs and BSM physics at ATLAS



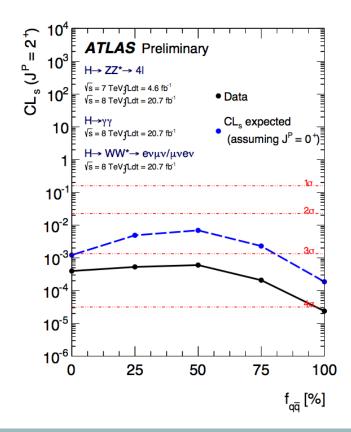
ATLAS-CONF-2013-011


ZH, $H \rightarrow$ invisible

$4.6 (7 \text{ TeV}) + 13.0 \text{ fb}^{-1} (8 \text{TeV}) \text{ dataset}$

- For a SM Higgs BR to invisible particles is not measurable
- Could have contributions eg from dark matter particles
- Signature: $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ with large MET (> 90 GeV)
- Main backgrounds from diboson production
- Cut optimization against ZH-like events
- Limits for a SM Higgs invisible branching ratio: assuming the ZH production rate for a 125 GeV SM Higgs boson, an invisible branching fraction greater than 65% is excluded with a 95% CL for the observed (84% with 95% CL for the expected)
- Limit on σ (ZH) x BR(invisible) for further Higgs-like states over the mass range 115 GeV $< m_H < 300$ GeV

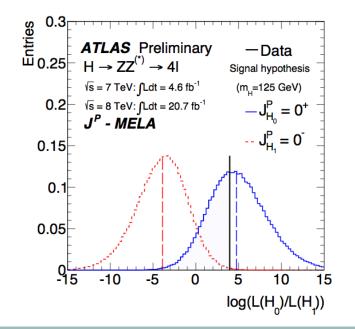
Ζ



Combination: SPIN-parity

23

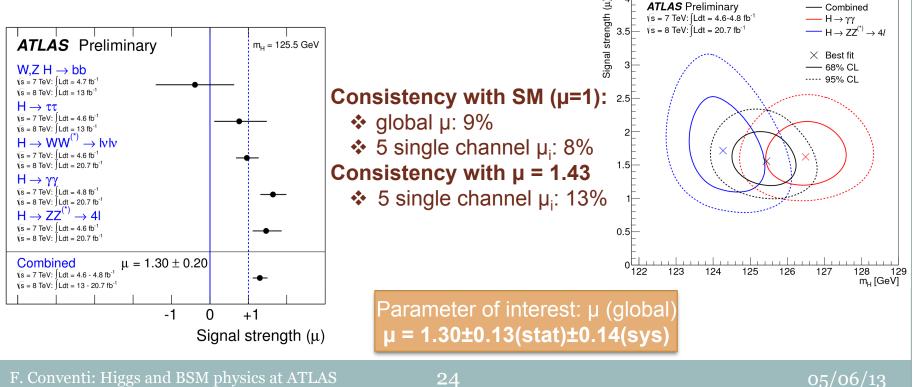
Combination: exclude 2⁺ model against 0⁺ at more than 99% CL


All combinations of qq/gg production excluded as well

 $H \rightarrow ZZ \rightarrow 4\ell$ channel alone:

exclude 0⁻, 1⁺, 1⁻ at more than 96.9% CL

test of 2⁻ against 0⁺ still inconclusive



Combination: signal strength

Once m_H is measured, SM cross sections are uniquely determined

- we can test the agreement with SM measuring deviations from predicted yields
- ▶ assume $m_H = 125.5$ GeV and define a signal strength μ such as $N_{tot} = \mu \cdot N_{sig} + N_{bkg}$ ($N_{tot} > 0$)
- combine measurements from all decay channels

result is stable within $\sim 4\%$ for ± 1 GeV variations of assumed m_H

Production modes and couplings

B/B_{SM}

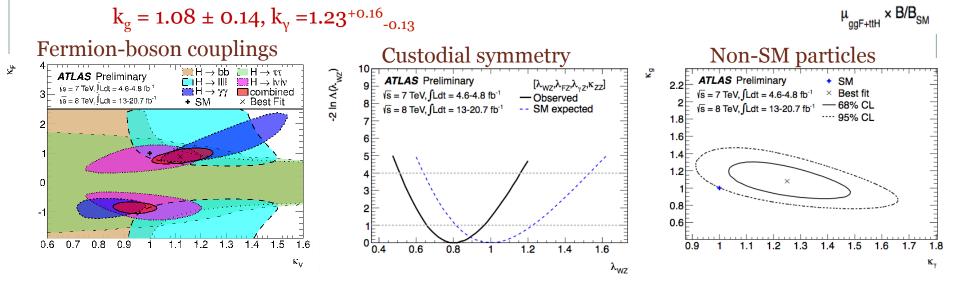
UBF+VH

10

m_H = 125.5 Ge\

Analysis of signal strength depending on production modes

- grouped VBF + VH and ggF + ttH
- μ VBF+VH/ μ ggF+ttbarH = 1.2^{+0.7}-0.5: 3 σ evidence for VBF production


Analysis of fermion and vector boson couplings

- $\circ \quad k_{v} = k_{w} = k_{Z}, \, k_{f} = k_{t} = k_{b} = k_{\tau}$
- $\circ~$ assume only SM particles involved
- \circ compatibility with SM =8%

Custodial symmetry:

• ungroup k_W and k_Z , $\lambda_{WZ} = k_W/k_Z = 1$ within 95% CL

Contributions from BSM particles: assume SM $k_i = 1$,

Production modes

— H → yy

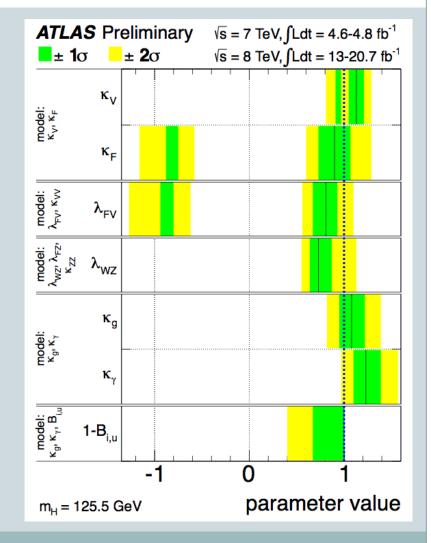
ATLAS Preliminary

√s = 7 TeV: ∫Ldt = 4.6-4.8 fb⁻¹

√s = 8 TeV: ∫Ldt = 13-20.7 fb⁻¹

Standard Mode
 X Best fit

---- 68% CL

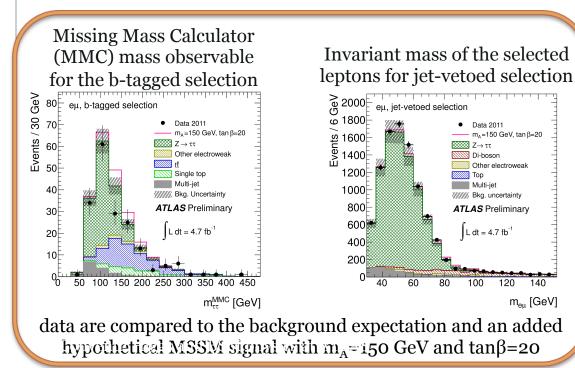

Couplings summary

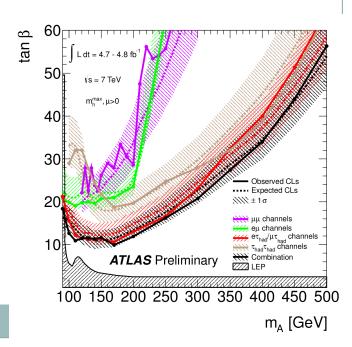
26

Many tested benchmark models

- common assumption: single resonance with SM-like tensor structure, zero width
- remark: various scenarios are correlated (based on same experimental data!)

no significant deviation from Standard Model prediction compatibility with SM at 5÷10% level

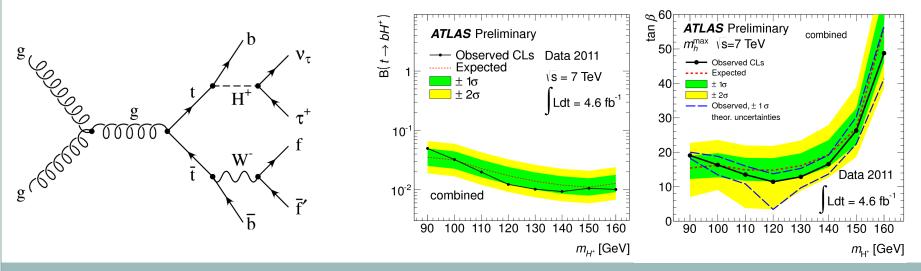



F. Conventi: Higgs and BSM physics at ATLAS

Details in the SUSY section of HB workshop

MSSM neutral Higgs searches

- MSSM Higgs branching ratios similar in structure to SM, but suppressed or enhanced according to tanβ
- At high tan $\beta \tau$ and μ decays of A/H highly favored
- Decay channels considered: μμ, eμ, ehad, μhad, hadhad
- Exploiting two main MSSM production modes: ggF and b-associated production
- No statistically significant excess over the expected background is observed.



05/06/13

MSSM charged Higgs searches

- Charged Higgs fundamental in SUSY Higgs sector, since at least two Higgs doublets are needed
- Main production mode through top decays
- 3 final states considered, leptonic or hadronic τ decay, MET, b jets, and leptonically or hadronically decaying W boson
- Backgrounds: ttbar, single top multijet and diboson
- Mixed MC/data driven background estimation
- The data are consistent with the expected background from Standard Model processes
- csbar decay search with 35 pb⁻¹ performed as well

F. Conventi: Higgs and BSM physics at ATLAS

Higgs Conclusions

- 4th July: announcement of the discovery of a Higgs-like boson, measurements and searched for other production modes ongoing
- Observation well established in $\gamma\gamma$, 4l and WW channels with 7.4 σ , 6.6 σ and 3.8 σ respectively
- Combined measurements from γγ and 4l:
 - * $m_{\rm H} = 125.5 \pm 0.2$ (stat) +0.5-0.6 (syst) GeV,
 - * $\mu = 1.30 \pm 0.13(\text{stat}) \pm 0.14(\text{sys})$
 - * $\mu_{VBF+VH}/\mu_{ggF+ttH} = 1.2^{+0.7}-0.5$ 3.10 evidence for VBF production
- Fermionic decays are being searched for... limits at 1.9xoSM and 1.8xoSM for $\tau\tau$ and bbbar respectively, still not full LHC dataset
- Combination for signal strength (γγ, 4l, WW, ττ, bbar): Results for couplings and spin compatible with the SM:
- µ = 1.30±0.13(stat)±0.14(sys
 - new boson is compatible with SM J^{PC}=0⁺
 - × excluded 0⁻, 1⁺, 1⁻, 2⁺ specific scenarios against SM at more than 96.9% CL
- No evidence for invisible Higgs decays
- No evidence for BSM Higgs states (stay tuned for full-statistics result)
- The characteristics of the observed boson are up to now compatible with those of a SM Higgs boson

Perspectives

- > update fermion channels to full data sample
- > optimization of coupling measurement in individual channels
- > probe CP admixtures

Higgs discovery and BSM

Overall compatibility
Production modes
Global fit on couplings
Spin hypothesis 0+
Custodial W/Z simmetry

...however...

 SM Higgs boson needs large corrections to have mH =126 GeV

Could the Standard Model be the final answer ?

Some observed phenomena require extensions of the Standard Model

- Dark Matter
- Cosmic baryon-antibaryon
 - asymmetry
- Inflation
- Neutrino mass (requires some new dim-5 operators)
- Suggestion of grand unification in
- fermion quantum numbers
- Anomalies in particle physics: muon g-2, top FB asymmetry, ...

but none of these -- except the last -- require new physics at TeV energies

Exotics Searches at Atlas (non-SUSY)

Plethora of BSM "exotics" models:

 Extra-dimensions, GUT, Technicolor(s), Leptoquarks, Hidden Valley, Compositeness, SeeSaw mechanism, etc...

Searches for final state signature:

 Heavy Resonances, monojet, multileptons, same-sign dileptons, long-lived particles, lepton jets...

Results can be interpreted in the context of predictions of multiple models

See also: NON-SUSY session @ HB2013 07/06/2013

Exotics Searches at Atlas : Heavy Resonances

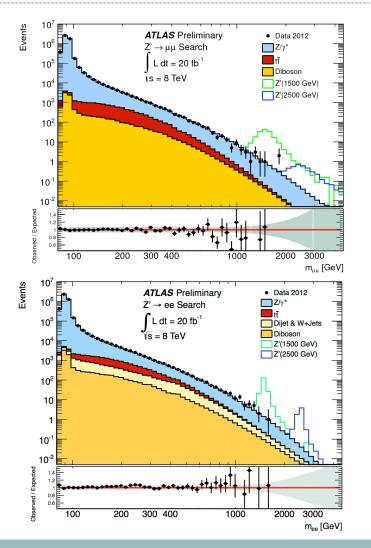
Dileptons

- Diphotons
- Dijets
- Photon+jets
- Top-antitop resonances
- Top + b resonances
- Lepton + MET
- Dibosons

• Many BSM extensions predict heavy resonances:

- GUT heavy spin 1 boson Z' from broken E6, SO(10)
- Little Higgs heavy gauge boson(s) Z' and W'
- Technicolor \rightarrow narrow technihadrons
- Extra Dimensions → spin 2 Randall-Sundrum graviton G*
- Heavy resonances in ATLAS: (experimental challenge):
 - Understand Detector effects (trigger, resolution, efficiency..)
 - Very high pT reconstructed objects close to TeV scale→ almost no control regions
 - Clean signal expected, often on SM distribution tail

Dilepton resonances


Full 8TeV dataset

BSM extensions:

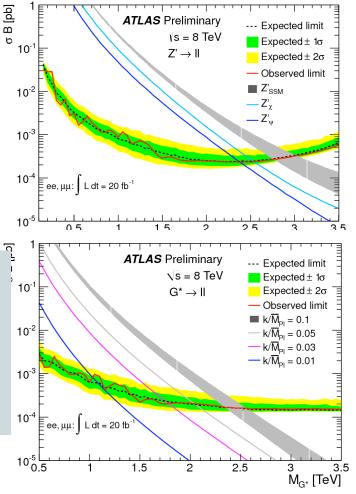
- Z' from GUT E6, SSM
- Randall-Sundrum graviton

Event selection:

- Single (double) muon (electrons) trigger
- 2 Same Flavor (Opposite sign for muons) leptons
- *Main backgrond:*
 - o tt, Drell-Yan, Diboson
 - QCD multijets and W+jets (in electron channel)
- Number of events for most backgrounds from MC using SM predicted cross section (using NNLO K-factors)
- Jets background and Multi-jets from data template

[ATLAS-CONF-2013-017]

Dilepton resonances

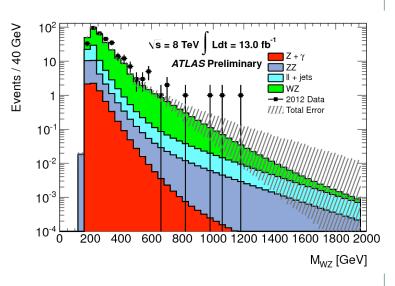

Full 8TeV dataset

[ATLAS-CONF-2013-017]

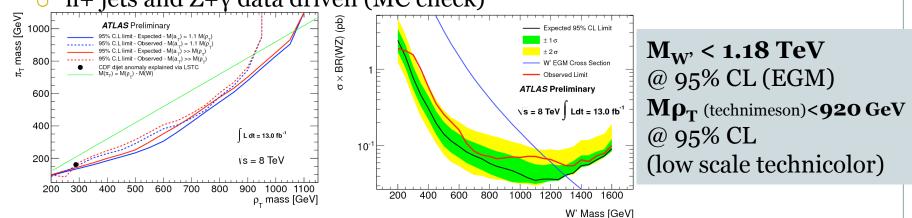
 Upper limit on the number of signal events is determined at the 95% C.L. using a Bayesian approach

Exclusion regions:

$$\begin{split} &M_{Z'} < 2.86 \mbox{ TeV } @ \ 95\% \mbox{ CL (SSM)} \\ &M_{Z'} < 2.38\mbox{-}2.54 \mbox{ TeV } @ \ 95\% \mbox{ CL (E}_6 \mbox{ models)} \\ &M_{G^*} < 2.47 \mbox{ TeV } @ \ 95\% \mbox{ CL (RS gravitons, k/M_{Pl}\mbox{=}0.1)} \end{split}$$


WZ resonance: lvl'l' final state

13 fb⁻¹ 8TeV dataset BSM extensions:


• Extended gauge models, Higgs/Little Higgs, low scale technicolor

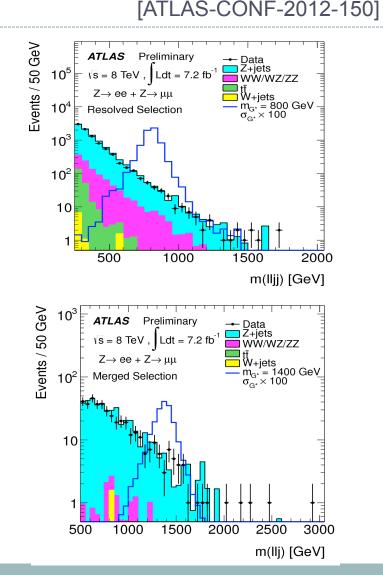
Event selection:

- Single lepton trigger
 - p_T thresholds ≈ 25 GeV
- 3 leptons + MET final state (veto on 4th lepton), Z-mass compatibility for l'l'
- *Main backgrond:*
 - Diboson (ZW, ZZ) from MC
 - \circ ll+ jets and Z+ γ data driven (MC check)

[ATLAS-CONF-2013-015]

ZZ resonance: lljj final state

7.2 fb⁻¹ 8TeV dataset


BSM extensions:

• Bulk spin-2 RS graviton

Event selection:

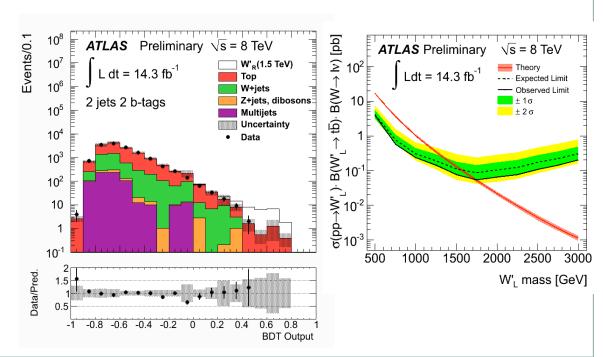
- High pT lepton trigger
- Split boosted/non-boosted regions
- Control region inverting cut on M(JJ) or M(J) *Main backgrond:*
 - Z+jets
 - o Diboson (WW,ZW, ZZ) from MC

Excluding Bulk RS graviton (k/MPl = 1.0) M_G < 850 (870 exp.) GeV @ 95% CL

W'→tb resonance: lvb_1b_2 final state

14.3 fb⁻¹ 8TeV dataset

Event selection:


- High pT lepton trigger, jets, MET
- Multivariate method based on BDT
- Search for both W' chiralities $(W'_R and W'_L)$
- \circ BDT trained on W'_R MadGraph signal sample

• Main backgrond:

- Multijets and W+jets (yields from data, bkg shape from simulation)
- tt, dibosons, Z+jets from simulation

Exclusion regions:

M_{W'L} < 1.74 TeV M_{W'R} < 1.84 TeV @ 95% CL

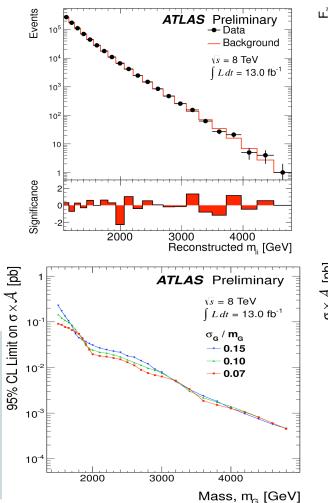
F. Conventi: Higgs and BSM physics at ATLAS

[ATLAS-CONF-2013-050]

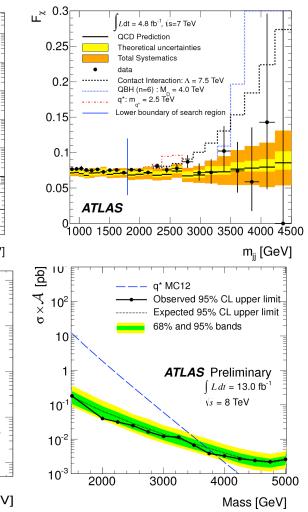
b.

Search for dijet resonance

13 fb⁻¹ 8TeV dataset (for 2012 search)


BSM extensions:

• Excited quarks, strong gravity, contact interaction

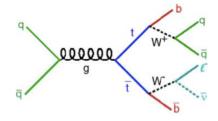

Event selection:

- Observables: dijet mass and angular distributions
- Larger BR (wrt to leptonic resonance) but also higher background (from QCD)
- Look for bump over smooth decreasing bkg

Lower Limit on $\sigma \ge A$ (excited quark model) $M_{q^*} < 3.84$ TeV @ 95% CL 95% CL Lower limit on quark contact interactions $\Lambda > 7.6$ TeV

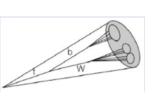
[ATLAS-CONF-2012-148] [JHEP01(2013)029]

Search for top-antitop resonance

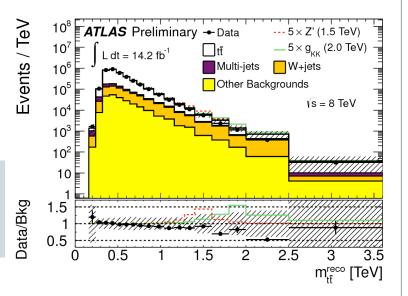

14.3 fb⁻¹ 8TeV dataset

BSM extensions:

o leptophobic top-color Z', RS KK gluons


Event selection:

- **lepton+jets** final state
- Combine resolved (looks for individual hadronic jets from t decay) and boosted (large radius jet)

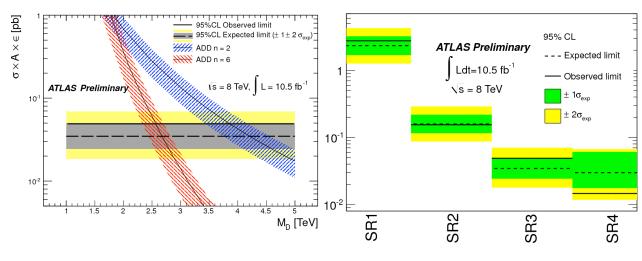


[ATLAS-CONF-2013-052]

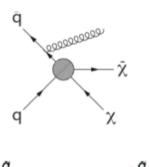
Lepton+jet final state:

Excluding top-color Z': $M_{Z'} < 1.8 \text{ TeV}$ Excluding RS KK gluon $M_{g^*} < 2.0 \text{ TeV}$ @ 95% CL

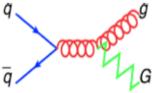
Search for Mono-Jet


10 fb⁻¹ 8TeV dataset

BSM extensions:


o DM, ADD, SUSY

Event selection:


- ISR/FSR in events with new invisible particles (e.g. WIMPs) or radiation of new invisible particle
- Potential Dark Matter candidate
- Search for event with large p_T jet and missing E_T
- Set limits on LargeExtraDimension, WIMPs and Gravitinos

Events/GeV ATLAS Preliminarv Total BG $Z (\rightarrow vv) + jets$ W (→ Iv) + jets Ldt=10.5fb 10 Multi-ie Non-collision BG s = 8 TeV $Z (\rightarrow ||) + iet$ Dibosons + single top ADD n=2, M_=3 TeV (x5) dN/dE^{mi} D5 M=80GeV, M=670GeV (x5) G + g/g, M. _=1TeV, M.=10⁻⁴eV (x5) 10 Data / BG 200 400 600 800 1000 1200 E^{miss} [GeV]

[ATLAS-CONF-2012-147]

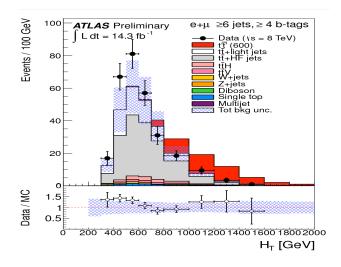
Search for Exotic New Particles

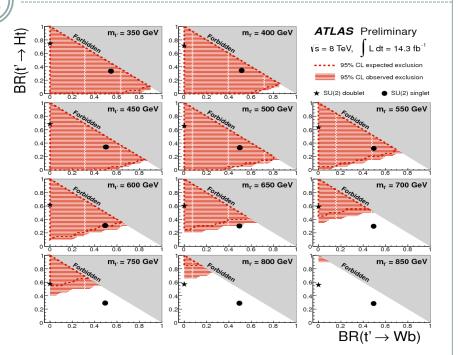
• BSM extensions:

- 4th generation and Heavy top-like quark
- o Leptoquark search
- Search for type III Seesaw mechanism
- o Excited leptons

• Signature:

 leptons + γ, mutlileptons, multijets +leptons + MET, samesign leptons, top-quark decay + leptons,..


Search for Heavy top-like quark


14.3 fb⁻¹ 8TeV dataset

Event selection:

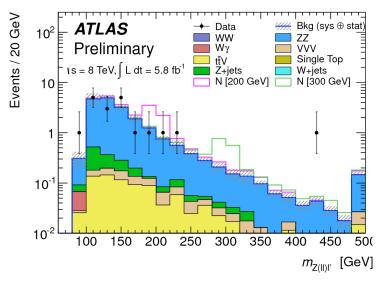
- Search for heavy up-type quark pair, assuming a significant BR to Higgs and a top quark, as predicted by VectorLikeQuark models.
- Discriminant variable for most signals: high $\mathbf{H}_{T} = \Sigma \mathbf{p}_{T}$

high multiplicity of b-jets for signal events with at least one Higgs boson decaying into bbar

[ATLAS-CONF-2013-018]

95% CL exclusion in: BR(t' -> Wb) vs. BR(t' -> Ht) for different VLQ t' quark mass.

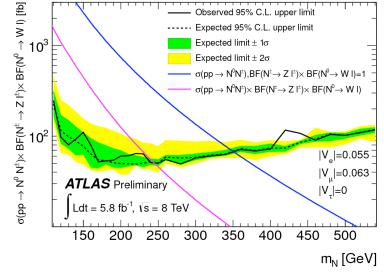
Type III seesaw search


5.8 fb⁻¹ 8TeV dataset

BSM extensions:

 New fermionic triplets (N[±], N^o)added to SM to give (small) mass to neutrinos

Event selection:


- Mutlilepton final state and single-lepton trigger Potential Dark Matter candidate
- At least one Z(ll) candidate, veto on ZZ
- N[±] mass reconstructed as m_{Z(ll)l}

u N^0 $\ell^ \ell^+$ ℓ^+ ℓ^+

[ATLAS-CONF-2013-019]

95% CL limits on σ ×BR (N[±]→Zl, N^o→Wl) M_N > 245 GeV

Natural SUSY searches:

- Gluino production
- Direct stop/sbottom production
- EW chargino and neutralino production
- Model independent searches

Other SUSY searches:

- Inclusive squark and gluino
- RPV searches
- LLP searches

Model	e , μ, τ, γ	Jets	E ^{miss}	Ldt [fb ⁻¹]	Mass limit		Reference
MSUGRA/CMSSM	0	2-6 jets	Yes	20.3		1.8 TeV m(q)=m(g)	ATLAS-CONF-2013-0
MSUGBA/CMSSM	1e,μ	4 jets	Yes	5.8			ATLAS-CONF-2012-10
MSUGRA/CMSSM MSUGRA/CMSSM	ιe, μ 0		Yes	20.3		any m(q)	ATLAS-CONF-2012-10 ATLAS-CONF-2013-05
		7-10 jets			ĝ 1.1 TeV		
$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	q 740 GeV	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	ATLAS-CONF-2013-0
$gg, g \rightarrow q \overline{q} \chi_1^0$	0	2-6 jets	Yes	20.3	ĝ1.3 Te		ATLAS-CONF-2013-0
Gluino med. $\tilde{\chi}^{\pm}(\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm})$ $\tilde{g} \tilde{g} \rightarrow q q q q ll(ll) \tilde{\chi}_{1}^{2} \tilde{\chi}_{1}^{0}$ GMSB (I_NLSP) GMSB (I_NLSP)	1 e, µ	2-4 jets	Yes	4.7	ĝ 900 GeV	$m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$	1208.4688
gg→qqqqll(ll)x̃ ⁰ ₁ x̃ ⁰ ₁	2 e, µ (SS)	3 jets	Yes	20.7	ĝ 1.1 TeV	m(χ̃ 1) < 650 GeV	ATLAS-CONF-2013-0
GMSB ([NLSP)	2 e, µ	2-4 jets	Yes	4.7	ĝ 1.24 TeV	tanβ < 15	1208.4688
GMSB (I NLSP)	1-2 τ	0-2 jets	Yes	20.7	ĝ 1.4 ⁻	TeV $tan\beta > 18$	ATLAS-CONF-2013-0
GGM (bino NLSP)	2γ	0	Yes	4.8	ĝ 1.07 TeV	m(x 1) > 50 GeV	1209.0753
GGM (wino NLSP)	1 e, μ + γ	0	Yes	4.8	g 619 GeV	m(x ⁰) > 50 GeV	ATLAS-CONF-2012-1
GGM (higgsino-bino NLSP)	γ	1 b	Yes	4.8	g g 900 GeV	m(x °) > 220 GeV	1211.1167
GGM (higgsing NLSP)	2 e, µ (Z)	0-3 jets	Yes	5.8	ğ 690 GeV	m(H) > 200 GeV	ATLAS-CONF-2012-1
Gravitino LSP	0	mono-jet	Yes	10.5	F ^{1/2} scale 645 GeV	$m(\tilde{G}) > 10^{-4} \text{ eV}$	ATLAS-CONF-2012-1
ğ →bbχ ⁰	0	3 b	Yes	12.8	ã 1.24 TeV	m(x ²) < 200 GeV	ATLAS-CONF-2012-1
	2 e, µ (SS)	0-3 b	No	20.7	ğ 900 GeV	m($\tilde{\chi}_{1}^{\circ}$) < 500 GeV	ATLAS-CONF-2013-0
$\begin{array}{c} g \rightarrow bb \chi_1^{\circ} \\ g \rightarrow t \chi_1^{\circ} \\ g \rightarrow t \chi_1^{\circ} \end{array}$	2 θ, μ (55) 0	7-10 jets	Yes	20.3	g 1.14 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$	ATLAS-CONF-2013-0
$i = \frac{g \rightarrow u \chi_1}{g \rightarrow t t \chi_1^0}$	0	3 b	Yes	12.8	g 1.14 TeV	m(χ^{+}_{1}) < 200 GeV	ATLAS-CONF-2012-1
	0	2 b	Yes	20.1	b. 100-630 GeV	m(x ²) < 100 GeV	ATLAS-CONF-2013-0
	2 e, µ (SS)	0-3 b	Yes	20.7	b, 430 GeV	$m(\tilde{\chi}_1^{\pm}) = 2 m(\tilde{\chi}_1^{\pm})$	ATLAS-CONF-2013-0
	2 θ, μ (33) 1-2 e, μ	1-2 b	Yes	4.7	430 GeV	$m(\tilde{\chi}_{1}^{0}) = 55 \text{ GeV}$	1208.4305. 1209.210
$t_1 t_1$ (light), $t_1 \rightarrow b \chi_1^+$	2 e, μ	0-2 jets	Yes	20.3		$m(\tilde{\chi}_{1}^{+}) = 55 \text{ GeV}$ $m(\tilde{\chi}_{2}^{0}) = m(\tilde{t}_{1}) \cdot m(W) - 50 \text{ GeV}, m(\tilde{t}_{1}) << m(\tilde{\chi}_{1}^{\pm})$	ATLAS-CONF-2013-0
$\underline{t}_{1}\underline{t}_{1}$ (light), $t_{1} \rightarrow Wb \tilde{\chi}_{1}^{0}$					t ₁ 220 GeV		
$\xi_1 t_1 \text{ (medium)}, t_1 \rightarrow b \tilde{\chi}_1^+$	2 e, µ	0-2 jets	Yes	20.3	150-440 GeV	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}, m(t_1)-m(\tilde{\chi}_1^+) = 10 \text{ GeV}$	ATLAS-CONF-2013-0
$\widetilde{t_1}$, (medium), $\widetilde{t_1} \rightarrow b \widetilde{\chi_1}^{\pm}$	0	2 b	Yes	20.1	150-580 GeV	$m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}_1^\pm) - m(\tilde{\chi}_1^\pm) = 5 \text{ GeV}$	ATLAS-CONF-2013-0
\vec{t}_{i} \vec{t}_{i} (heavy), $\vec{t}_{i} \rightarrow \vec{t}_{i}^{0}$	1 e, µ	1 b	Yes	20.7	t ₁ 200-610 GeV	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	ATLAS-CONF-2013-0
	0	2 b	Yes	20.5	t ₁ 320-660 GeV	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	ATLAS-CONF-2013-0
- (natural GiviOD)	2 e, µ (Z)	1 b	Yes	20.7	t, 500 GeV	m(x 0 1) > 150 GeV	ATLAS-CONF-2013-0
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ (Z)	1 b	Yes	20.7	t ₂ 520 GeV	$m(\tilde{t}_1) = m(\tilde{\chi}_1^0) + 180 \text{ GeV}$	ATLAS-CONF-2013-0
IL.RIL.R, I⇒Iχ ⁰	2 e, µ	0	Yes	20.3	85-315 GeV	$m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	ATLAS-CONF-2013-0
$\begin{array}{ccc} \overleftarrow{\mathbf{x}}_{1}^{2} \overleftarrow{\mathbf{x}}_{1} \overleftarrow{\mathbf{x}}_{1}^{+} \rightarrow \mathrm{Iv}\left(\mathbf{\tilde{v}}\right) \\ \overleftarrow{\mathbf{x}}_{1}^{2} \overleftarrow{\mathbf{x}}_{1}^{+} \overleftarrow{\mathbf{x}}_{1}^{+} \rightarrow \overleftarrow{\mathbf{v}}\left(\mathbf{\tilde{v}}\right) \\ \overleftarrow{\mathbf{x}}_{1}^{2} \overleftarrow{\mathbf{x}}_{1}^{+} \rightarrow \overleftarrow{\mathbf{v}}\left(\mathbf{\tilde{v}}\right) \\ \overrightarrow{\mathbf{x}}_{1}^{2} \overleftarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{x}}_{1}^{+} \rightarrow \overrightarrow{\mathbf{v}}\left(\mathbf{\tilde{v}}\right) \\ \overrightarrow{\mathbf{x}}_{1}^{2} \overrightarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{v}}\left(\mathbf{\tilde{v}}\right) \\ \overrightarrow{\mathbf{x}}_{1}^{2} \overrightarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{x}}\left(\mathbf{\tilde{v}}\right) \\ \overrightarrow{\mathbf{x}}_{1}^{2} \overrightarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{x}}\left(\mathbf{\tilde{v}}\right) \\ \overrightarrow{\mathbf{x}}_{1}^{2} \overrightarrow{\mathbf{x}}_{1}^{+} \overrightarrow{\mathbf{x}}\left(\mathbf{\tilde{v}}\right) \\ \overrightarrow{\mathbf{x}}_{1}^{2} \overrightarrow{\mathbf{x}}\left(\mathbf{\tilde{v}}\right) \\ \overrightarrow{\mathbf{x}}_{1}^{2} \overrightarrow{\mathbf{x}}\left(\mathbf{\tilde{v}}\right) $	2 e, µ	0	Yes	20.3	χ̃ [±] 125-450 GeV	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}, m(\tilde{l}\tilde{\nu}) = 0.5(m(\tilde{\chi}_1^{\pm}) + m(\tilde{\chi}_1^0))$	ATLAS-CONF-2013-0
$\mathcal{Q} = \tilde{\chi}_1^+ \tilde{\chi}_1^- \tilde{\chi}_1^+ \rightarrow \tilde{\tau} v_1(\tau \tilde{v})$	2τ	0	Yes	20.7	180-330 GeV	$m(\chi_1^\circ) = 0 \text{ GeV}, m(\tilde{\tau}, \tilde{v}) = 0.5(m(\chi_1^\pm) + m(\chi_1^\circ))$	ATLAS-CONF-2013-0
	3 e, µ	0	Yes	20.7	χ [±] , χ ⁰ 600 GeV	$m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = 0, m(\tilde{l}, \tilde{v}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2013-0
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{-0} \rightarrow W^{(1)} \tilde{\chi}_{1}^{0} Z^{(1)} \tilde{\chi}_{1}^{0}$	3 e, µ	0	Yes	20.7	χ [±] ₁ , χ ⁰ ₂ 315 GeV	$m(\widetilde{\chi}_1^{\pm})=m(\widetilde{\chi}_2^{\pm}),m(\widetilde{\chi}_1^{\pm})=0,$ sleptons decoupled	ATLAS-CONF-2013-0
Direct χ̃ [±] ₁ χ̃ [∓] ₁ prod., long-lived χ̃ [±] ₁	0	1 jet	Yes	4.7	220 GeV	$1 < \tau(\widetilde{\chi}_{+}^{\pm}) < 10 \text{ ns}$	1210.2852
Stable g, R-hadrons	0-2 e, µ	0	Yes	4.7	ĝ 985 GeV		1211.1597
GMSB, stable ξ, low β	2 e, µ	0	Yes	4.7	τ 300 GeV	5 < tanβ < 20	1211.1597
Subject $\chi_1^* \chi_1^*$ prod., long-lived χ_1^- Stable g, R-hadrons GMSB, stable $\tilde{\chi}_1$ by β GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma$ G,long-lived $\tilde{\chi}_1^0$	2γ	0	Yes	4.7	230 GeV	0.4 < τ(χ̃ ⁰ ₁) < 2 ns	1304.6310
$\widetilde{\chi}_1^0 \rightarrow qq\mu (RPV)$	1 e, µ	0	Yes	4.4	q 700 GeV	1 mm < $c\tau$ < 1 m, \tilde{g} decoupled	1210.7451
LFV pp $\rightarrow \tilde{v}_{\tau}$ +X, \tilde{v}_{τ} →e+µ	2 e, µ	0		4.6	ν _τ 1.	61 TeV λ ₃₁₁ =0.10, λ ₁₃₂ =0.05	1212.1272
LFV pp $\rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	1 e,μ + τ	0		4.6	ν _τ 1.1 TeV	λ'31 =0.10, λ_1(2)33=0.05	1212.1272
Bilinear RPV CMSSM	1 e, μ	7 jets	Yes	4.7	ğ, ğ 1.2 TeV		ATLAS-CONF-2012-
Bilinear RPV CMSSM $\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}\rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0}\rightarrow eev_{\mu}, e\mu v_{e}$	4 e, µ	0	Yes	20.7	750 GeV	$m(\tilde{\chi}_{1}^{0}) > 300 \text{ GeV}, \lambda_{121} > 0$	ATLAS-CONF-2013-0
$\widetilde{\chi}_{1}^{*}\widetilde{\chi}_{1}^{*}\widetilde{\chi}_{1}^{*} \rightarrow W\widetilde{\chi}_{0}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau v_{\tau}$	3e,μ+τ	0	Yes	20.7	71 75 GeV	$m(\tilde{\chi}_1^0) > 80 \text{ GeV}, \lambda_{193} > 0$	ATLAS-CONF-2013-0
$g \rightarrow qqq$	0	6 jets		4.6	a 666 GeV	with 111111111111111111111111111111111111	1210.4813
g→t ₁ t, t ₁ →bs	2 e, µ (SS)	0-3 b	Yes	20.7	ğ 880 GeV		ATLAS-CONF-2013-0
Scalar gluon	0	4 jets		4.6	sgluon 100-287 GeV	incl. limit from 1110.2693	1210.4826
Scalar gluon WIMP interaction (D5, Dirac χ)	0	mono-jet	Yes	10.5	M* scale 704 GeV	m(g) < 80 GeV, limit of < 687 GeV for D8	ATLAS-CONF-2012-1
	- 11	0.7-1/		T-1/			1
1s = 7 T	ev is -	= 8 TeV	s = 8	rev	10.1	Mass scale [TeV	

SUSY searches in ATLAS

ATLAS SUSY Searches* - 95% CL Lower Limits Status: LHCP 2013

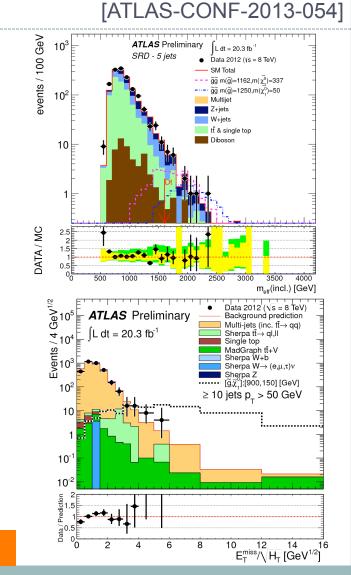
AILAS Preliminary

 $\int Ldt = (4.4 - 20.7) \text{ fb}^{-1} \quad \text{Is} = 7, 8 \text{ TeV}$

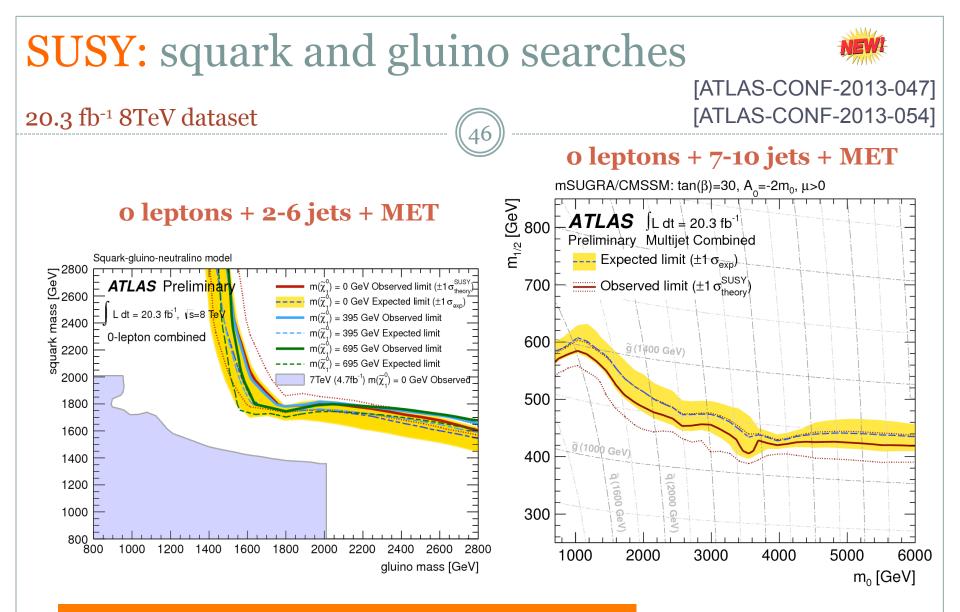
SUSY: squark and gluino searches

20.3 fb⁻¹ 8TeV dataset

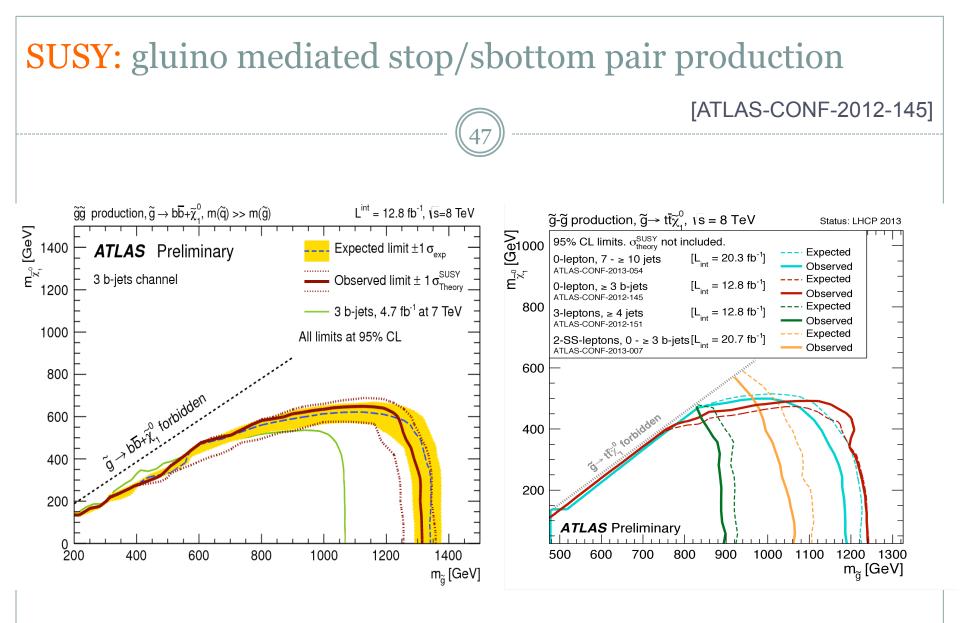
Event selection:

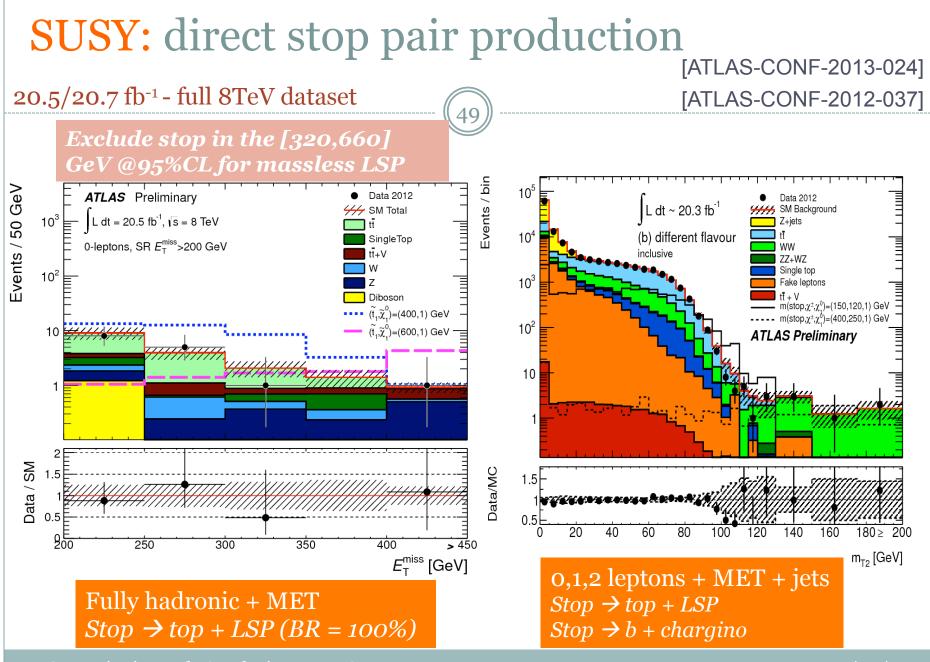

- Large jet multiplicities and large MET
- Divide signal in regions based on #(b) jets
- Control Region from data to estimate background contributions
- Main discriminant variables:
 - Effective mass:

$$m_{eff} = \sum_{i=1}^{N_{jets}} p_T^{jet} + \not\!\! E_T$$
 (2-6 jets)


Invisible/visible transverse ratio:

Sum of jet masses within large-radius jet


No significant excess over background in 20.3 fb-1


F. Conventi: Higgs and BSM physics at ATLAS

No significant excess over background in 20.3 fb-1

SUSY: direct sbottom pair production [ATLAS-CONF-2013-07] 21 fb⁻¹ 8TeV dataset [ATLAS-CONF-2013-53] 48 Sbottom pair production, $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ $\widetilde{b} \widetilde{-b} \text{ production}, \ \widetilde{b_1} \rightarrow t \widetilde{\chi}_1^{\pm}, \ m(\widetilde{\chi}_1^0) = 60 \text{ GeV}$ 600 ق ق ق س^{ری} 500 ع 600 Observed limit ($\pm 1 \sigma_{\text{theory}}^{\text{SUSY}}$) $m_{\widetilde{\chi}_1^\pm}[\text{GeV}]$ ATLAS Preliminary **ATLAS** Preliminary excluded model cross sections [fb] **Expected** limit $(\pm 1 \sigma_{exp})$ 600 L dt = 20.7 fb⁻¹, √s=8 TeV Ldt = 20.1 fb⁻¹, √s=8 TeV CDF 2.65 fb⁻¹ 2 same-charge leptons + jets All limits at 95% CL — Observed limit (±1 σ^{SUSY} D0 5.2 fb⁻¹ 500 400 Expected limit ($\pm 1 \sigma_{exp}$) ATLAS 2.05 fb⁻¹, vs=7 TeV 3-leptons, \geq 4 jets, 13.0fb⁻¹, \sqrt{s} =8TeV All limits at 95% CL 400 300 С 300 **Numbers give 95%** 200 200 108 100 194 100 650 300 350 400 450 500 550 600 0 m_{õ,} [GeV] 100 200 300 400 500 600 700 800 m_{̃c} [GeV] 2 same-sign leptons + 0-3 b-jets + MET o leptons + 2 b-jets + MET

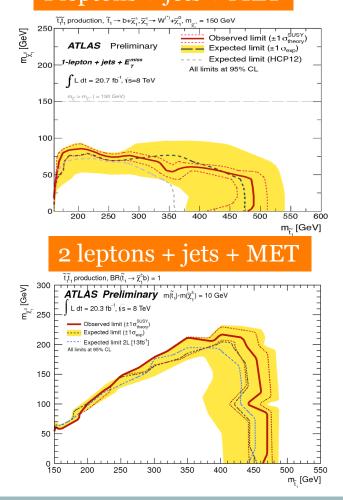
F. Conventi: Higgs and BSM physics at ATLAS

^{05/06/13}

SUSY: direct stop pair production [ATLAS-CONF-2013-048]

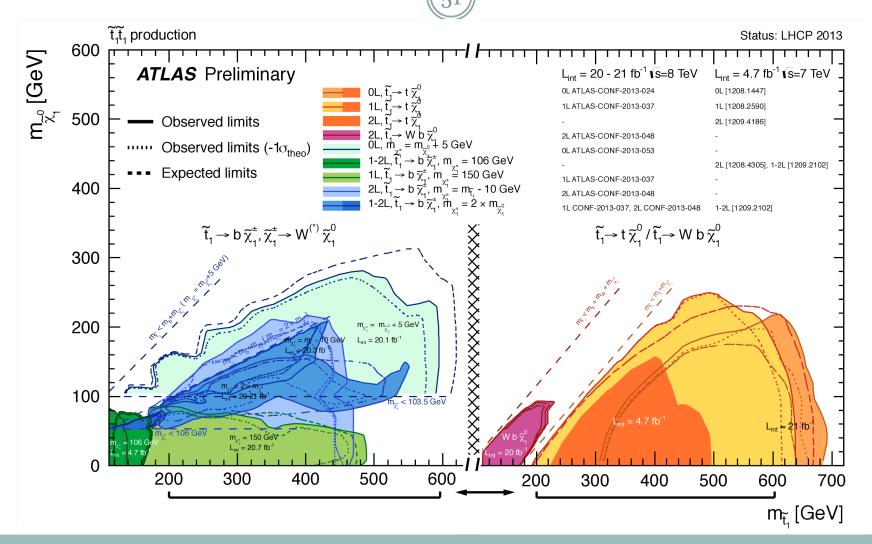
 $\tilde{\chi}_1^{\pm}$

 $\chi \tilde{\chi}_1^0$


21 fb⁻¹ 8TeV dataset

• Chargino mass is additional parameter

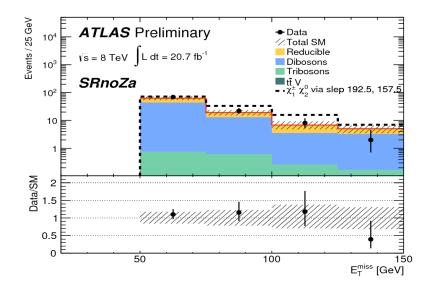
Hypothesis	Exp. signature	
Gaugino universality: m $_{\chi\pm} \approx 2m_{\chi o}$	2 leptons, large leptons m_{T_2} 1 lepton (dedicated SR)	
Stop – chargino mass degeneracy	2 leptons, large leptons $\rm m_{T2}$	
Neutralino-chargino mass degeneracy	2 b-jets + MET, o leptons	
Fixed chargino mass at 150 GeV	2 leptons, large leptons m_{T_2} 1 lepton (dedicated SR)	

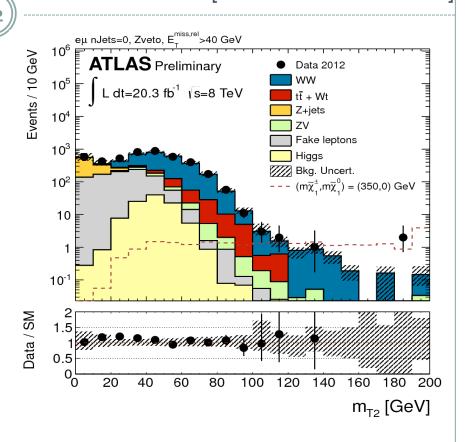

1 leptons + jets + MET

[ATLAS-CONF-2013-037] [ATLAS-CONF-2013-053]

SUSY: stop searches summary plot

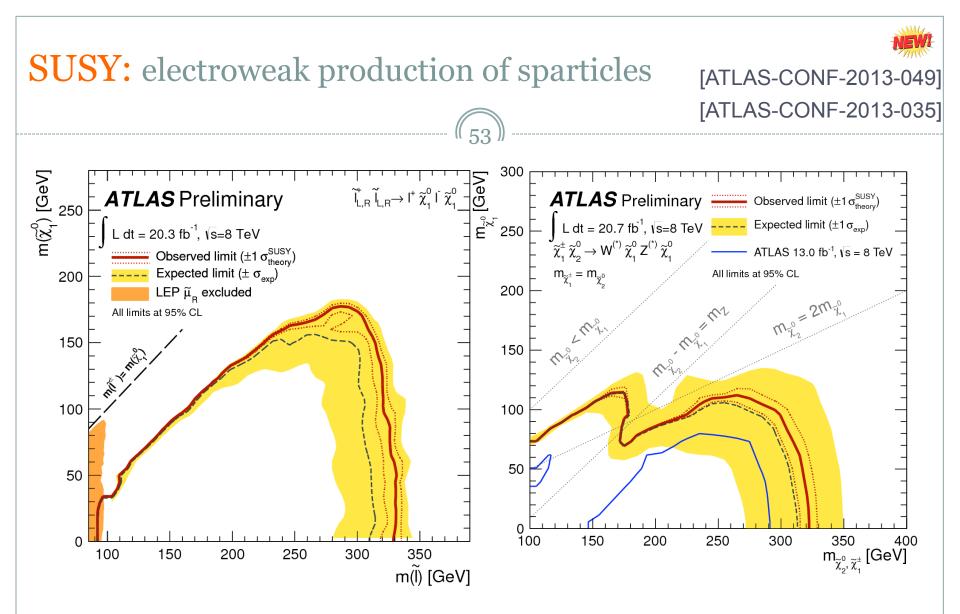
20.5/20.7 fb⁻¹ - full 8TeV dataset

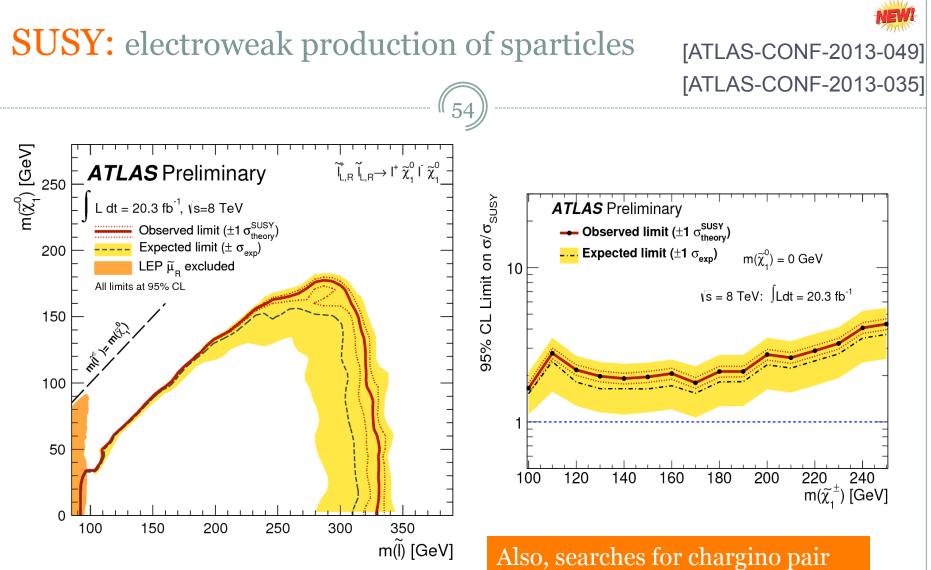



SUSY: electroweak production of sparticles

slepton, chargino pair, neutralino search

Event selection:


- 2-3 leptons in the final state and MET
- Advantage: low background contamination, estimate from MC, control region or datadriven
- Fake-lepton contamination



[ATLAS-CONF-2013-035]

Also, searches for chargino pair production and chargino-neut2 in tau final states (ATLAS-CONF-2013-028)

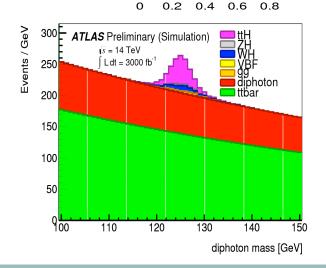
LHC after the Long Shutdown

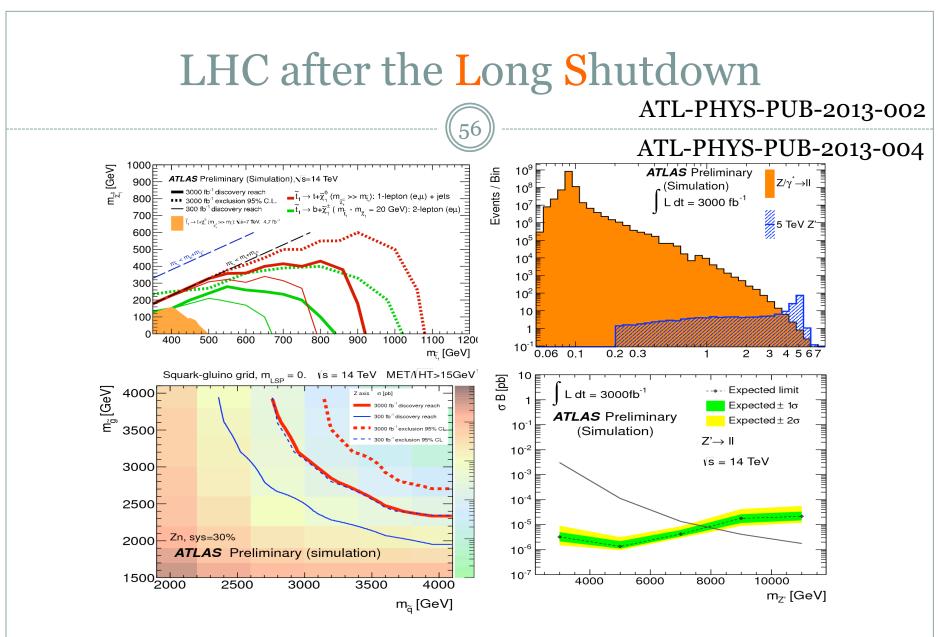
LHC after LS (2014):

- Energy and intensity upgrade Run-II (13-14 TeV)
- O Detector consolidation and improvements
 →undertand detector/trigger performances at high luminosity

Higgs Boson measurements at HL-LHC Run-II

• Spin/CP properties


- Study of the Higgs vertex tensor structure
- Study of the CP violation in the Higgs sector (mainly HZZ)
- Higgs boson couplings
 - ο H \rightarrow γγ, H \rightarrow ZZ, H \rightarrow WW, H \rightarrow ττ,H \rightarrow μμ
- Observation of the Higgs self-coupling


$\begin{array}{c} \text{ATL-PHYS-PUB-2012-004} \\ \text{ATLAS Preliminary (Simulation)} \\ \text{`14 TeV)} \\ \text{:S} \\ \text{ces at high} \\ \begin{array}{c} \text{ATLAS Preliminary (Simulation)} \\ \text{``s = 14 TeV: } \int \text{Ldt=300 fb}^{-1} ; \int \text{Ldt=3000 fb}^{-1} \\ \text{``Ldt=300 fb}^{-1} ; \int \text{Ldt=300 fb}^{-1} \\ \text{``Ldt=300 fb}^{-1} ; \int \text{Ldt=$

 $VH, H \rightarrow \gamma \gamma$

ttH,H→γγ VBF,H→γγ

H→γγ (+j) H→γγ

Conclusions

Higgs searches

- Overwhelming evidence for a new boson at M = 125.5 ± 0.2 (stat) ± 0.6 (syst) GeV
- Measurements of signal strength in agreement with SM hypothesis.
- Data strongly favour the J^P = O+ Spin/CP hypothesis
- Measurements of couplings also in good agreement.
- Improved measurements of pre-shutdown data and after shutdown will further investigate this particle.
- <u>Higgs Boson measurements at HL-LHC Run-II</u>
- Spin/CP properties
- Higgs boson couplings
- Observation of the Higgs self-coupling

BSM searches

• <u>Supersymmetry:</u>

• No superpartners in sight (yet) Bounds on stop and sbottom quark partners reaching 500-700 GeV for neutralino masses below 300 GeV

However...Nature might be less simplified:

• R-Parity Violating or compressed SUSY

• Exotic searches:

- No hints of new phenomena (yet) Searches for heavy top and bottom partners: mass limits of ≈ 700 GeV
- Searches for resonances in hadronic and leptonic final states: pushing the limits to the multi-TeV scale
- Future searches: Search program continues to refine/extend current results and will continue with detector, energy and luminosity upgrades

Higgs Bibliography

58

Individual channels

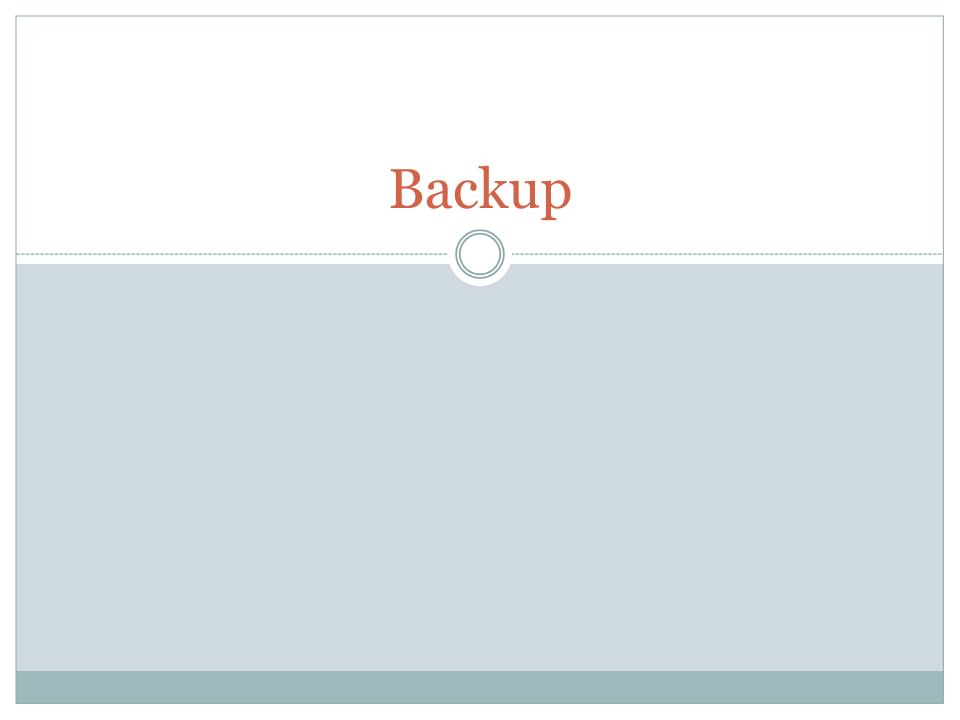
- ◆ATLAS-CONF-2013-013 (H→ZZ→4ℓ)
- ◆ATLAS-CONF-2013-012 (H→γγ)
- ◆ATLAS-CONF-2013-030 (H→WW)
- •ATLAS-CONF-2013-011 (ZH)
- ATLAS-CONF-2013-027 (2HDM WW)
- ◆ATLAS-CONF-2013-010 (H→μμ)
- ◆ATLAS-CONF-2013-009 (H→Zγ)
- ATLAS-CONF-2012-160 (H→ττ)
- ◆ATLAS-CONF-2012-161 (VH, H→bb)
- ◆ATLAS-CONF-2012-135 (ttH, H→bb)
- •ATLAS-CONF-2012-094 (MSSM Neutral H)
- ATLAS-CONF-2012-011, ATLAS-CONF-2012-094 (MSSM Charge H)

- Mass measurement
 - ATLAS-CONF-2013-014
- Couplings
 - ATLAS-CONF-2013-034
- Spin
 - ATLAS-CONF-2013-040
 - ◆ATLAS-CONF-2013-029 (Н→үγ)
 - ◆ATLAS-CONF-2013-031 (H→WW)
- Perspectives
 - •ATL-PHYS-PUB-2012-004

BSM Bibliography

59

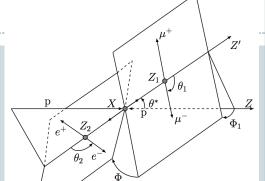
Heavy resonance


- ATLAS-CONF-2013-017
- ATLAS-CONF-2013-015
- ATLAS-CONF-2013-050
- ATLAS-CONF-2013-052
- ATLAS-CONF-2012-150
- ATLAS-CONF-2012-148

• Other Exotics

- ATLAS-CONF-2012-147
- ATLAS-CONF-2013-018
- ATLAS-CONF-2013-019

SUSY

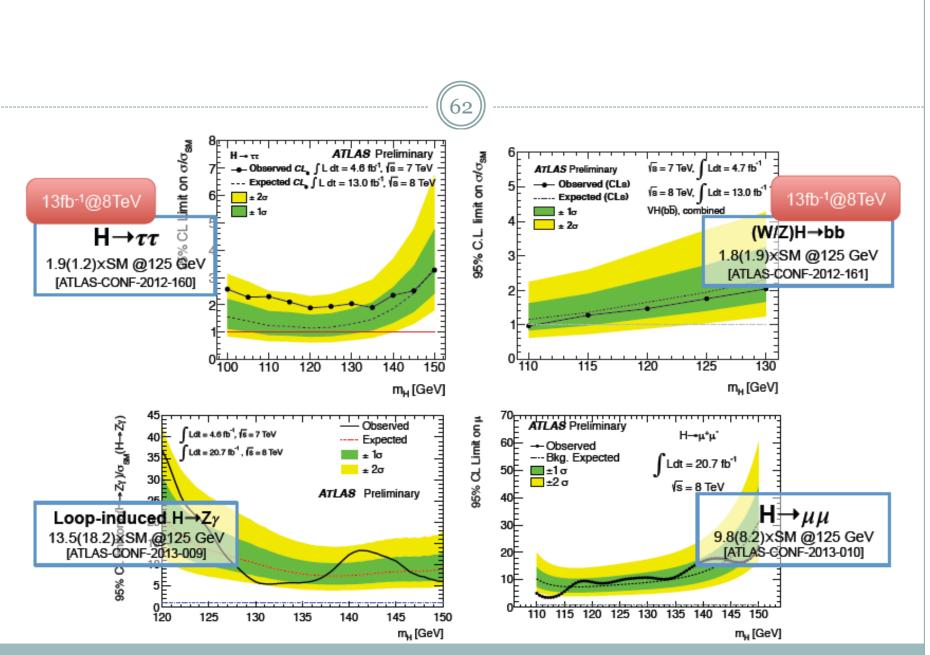

- ATLAS-CONF-2013-035
- ATLAS-CONF-2013-036
- ATLAS-CONF-2013-037
- ATLAS-CONF-2013-047
- ATLAS-CONF-2013-048
- ATLAS-CONF-2013-049
- ATLAS-CONF-2013-024
- ATLAS-CONF-2013-025
- ATLAS-CONF-2013-053
- ATLAS-CONF-2013-054
- ATLAS-CONF-2013-007
- ATLAS-CONF-2013-145

Spin-parity measurement

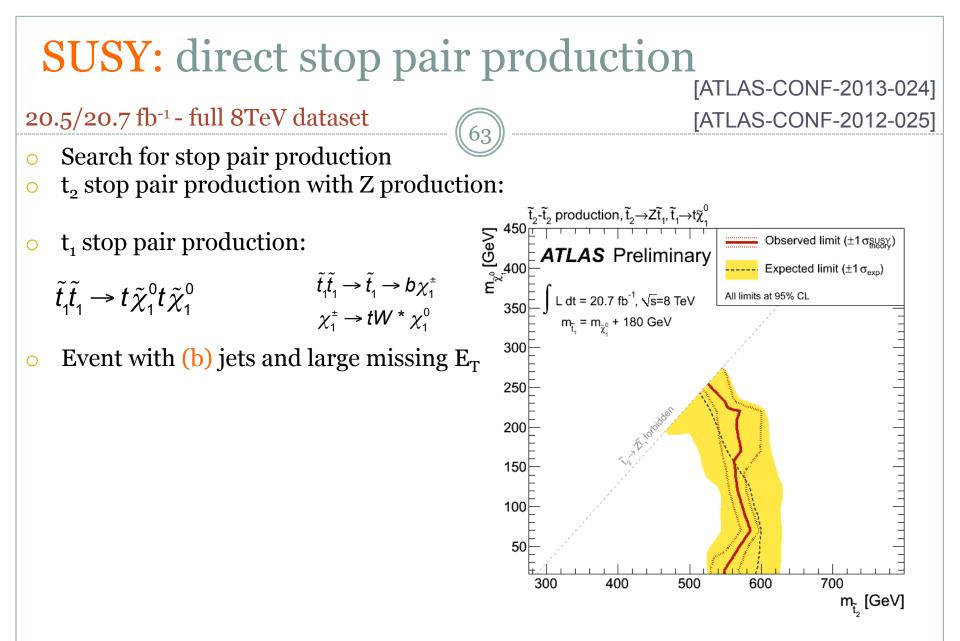
J^{PC} state influences final state kinematic distributions

e.g.: in $H \rightarrow ZZ \rightarrow 4\ell$, dilepton invariant masses and 5 production/decay angles

the idea: pair-wise test of different specific scenarios against SM 0⁺ γγ, WW, ZZ: test 2⁺ minimal coupling model with different gg/qq production


- γγ, WW, ZZ: test 2* minimal coupling model with different gg/qq production fractions
- $^{\circ}$ ZZ: test also 0⁻, 1⁺, 1⁻, 2⁻

approach: build discriminant using input sensitive to different spin-parity hypotheses


- $H \rightarrow \gamma \gamma$: use $|\cos(\theta^*)|$ distribution (m_{yy} for S/B separation)
- H \rightarrow WW: train two BDT classifiers (0⁺ vs bkg, 2⁺ vs bkg) using m_l, p_{Tll}, $\Delta \phi_{ll}$, m_T
- O H→ZZ→4ℓ: multivariate discriminant built using full 7D final state information (two approaches: matrix element technique and BDT)

discriminant distributions used to build test statistics Q = log $(L(0^+)/L(J^P))$

CLs method: $CL_s(J^P) = p_0(J^P) / (1 - p_0(0^+))$

F. Conventi: Higgs and BSM physics at ATLAS

