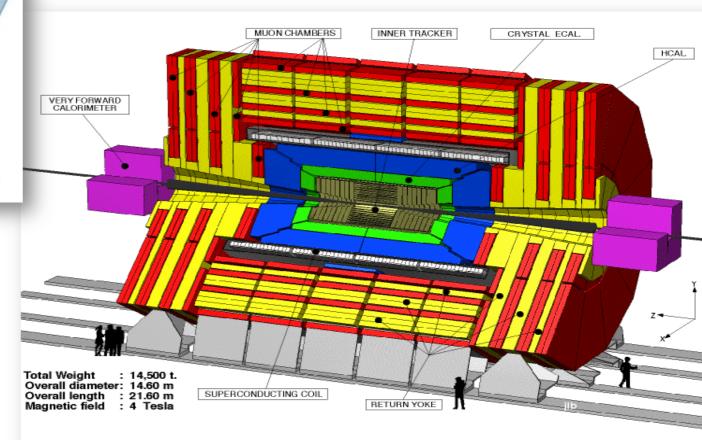


125 GeV Higgs at the LHC: $h \rightarrow \tau \tau$, $\mu \mu$

Harald Fox, Lancaster University On behalf of the ATLAS and CMS collaborations Higgs and Beyond Tohoku Workshop on Higgs and Beyond

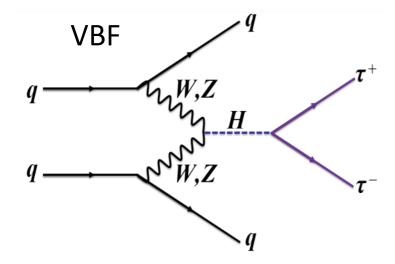
Detectors & Luminosity

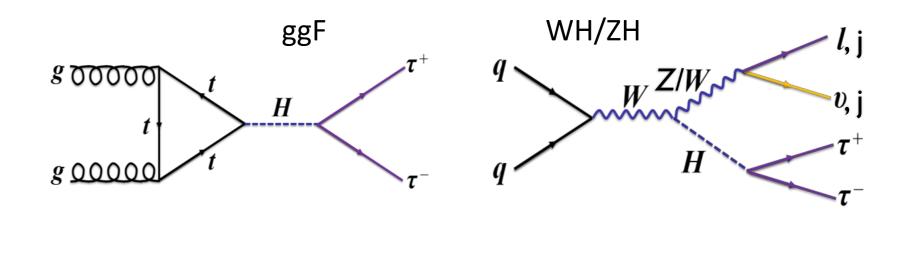


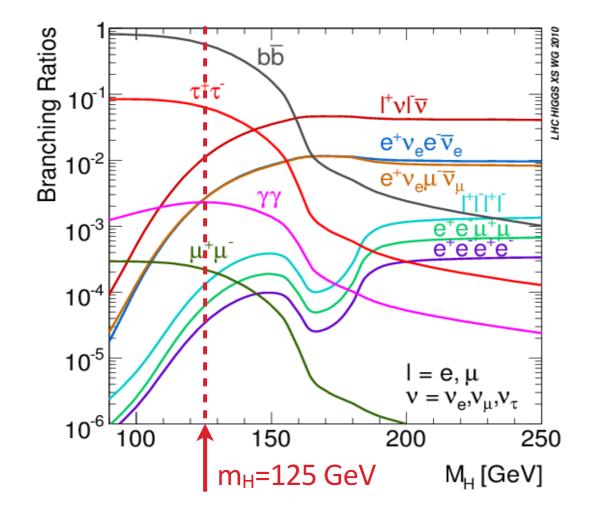
Good operational status: > 95% of channels working!

Overall data taking efficiency > 90 %

~90% of data taken with all sub-detectors fully operational


ATLAS $H \rightarrow \tau \tau 4.6 + 13 \text{ fb}^{-1}$ CMS $H \rightarrow \tau \tau 4.9 + 19.4 \text{ fb}^{-1}$ ATLAS $H \rightarrow \mu \mu 20.7 \text{ fb}^{-1}$


2

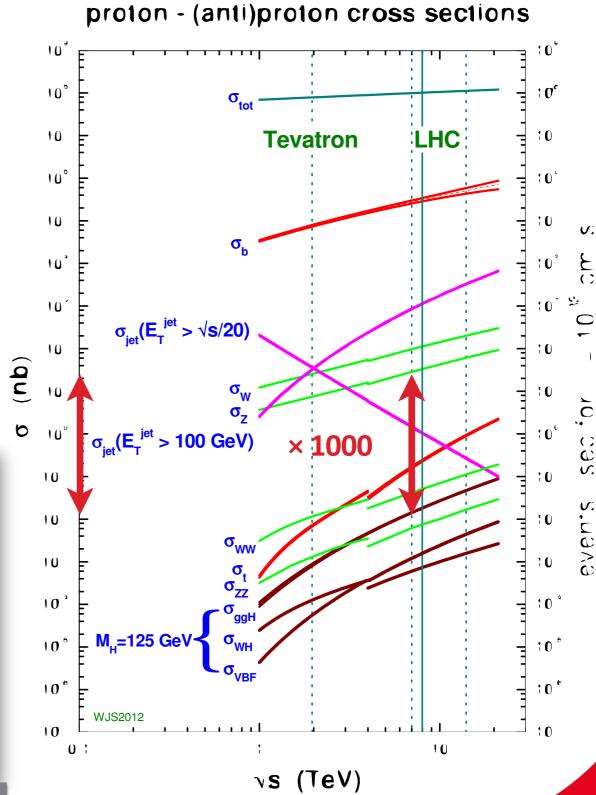

Higgs Production & Decay Modes

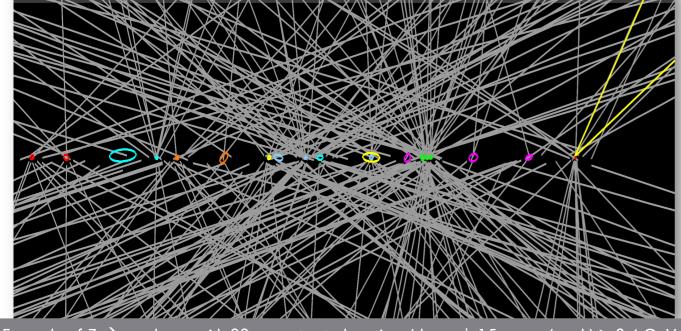
LANCASTER UNIVERSITY

- Most sensitive channel with fermions in the final state
 - Measuring the Yukawa couplings determines the true nature of the Higgs like boson
 - ► BR(H \rightarrow π) = (6.3 ± 0.4)% m_H=125 GeV
 - ▶ BR(H→µµ) = (0.022 ± 0.001)% m_H=125 GeV

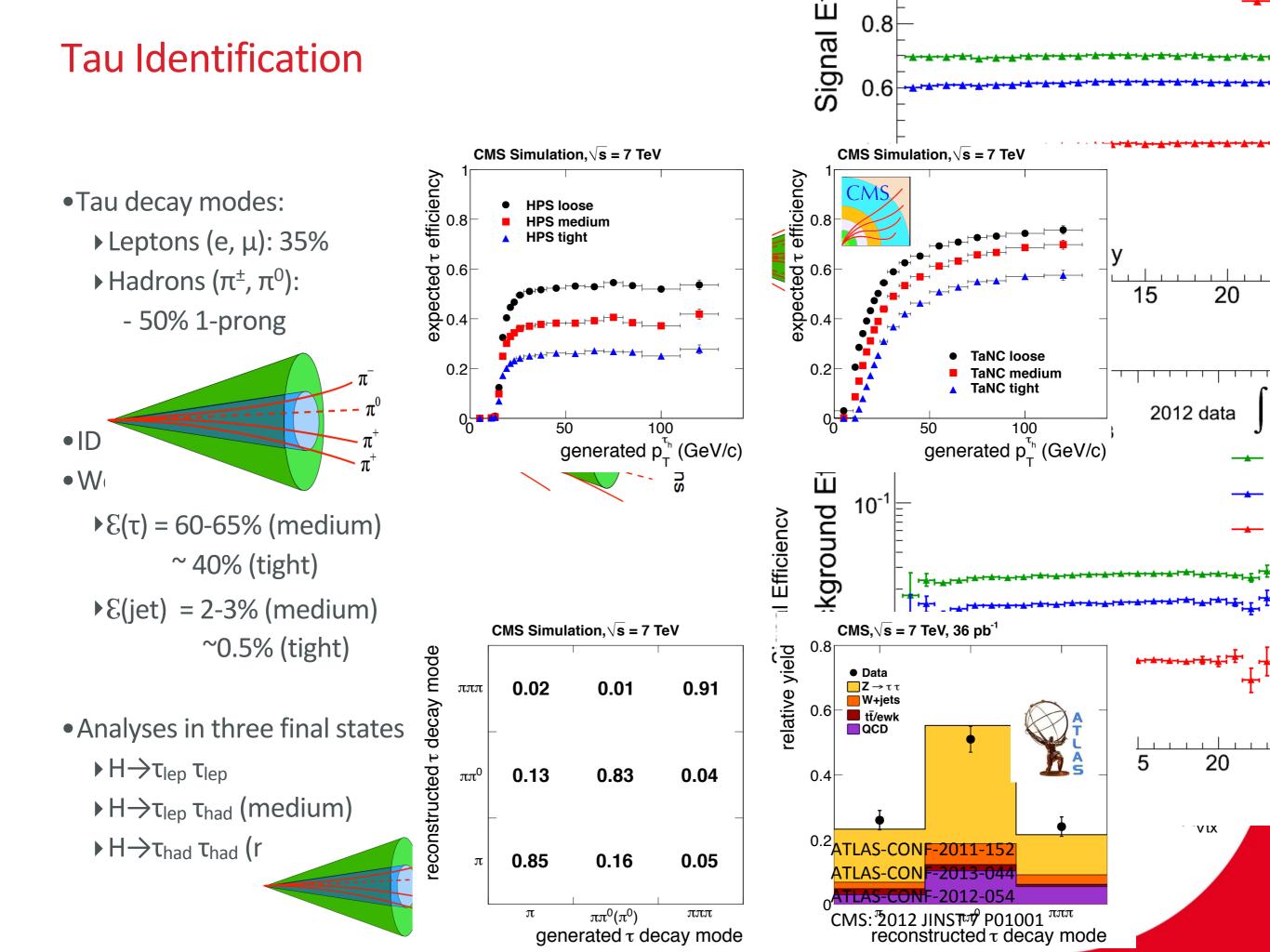
3

$H \rightarrow \tau \tau$ Backgrounds


Most important background is from $Z \rightarrow \tau \tau$

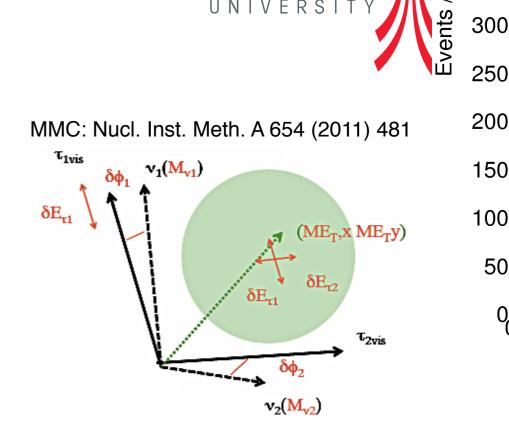

• factor ×1000 higher cross section

QCD jet production faking hadronic taus.


Top and di-boson production

Background from pileup

Example of Z \rightarrow $\mu\mu$ decay with 20 reconstructed vertices (shown ± 15 cm, p_T (track) > 0.4 GeV

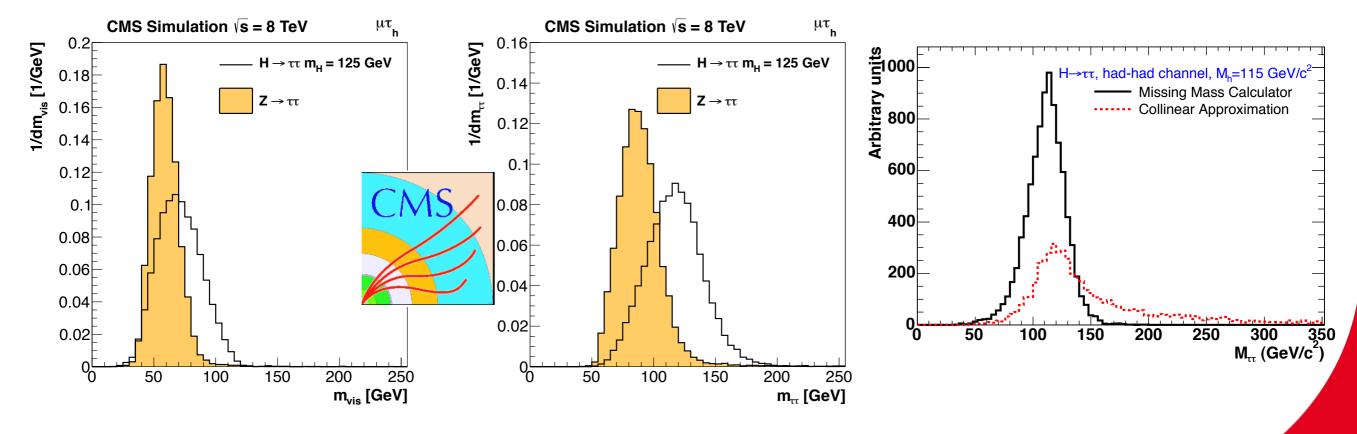


Mass Reconstruction

Improvement over collinear mass

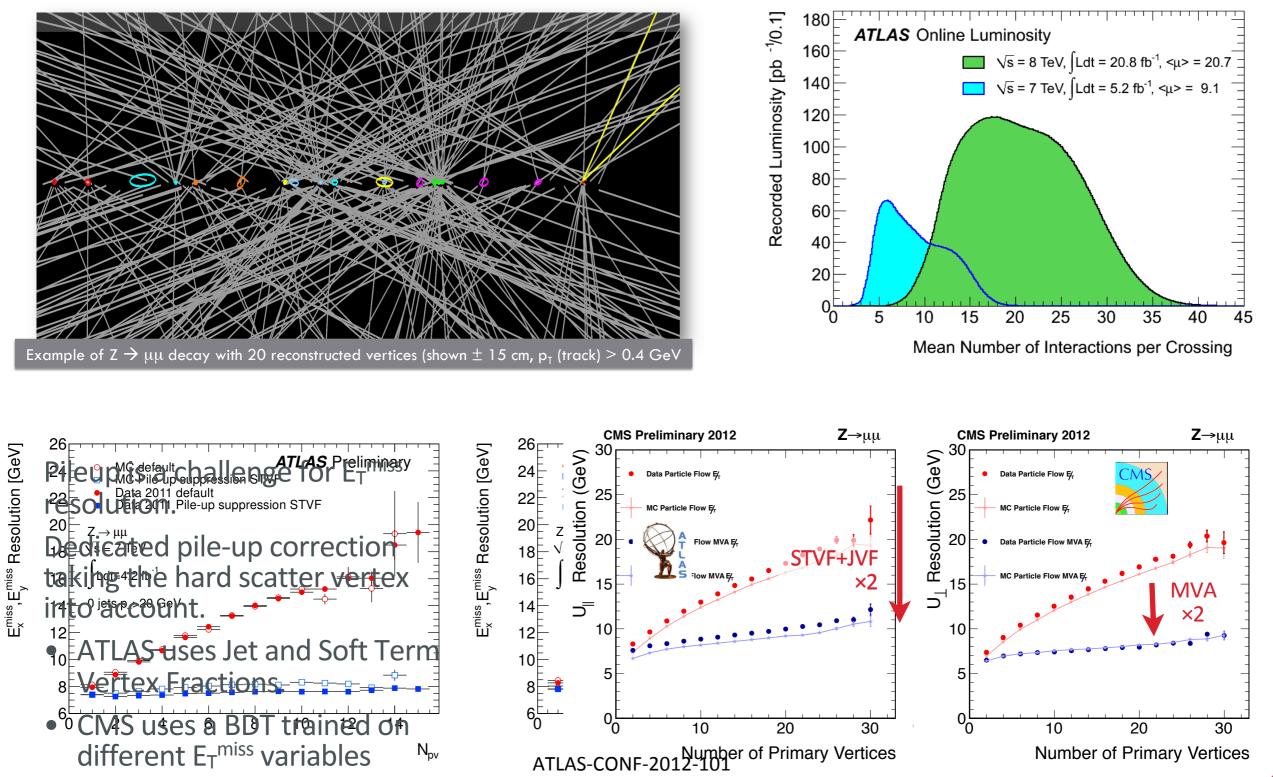
Maximising likelihood function that take the tau decay kinematics into account

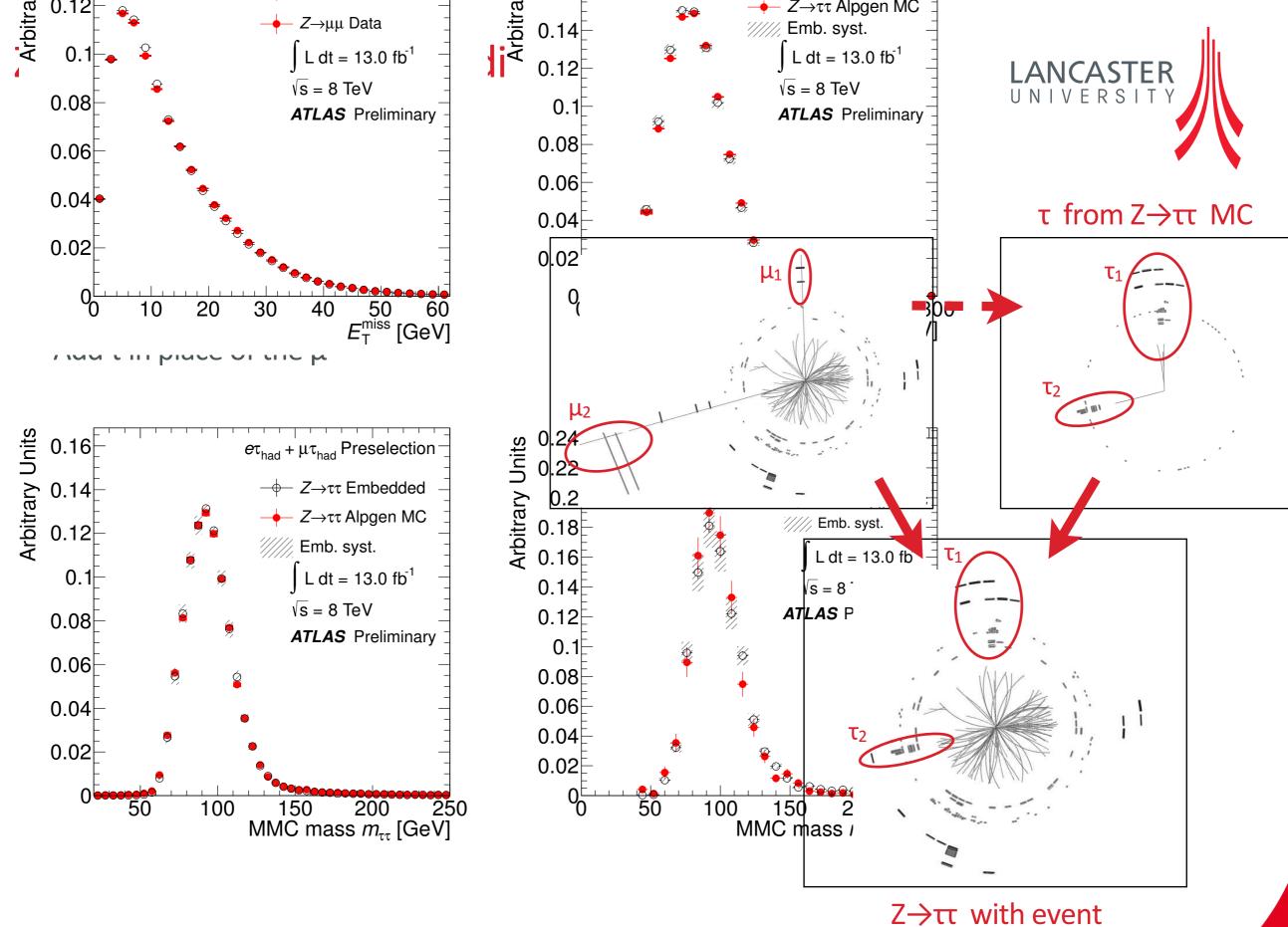
- Different for leptonic and hadronic decays
- Mass resolution 13-20% depending on topology
 - Resolution improves for boosted π -system
- E_T^{miss} resolution is an important factor


LANCASTER UNIVERSITY

400

350


300


8 GeV

E_T^{miss} **Reconstruction**

properties from data

Analysis Categories

The analysis categories are optimised for

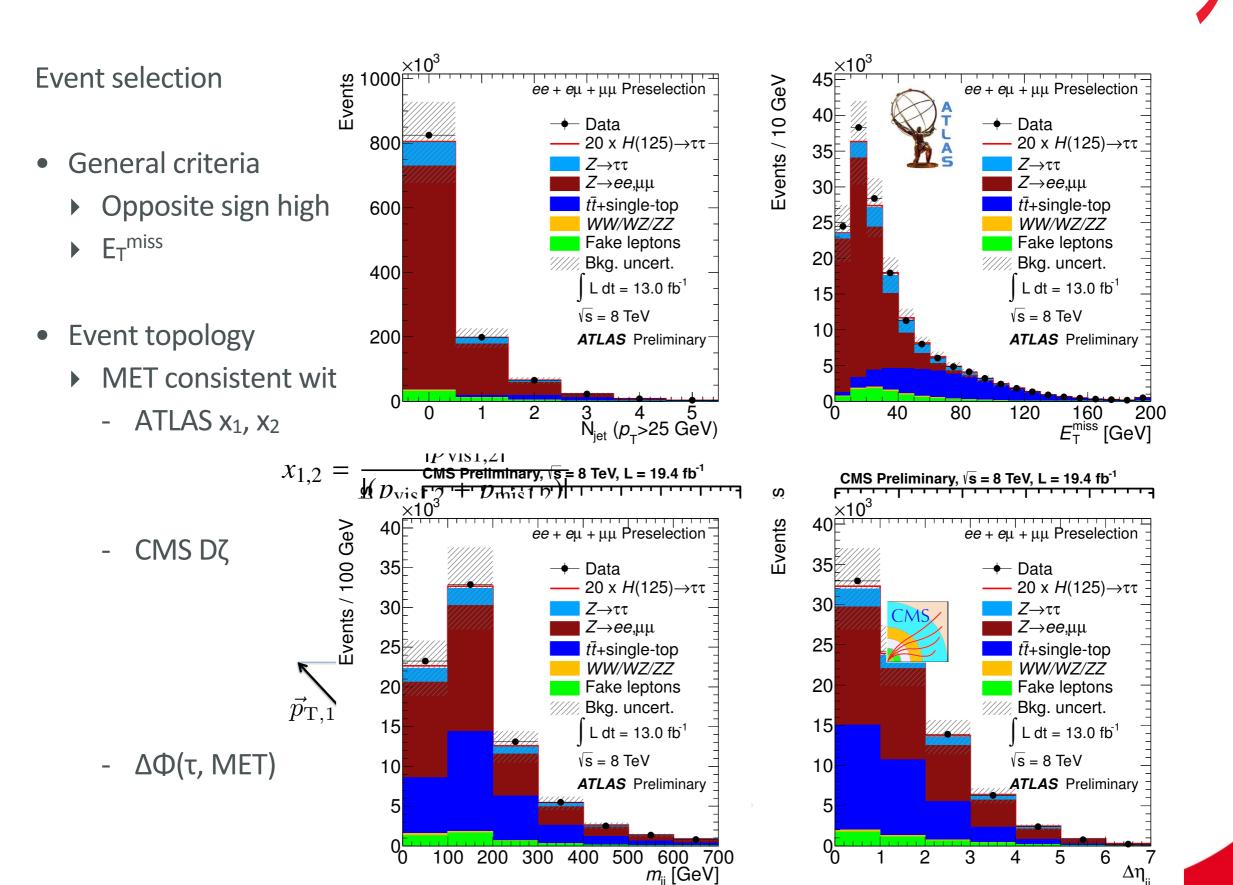
- the three τ decay modes,
- the production modes,
- sensitivity.

Н	lep-lep	lep-had	had-had	
2-jet VBF				
Boosted	ATLAS		AT LAS	
2-jet VH				
1-jet			CMS	
0-jet	AT CMS			
ττ-l VH	CMS	CMS	CMS	

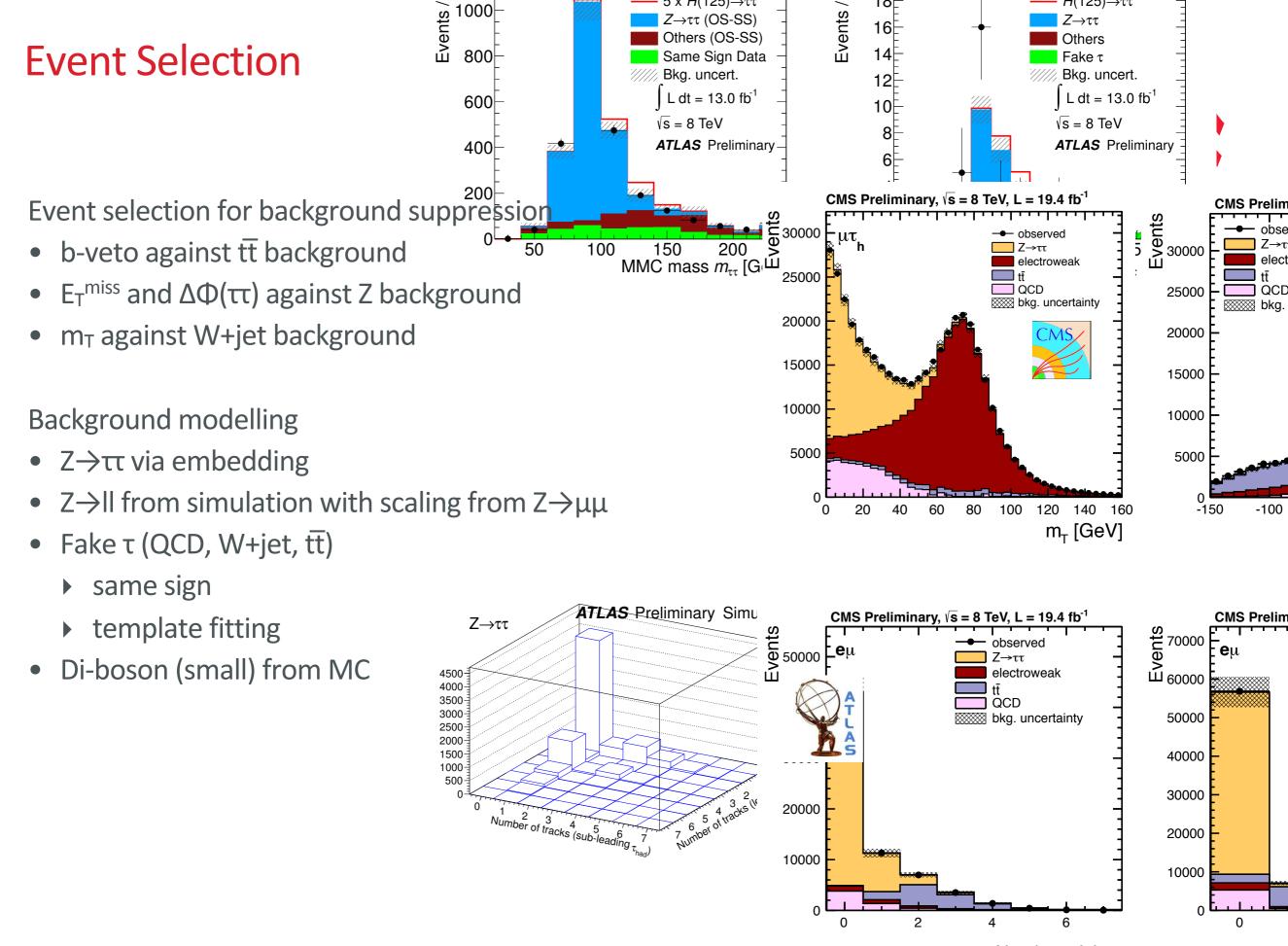
ATLAS-CONF-2012-160 CMS_HIG-13-004-pas CMS_HIG-12-053-pas

Advantages of jets:

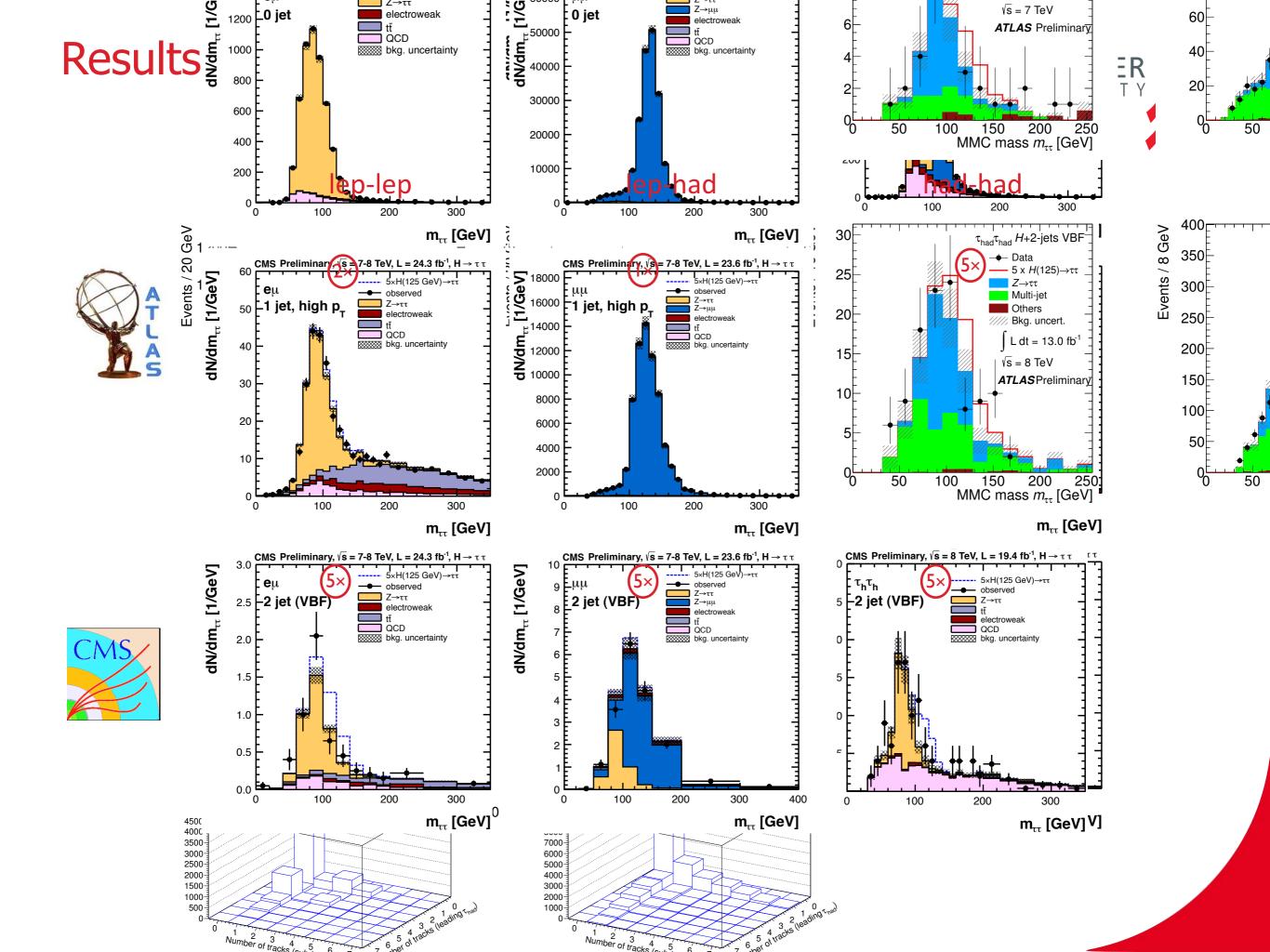
- Improved mass resolution
- Reduced background from V+jet(s)


Selection for VBF

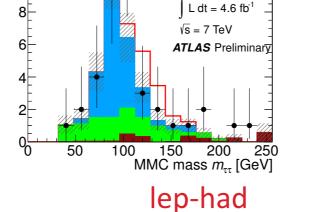
- 2 forward jets in opposite hemispheres:
 - Cuts on p_T(j), η, Δη, m_{jj}, ΔR, central jet veto
 - Lepton centrality
 - b-jet veto against tt-background

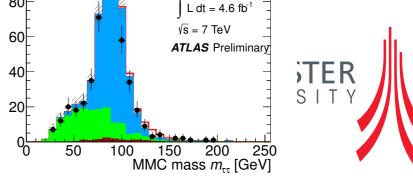

Selection for Boosted / 1-jet high p_T

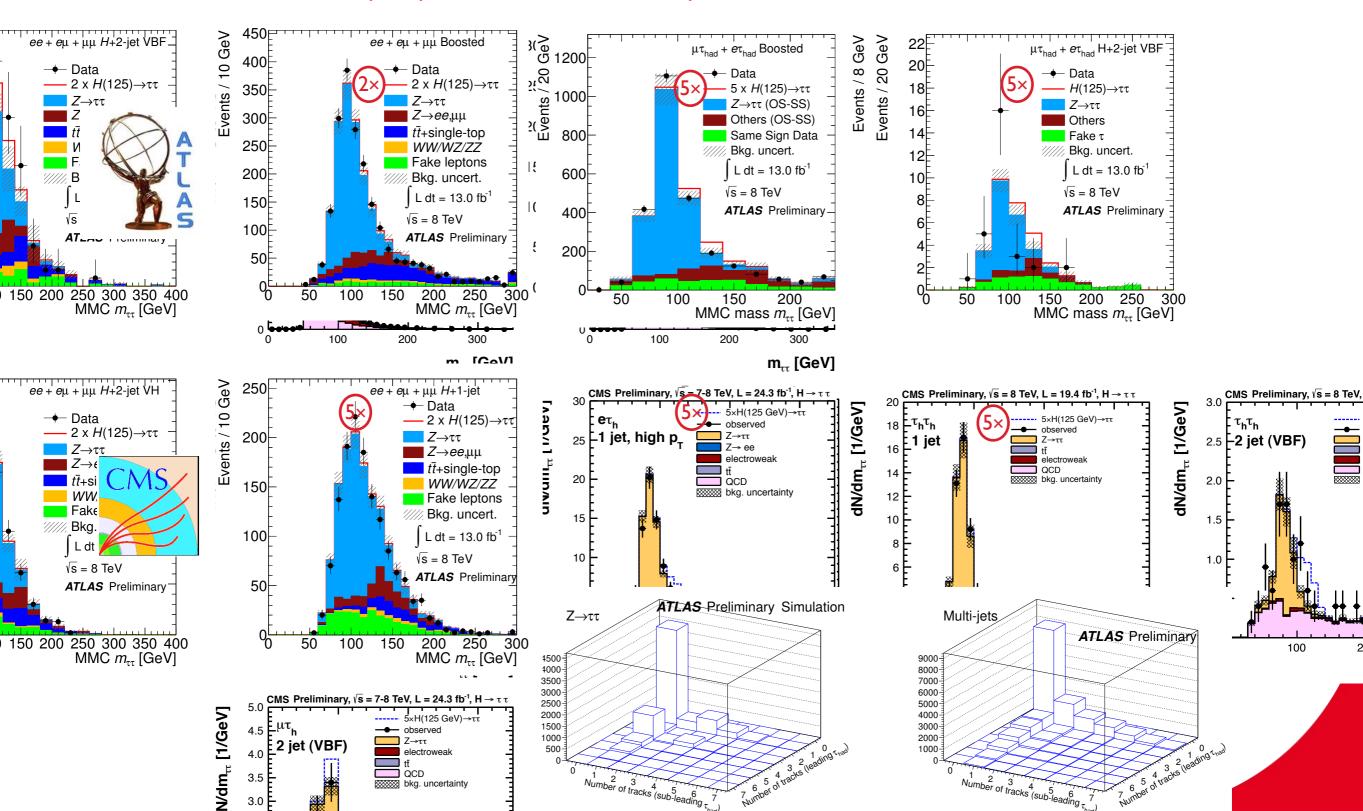
p_T(j), p_T(H), ΔR(ττ)


Event Selection

LANCASTER UNIVERSITY

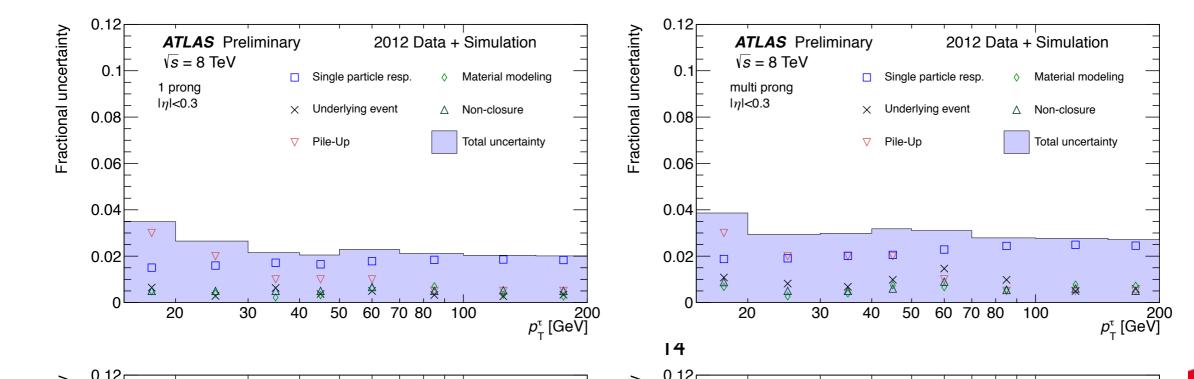



Number of Jets

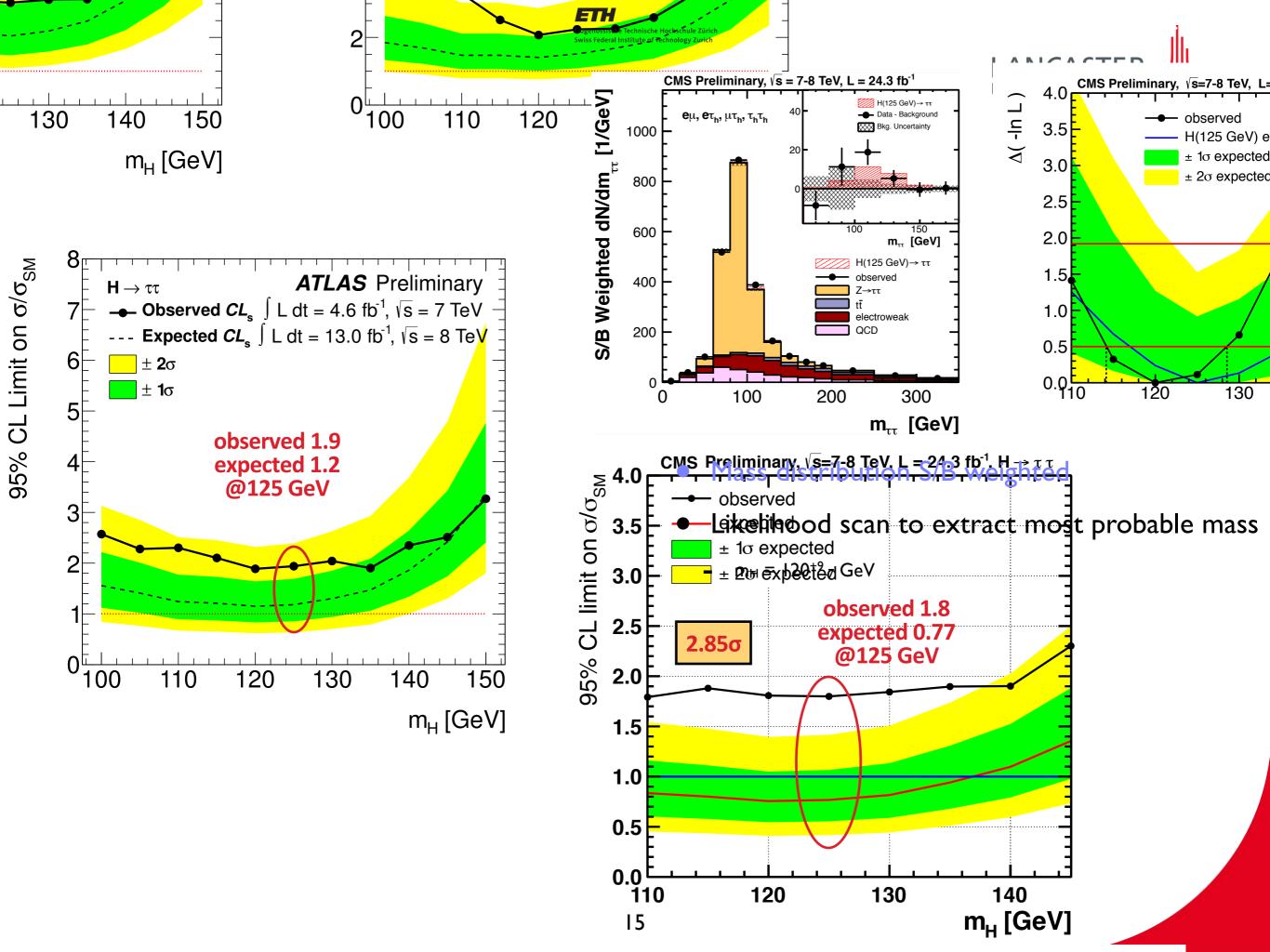

Results: Boosted / 1

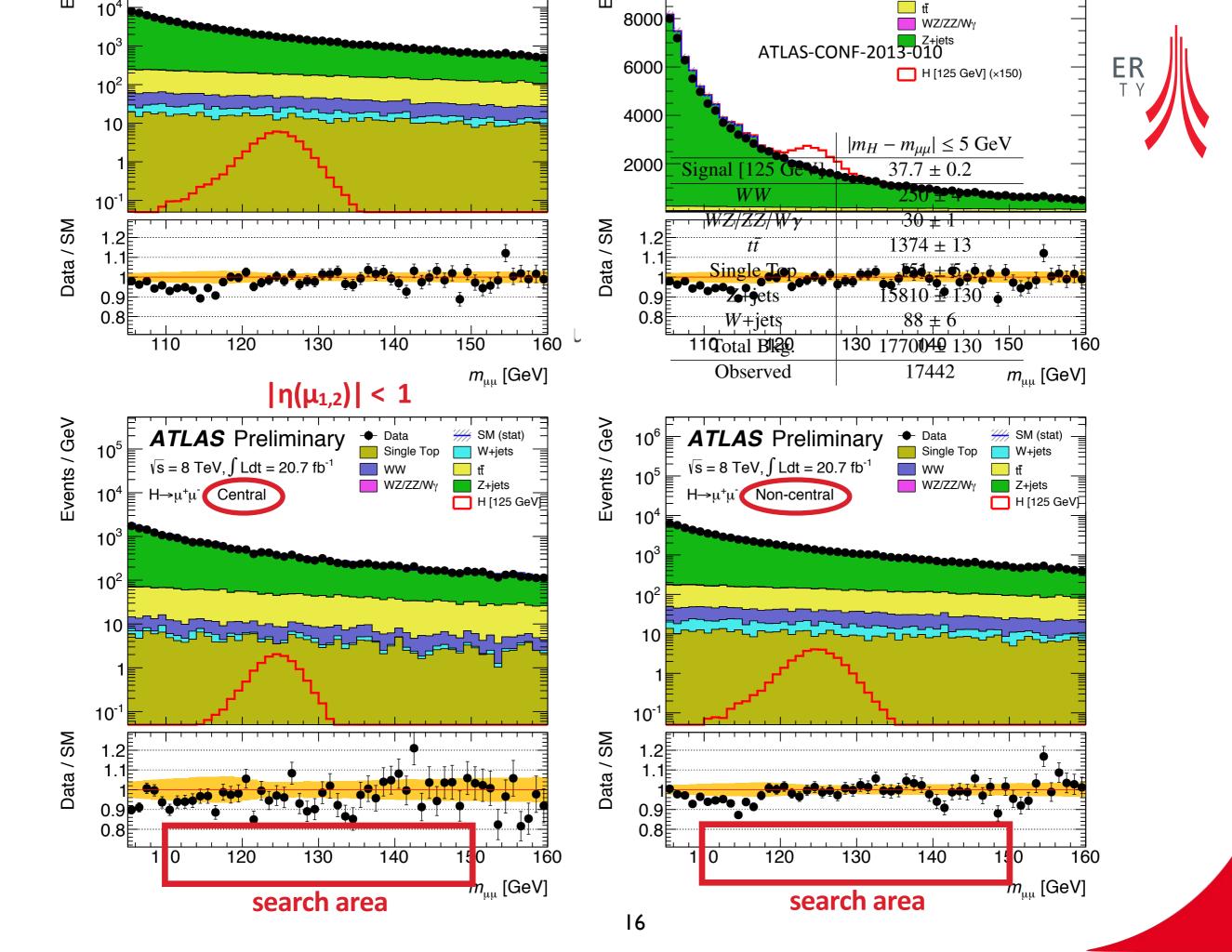
lep-lep

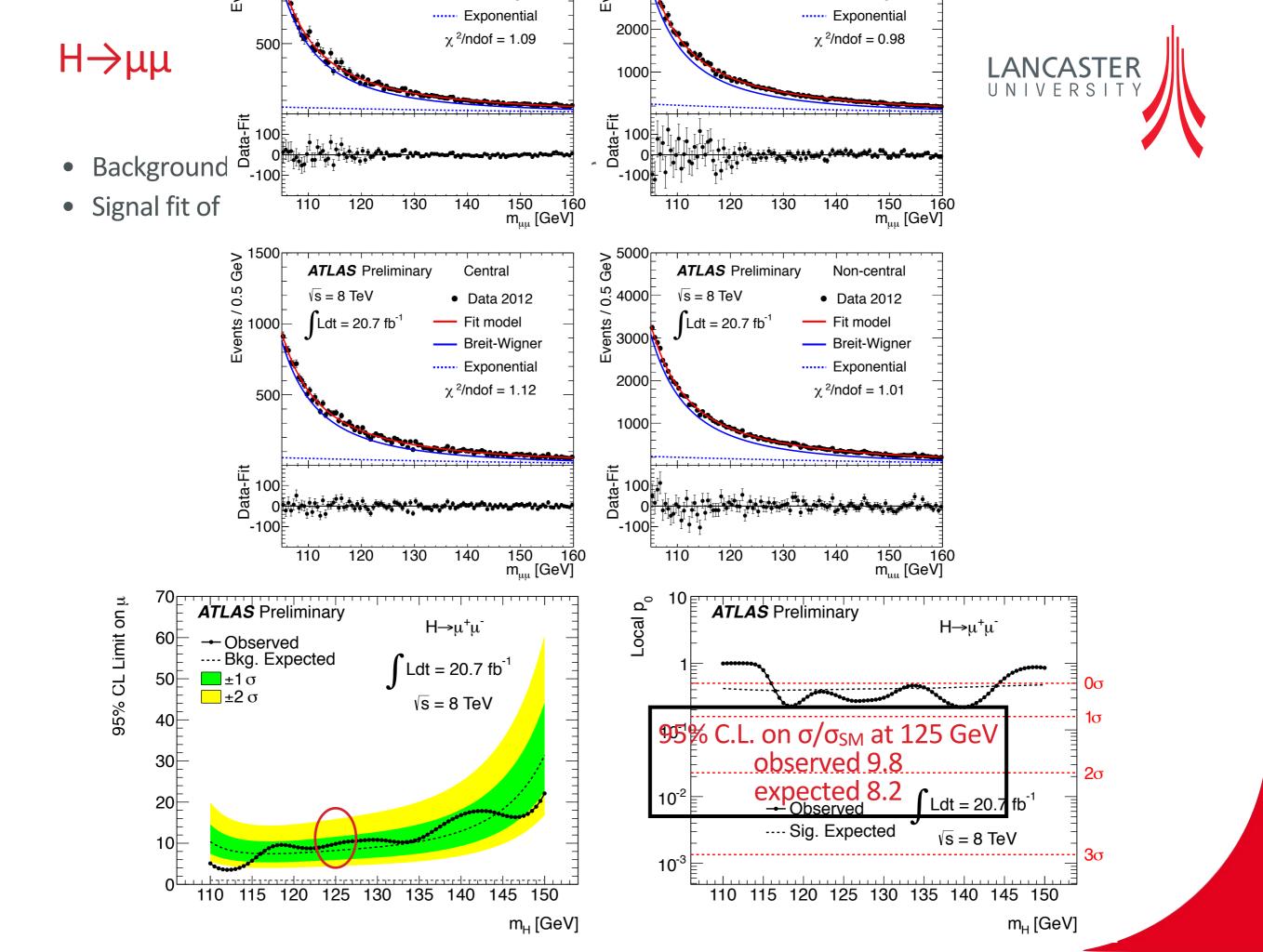
had-had

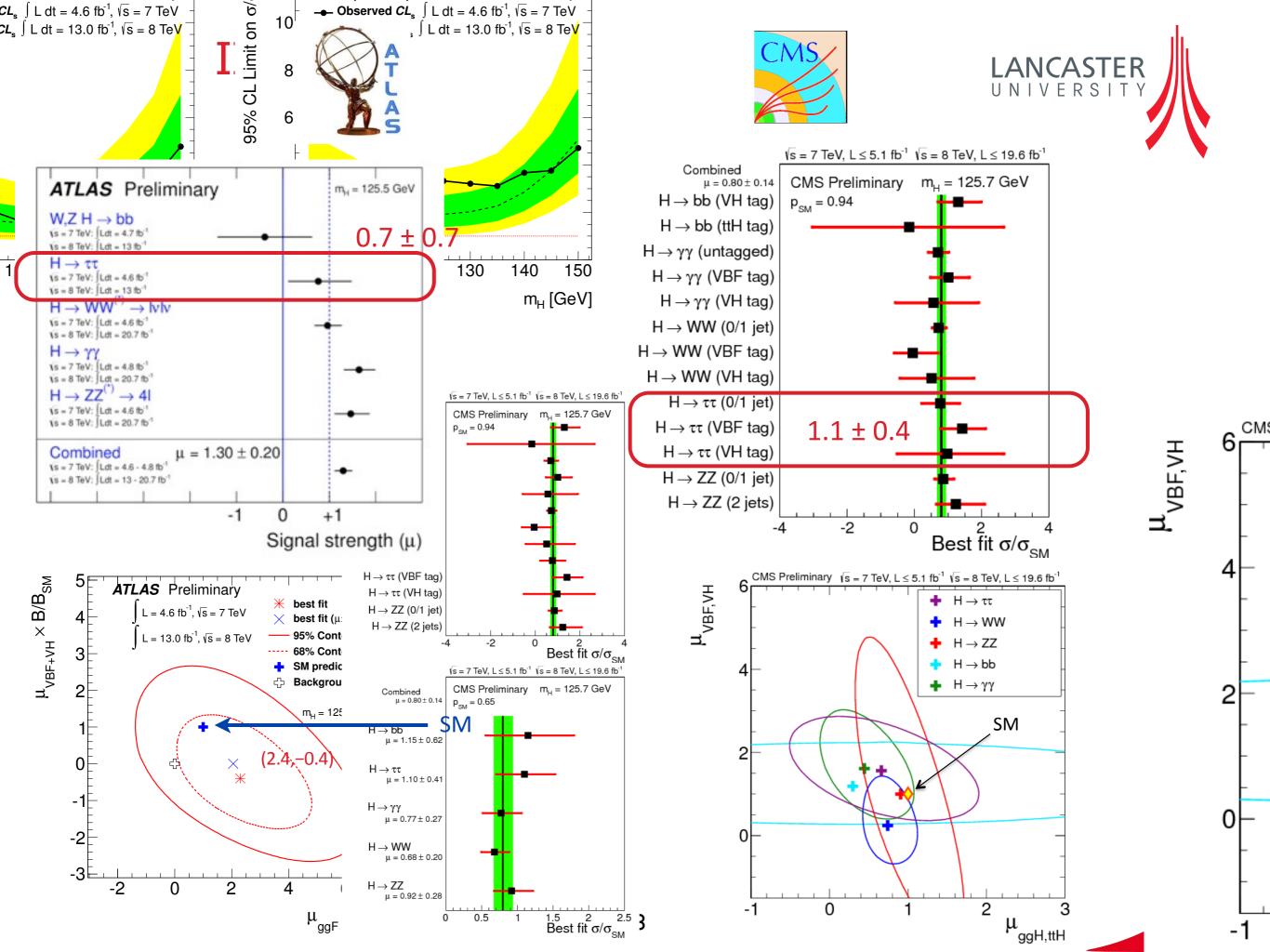

Systematics

- Constraint fit:
 - Tau ID & Trigger: 0.0 ± 8.0% → -5.5 ± 1.9%


- Tau Energy Scale ($\mu \tau_h$ channel): 0.0 ± 3.0% \rightarrow -0.8 ± 0.2%
- Tau Energy Scale ($e\tau_h$ channel): 0.0 ± 3.0% $\rightarrow -1.3 \pm 0.5\%$




- Theory uncertainties dominate
 - ▶ 8-30% gg \rightarrow H depending on jet multiplicity
 - total uncertainty 10-30% for VBF channel
- Dominant detector uncertainty
 - jet energy scale 2-12%
 - τ-energy scale 2-15%
 - 8% τ_h ID


► E^{Tmis} scale 5%

Conclusion

ATLAS and CMS have performed searches for $H \rightarrow \tau \tau$ decays in 17.6 and 25.3fb⁻¹ and for $H \rightarrow \mu \mu$ in 20.7fb⁻¹.

- VBF and ggF couplings consistent with SM
- First hint of $H \rightarrow \tau \tau$
- Promising H $\rightarrow \mu\mu$ analysis for the future

	ATLAS	CMS	ATLAS
	Η→ττ	Η→ττ	Η→μμ
expected	1.2	0.77	8.2
observed	1.9	1.8	9.8
σ/σ _{SM}	0.7±0.7	1.1±0.4	

The sensitivities are

Backup

Event Selection: ATLAS

Table 2: The categorization of the $H \rightarrow \tau_{lep}\tau_{lep}$ analysis. The JVF cut is |JVF| > 0.75 for 7 TeV data, the lepton centrality is not applied for 7 TeV analysis, and the 0-jet category is not used for 8 TeV data analysis.

2-jet VBF	Boosted	2-jet VH	1-jet		
Pre-selection: exactly two leptons with opposite charges					
30	$GeV < m_{\ell\ell} < 75 GeV ($	$30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$			
for same-fl	avor (different-flavor) l	eptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 3$	5 GeV		
At least	one jet with $p_T > 40 \text{ G}$	$ \text{eV} (JVF_{\text{jet}} > 0.5 \text{ if } \eta_{\text{jet}} < 2)$	2.4)		
$E_{\rm T}^{\rm miss} > 40~{ m Ge}$	$eV (E_T^{\text{miss}} > 20 \text{ GeV})$ for	r same-flavor (different-flavo	or) leptons		
	$H_{\rm T}^{\rm miss} > 40 \text{ GeV for}$	same-flavor leptons			
	0.1 < 2	$x_{1,2} < 1$			
	$0.5 < \Delta c$	$\phi_{\ell\ell} < 2.5$			
$n_{\rm T} \sim 25 {\rm GeV} ({\rm IVF})$	excluding 2-jet VBF	$n_{\rm T} \sim 25 {\rm GeV} ({\rm IVF})$	excluding 2-jet VBF,		
$p_{T,j2} > 25 \text{ GeV (JVF)}$	excluding 2-jet v DI	$p_{T,j2} > 25 \text{ GeV} (\text{JVF})$	Boosted and 2-jet VH		
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 {\rm GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$		
$m_{jj} > 400 { m GeV}$	<i>b</i> -tagged jet veto	$\Delta \eta_{jj} < 2.0$	<i>b</i> -tagged jet veto		
<i>b</i> -tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$			
Lepton centrality and CJV	_	<i>b</i> -tagged jet veto			
	0-jet (7]	TeV only)			
Pre-	Pre-selection: exactly two leptons with opposite charges				
Different-flavor leptons with 30 GeV < $m_{\ell\ell}$ < 100 GeV and $p_{T,\ell 1} + p_{T,\ell 2}$ > 35 GeV					
$\Delta \phi_{\ell\ell} > 2.5$					
	b-tagged	d jet veto			

Event Selection: ATLAS

Table 3: Event requirements applied in the different categories of the $H \rightarrow \tau_{lep}\tau_{had}$ analysis. Requirements marked with a triangle (>) are categorization requirements, meaning that if an event fails that requirement it is still considered for the remaining categories. Requirements marked with a bullet (•) are only applied to events passing all categorization requirements in a category; events failing such requirements are discarded.

LANCASTER UNIVERSITY

7 Te	eV	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	-	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
$\triangleright \geq 2$ jets	▶ $p_{\rm T}^{\rm H}$ > 100 GeV	$\triangleright \geq 2$ jets	▶ $p_{\rm T}^{\rm H}$ > 100 GeV	
▶ $p_{\rm T}^{\ j1}, p_{\rm T}^{\ j2} > 40 \text{ GeV}$	▶ $0 < x_1 < 1$	▷ $p_{\rm T}^{j1} > 40, p_{\rm T}^{j2} > 30 {\rm GeV}$	▶ $0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ 0.2 < <i>x</i> ₂ < 1.2	$\triangleright \Delta \eta_{jj} > 3.0$	▶ 0.2 < <i>x</i> ₂ < 1.2	
$> m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	$ ightarrow m_{jj} > 500 \text{ GeV}$	▶ Fails VBF	
▶ centrality req.	-	▶ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$P \eta_{j1} \times \eta_{j2} < 0$	-	
▶ $p_{\rm T}$ ^{Total} < 40 GeV	-	$\triangleright p_{\rm T}^{\rm Total} < 30 {\rm GeV}$	-	
_	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	-	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
_	_	• <i>b</i> -tagged jet veto	• <i>b</i> -tagged jet veto	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ \geq 1 jet, $p_{\rm T}$ >25 GeV	$\triangleright 0$ jets $p_{\rm T} > 25$ GeV	▶ \geq 1 jet, $p_{\rm T}$ >30 GeV	$\triangleright 0 \text{ jets } p_{\mathrm{T}} > 30 \text{ GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
▶ Fails VBF, Boosted	▶ Fails Boosted	▶ Fails VBF, Boosted	▶ Fails Boosted	
• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <30 GeV	• $m_{\rm T}$ <50 GeV	• <i>m</i> _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	<u> </u>	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

Event Selection: ATLAS

Table 4: Summary of the event selection and categories for the $H \rightarrow \tau_{had} \tau_{had}$ channel.

Cut	Description
Preselection	No muons or electrons in the event
	Exactly 2 medium τ_{had} candidates matched with the trigger objects
	At least 1 of the τ_{had} candidates identified as tight
	Both τ_{had} candidates are from the same primary vertex
	Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta < 2.5$
	τ_{had} candidates have opposite charge and 1- or 3-tracks
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$
	$\Delta\eta(\tau,\tau) < 1.5$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV
	$\eta_{j1} \times \eta_{j2} < 0, \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$
	$E_{\rm T}^{\rm miss} > 20 { m GeV}$
Boosted	Fails VBF
	At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset
	$\Delta R(\tau_1,\tau_2) < 1.9$
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, $\min\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$.

Event Yields: ATLAS

Table 5: Number of events after the $H \rightarrow \tau_{lep} \tau_{lep}$ selection for the five categories in data and predicted number of background events, for an integrated luminosity of 4.6 fb⁻¹ collected at 7 TeV. Expectations for the Higgs boson signal ($m_H = 125$ GeV) are also given. Statistical and systematic uncertainties are quoted, in that order.

			$ee + \mu\mu + e\mu$		
	VBF category	Boosted category	VH category	1-jet category	0-jet category
$gg \to H (125 \text{ GeV})$	$0.20 \pm 0.04 \pm 0.07$	$3.5 \pm 0.2 \pm 0.4$	$0.4 \pm 0.1 \pm 0.1$	$2.0 \pm 0.1 \pm 0.8$	25±1±4
VBF <i>H</i> (125 GeV)	$1.05 \pm 0.03 \pm 0.10$	$0.90 \pm 0.03 \pm 0.05$	$0.05 \pm 0.01 \pm 0.01$	$0.56 \pm 0.02 \pm 0.01$	$0.97 \pm 0.03 \pm 0.06$
VH (125 GeV)	0.0	$0.71 \pm 0.03 \pm 0.09$	$0.20 \pm 0.01 \pm 0.02$	$0.14 \pm 0.01 \pm 0.02$	$0.63 \pm 0.02 \pm 0.04$
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$20 \pm 2 \pm 2$	$(0.41 \pm 0.01 \pm 0.02) \times 10^3$	$113 \pm 5 \pm 8$	$272 \pm 8 \pm 41$	$(10.71 \pm 0.05 \pm 0.07) \times 10^3$
$Z/\gamma^* o \ell\ell$	$1.5\pm0.6\pm0.6$	$77 \pm 7 \pm 6$	$27 \pm 4 \pm 9$	$45 \pm 5 \pm 24$	$(0.17 \pm 0.01 \pm 0.01) \times 10^3$
Тор	$4.8\pm0.5\pm0.6$	$132 \pm 3 \pm 6$	$27 \pm 1 \pm 6$	$31 \pm 2 \pm 10$	$284 \pm 4 \pm 15$
Diboson	$0.8\pm0.1\pm0.2$	$17.4 \pm 0.7 \pm 0.6$	$4.3\pm0.4\pm1.0$	$12 \pm 1 \pm 3$	$347 \pm 3 \pm 20$
Backgrounds with fake leptons	$2.7 \pm 0.3 \pm 0.9$	$22 \pm 3 \pm 4$	$19 \pm 3 \pm 6$	$24 \pm 3 \pm 10$	$(1.56 \pm 0.02 \pm 0.40) \times 10^3$
Total background	$29 \pm 3 \pm 2$	$(0.66 \pm 0.01 \pm 0.02) \times 10^3$	$190 \pm 7 \pm 15$	$(0.38 \pm 0.01 \pm 0.05) \times 10^3$	$(13.07 \pm 0.06 \pm 0.41) \times 10^3$
Observed data	28	673	176	371	13214

Table 6: Number of events after the $H \rightarrow \tau_{lep} \tau_{lep}$ selection for the four categories of the 8 TeV analysis in data and predicted number of background events, for an integrated luminosity of 13.0 fb⁻¹. Expectations for the Higgs boson signal ($m_H = 125 \text{ GeV}$) are also given. Statistical and systematic uncertainties are quoted, in that order.

		$ee + \mu\mu + e\mu$		
	VBF category	Boosted category	VH category	1-jet category
$gg \rightarrow H (125 \text{ GeV})$	$1.3 \pm 0.2 \pm 0.4$	$12.4 \pm 0.6 \pm 2.9$	$2.5 \pm 0.3 \pm 0.6$	$7.0 \pm 0.5 \pm 1.6$
VBF <i>H</i> (125 GeV)	$3.63 \pm 0.10 \pm 0.02$	$3.36 \pm 0.09 \pm 0.30$	$0.21 \pm 0.03 \pm 0.02$	$1.82 \pm 0.07 \pm 0.18$
VH (125 GeV)	$0.01 \pm 0.01 \pm 0.01$	$2.20 \pm 0.05 \pm 0.22$	$0.64 \pm 0.03 \pm 0.09$	$0.44 \pm 0.02 \pm 0.05$
$Z/\gamma^* \to \tau \tau$ embedded	$47 \pm 2 \pm 1$	$(1.24 \pm 0.01 \pm 0.08) \times 10^3$	$393 \pm 7 \pm 26$	$(0.86 \pm 0.01 \pm 0.06) \times 10^3$
$Z/\gamma^* ightarrow \ell\ell$	$14 \pm 3 \pm 2$	$(0.21 \pm 0.02 \pm 0.04) \times 10^3$	$(0.08 \pm 0.01 \pm 0.02) \times 10^3$	$(0.16 \pm 0.01 \pm 0.03) \times 10^3$
Тор	$15 \pm 2 \pm 3$	$(0.39 \pm 0.01 \pm 0.07) \times 10^3$	$87 \pm 4 \pm 23$	$117 \pm 5 \pm 18$
Diboson	$3.6\pm0.8\pm0.6$	$55 \pm 3 \pm 10$	$15 \pm 1 \pm 4$	$40 \pm 3 \pm 7$
Backgrounds with fake leptons	$12 \pm 2 \pm 3$	$102 \pm 7 \pm 23$	$86 \pm 4 \pm 16$	$230 \pm 8 \pm 52$
Total background	$91 \pm 5 \pm 5$	$(2.01 \pm 0.03 \pm 0.12) \times 10^3$	$(0.66 \pm 0.02 \pm 0.05) \times 10^3$	$(1.40 \pm 0.02 \pm 0.08) \times 10^3$
Observed data	98	2014	636	1405

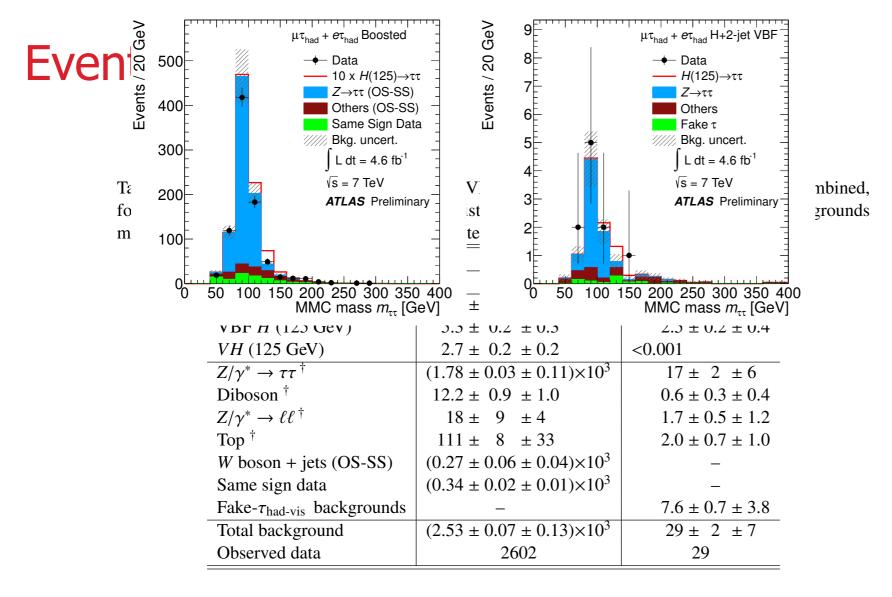


Table 13: Number of events after the $H \rightarrow \tau_{had}\tau_{had}$ selection in data and predicted number of background events, for an integrated luminosity of 4.6 fb⁻¹ and 13.0 fb⁻¹ at $\sqrt{s} = 7$ TeV and 8 TeV, respectively. Predictions for the Higgs boson signal ($m_H = 125$ GeV) are also given. The statistical and systematic uncertainties are quoted, in that order.

$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	7 TeV analysis (4.6 fb^{-1})		8 TeV analysis (13.0 fb^{-1})	
	VBF category	Boosted category	VBF category	Boosted category
$gg \rightarrow H (125 \text{ GeV})$	$0.36 \pm 0.06 \pm 0.12$	$2.4 \pm 0.2 \pm 0.7$	$1.0 \pm 0.1 \pm 0.3$	$8.2 \pm 0.4 \pm 1.8$
VBF <i>H</i> (125 GeV)	$1.12 \pm 0.04 \pm 0.18$	$0.68 \pm 0.03 \pm 0.07$	$3.01 \pm 0.09 \pm 0.48$	$1.98 \pm 0.07 \pm 0.30$
VH (125 GeV)	< 0.02	$0.61 \pm 0.05 \pm 0.06$	< 0.05	$1.4 \pm 0.2 \pm 0.2$
$Z/\gamma^* \to \tau \tau$ embedded	$20 \pm 2 \pm 3$	$392 \pm 9 \pm 12$	$50 \pm 4 \pm 6$	$1080 \pm 20 \pm 110$
W/Z boson+jets	$1.5 \pm 0.7 \pm 0.4$	$5 \pm 1 \pm 1$	0.4 ± 0.4	$90 \pm 20 \pm 30$
Тор	$1.0 \pm 0.2 \pm 0.2$	$3.0 \pm 0.3 \pm 0.5$	1.4 ± 1.0	$21 \pm 3 \pm 5$
Diboson	$0.10 \pm 0.07 \pm 0.02$	$4.4 \pm 0.6 \pm 0.7$	< 0.01	< 0.5
Multijet	$10.2 \pm 0.9 \pm 5.0$	$156 \pm 6 \pm 30$	$44 \pm 5 \pm 7$	$420 \pm 20 \pm 60$
Total background	$32.5 \pm 2.2 \pm 5.9$	561 ± 11 ± 32	$96 \pm 6 \pm 9$	$1607 \pm 37 \pm 130$
Observed data	38	535	110	1435

Event Yields: CMS

			-
Process	0-Jet	1-Jet high p _T	VBF
$Z \rightarrow \tau \tau$	84833 ± 1927	4686 ± 232	109 ± 11
QCD	18313 ± 478	481 ± 38	48 ± 7
EWK	8841 ± 653	1585 ± 153	63 ± 9
tī	11 ± 1	155 ± 11	5 ± 1
Total Background	111998 ± 2090	6908 ± 281	225 ± 16
$H \rightarrow \tau \tau$	- ± -	73 ± 13	11 ± 2
Observed	112279	7011	240

Table 3: Observed and expected event yields, and expected signal efficiency in the $\mu \tau_h$ channel.

Signal Eff.

$gg \rightarrow H$	-	$1.99 \cdot 10^{-3}$	$8.51 \cdot 10^{-5}$
$qq \rightarrow H$	-	$4.09 \cdot 10^{-3}$	$3.46 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	-	$3.00 \cdot 10^{-3}$	$1.60 \cdot 10^{-5}$

Table 4: Observed and exp	pected event yields, and	expected signal efficience	cy in the $e\tau_h$ channel.
			/

Process	0-Jet	1-Jet high p _T	VBF
$Z \rightarrow \tau \tau$	25161 ± 708	792 ± 62	47 ± 6
QCD	7706 ± 307	3 ± 0.3	17 ± 4
EWK	9571 ± 510	365 ± 53	44 ± 6
tī	4 ± 0.5	47 ± 4	4 ± 1
Total Background	42443 ± 924	1207 ± 82	113 ± 9
$H \rightarrow \tau \tau$	- ± -	15 ± 3	5 ± 1
Observed	42481	1217	117

Signal Eff.

0			
$gg \rightarrow H$	-	$3.94 \cdot 10^{-4}$	$3.33 \cdot 10^{-5}$
$qq \rightarrow H$	-	$1.10 \cdot 10^{-3}$	$1.78 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	-	$8.30 \cdot 10^{-4}$	$1.46 \cdot 10^{-6}$

Event Yields: CMS

Process	0-Jet	1-Jet high p _T	VBF
$Z \rightarrow \tau \tau$	48882 ± 1282	1830 ± 105	61 ± 6
QCD	4374 ± 249	395 ± 36	19 ± 2
EWK	1185 ± 89	461 ± 44	7 ± 1
tī	74 ± 5	1100 ± 66	19 ± 2
Total Background	54514 ± 1309	3785 ± 137	105 ± 7
$H \rightarrow \tau \tau$	- ± -	23 ± 4	5 ± 0.6
Observed	54694	3774	118

Table 5: Observed and expected event yields, and expected signal efficiency in the $e\mu$ channel.

Signal Eff.

$gg \rightarrow H$	-	$6.04 \cdot 10^{-4}$	$3.27 \cdot 10^{-5}$
$qq \rightarrow H$	-	$1.37 \cdot 10^{-3}$	$1.80 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	-	$1.38 \cdot 10^{-3}$	$1.32 \cdot 10^{-5}$

Table 6: Observed and expected event yields, and expected signal efficiency in the $\mu\mu$ channel

Process	0-Jet	1-Jet high p _T	VBF
$Z \rightarrow \mu \mu$	1925174 ± 52051	685272 ± 27303	380 ± 38
$Z \rightarrow \tau \tau$	20669 ± 470	3888 ± 157	116 ± 9
QCD	1299 ± 226	561 ± 161	6 ± 11
EWK	4732 ± 1594	7827 ± 1297	22 ± 9
tī	4708 ± 2110	2168 ± 522	15 ± 5
Total Background	1956582 ± 52120	699717 ± 27418	539 ± 42
$H \rightarrow \tau \tau$	- ± -	37 ± 5	5 ± 1
Observed	1956931	700020	548

Signal Eff.

0			
$gg \rightarrow H$	-	$9.50 \cdot 10^{-4}$	$7.23 \cdot 10^{-5}$
$qq \rightarrow H$	-	$1.85 \cdot 10^{-3}$	$1.03 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	-	$2.95 \cdot 10^{-3}$	$1.39 \cdot 10^{-4}$

Event Yields: CMS

Process	1-Jet	VBF
$Z \rightarrow \tau \tau$	428 ± 90	47 ± 28
QCD	210 ± 31	61 ± 10
EWK	41 ± 9	4 ± 1
tī	29 ± 6	2 ± 2
Total Background	709 ± 95	114 ± 30
$H \rightarrow \tau \tau$	9 ± 4	4 ± 2
Observed	718	120

Table 7: Observed and expected event yields, and expected signal efficiency in the $\tau_h \tau_h$ channel.

Signal	Eff.
Signal	

$gg \rightarrow H$	$2.52 \cdot 10^{-4}$	$4.99 \cdot 10^{-5}$
$qq \rightarrow H$	$5.93 \cdot 10^{-4}$	$1.20 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	$9.13 \cdot 10^{-4}$	$3.59 \cdot 10^{-5}$

Systematics

• Background:

- ► I→had misid of 20-30%
- jet to had misid of 20% propagates to 40%
- ► 30% on W+jets
- QCD 6-35%
- Experimental:
 - 8% τ_h id
 - MET scale 5%
- Constraint fit:
 - Tau ID & Trigger: 0.0 ± 8.0% → -5.5 ± 1.9%
 - Tau Energy Scale ($\mu \tau_h$ channel): 0.0 ± 3.0% \rightarrow -0.8 ± 0.2%
 - Tau Energy Scale ($e\tau_h$ channel): 0.0 ± 3.0% $\rightarrow -1.3 \pm 0.5\%$

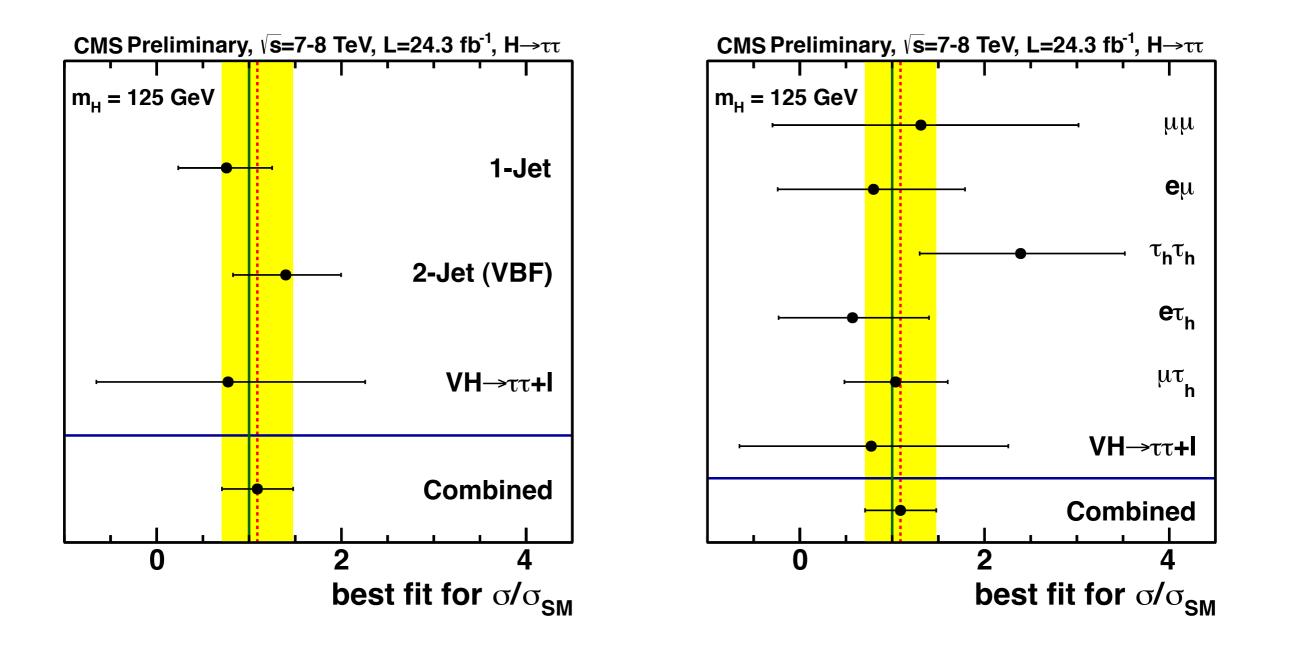
ATLAS

- Theory uncertainties
 - ▶ 8-25% gg \rightarrow H depending on jet multiplicity
 - > 24% per jet for W, Z, di-boson background
 - 3-6% QCD scale for top backgrounds
 - PDF 8% for gluon, 4% for quark
 - total uncertainty 10-30% for VBF channel
- Dominant detector uncertainty
 - jet energy scale 2-12%
 - τ-energy scale 2-15%
- Uncertainty on backgrounds due to misidentification of lep or had can be up to 50% in lep-had VBF

CMS

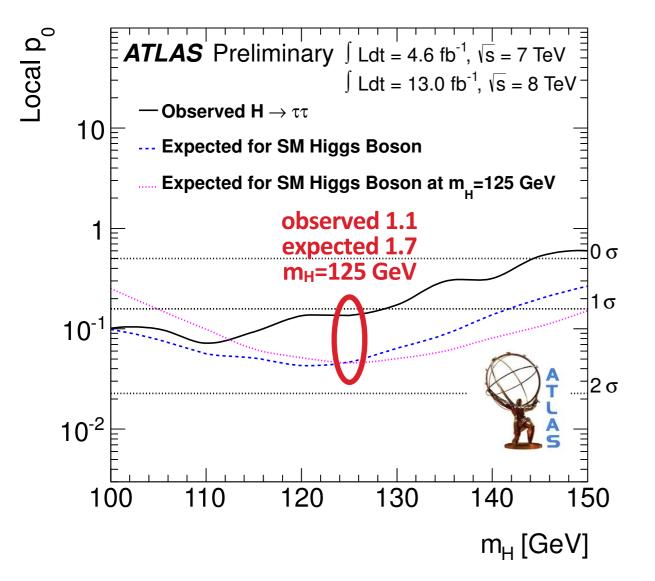
- Theory (PDF & scales)
 - VBF production 4%
 - up to 30% in ggF in VBF category

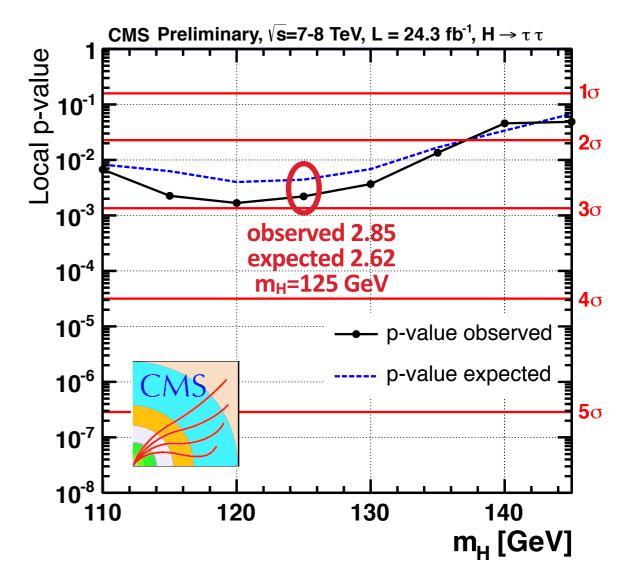
Systematics: CMS


LANCASTER UNIVERSITY	
•	

Experimental Uncertai	inties	Propagation into Event Categories		
Uncertainty	Uncert.	0-Jet	1-Jet	VBF
Electron ID & Trigger (†*)	±2%	±2%	±2%	±2%
Muon ID & Trigger (†*)	±2%	±2%	±2%	±2%
Tau ID & Trigger (†)	±8%	$\pm 8\%$	$\pm 8\%$	±8%
Tau Energy Scale (†)	±3%	±3%	±3%	±3%
Electron Energy Scale (†)	±1%	±1%	±1%	±1%
JES (Norm.) (†*)	$\pm 2.5 - 5\%$	$\mp 3 - 15\%$	$\pm 1 - 6\%$	$\pm 5 - 20\%$
MET (Norm.) (†*)	$\pm 5\%$	$\pm 5 - 7\%$	$\pm 2 - 7\%$	$\pm 5 - 8\%$
<i>b</i> -Tag Efficiency (†*)	±10%		$\mp 2 - 3\%$	3%
Mis-Tagging (†*)	±30%	干2%	干2%	∓ 2 − 3%
Norm. Z production (†*)	±3%	±3%	±3%	±3%
$Z \rightarrow \tau \tau$ Category	±3%	$\pm 0 - 5\%$	$\pm 3 - 5\%$	$\pm 10 - 13\%$
Norm. $t\bar{t}$ (†* ex.vbf)	±10%	±10%	±10%	$\pm 12 - 33\%$
Norm. Diboson (†* ex. vbf)	$\pm 15 - 30\%$	$\pm 15 - 30\%$	$\pm 15 - 30\%$	$\pm 15 - 100\%$
Norm. QCD Multijet	$\pm 6 - 32\%$	$\pm 6 - 32\%$	$\pm 9 - 30\%$	$\pm 19 - 35\%$
Lumi 7 TeV (8 TeV)	$\pm 2.2(4.2)\%$	$\pm 2.2(4.2)\%$	$\pm 2.2(4.2)\%$	$\pm 2.2(4.2)\%$
Norm. W+jets	$\pm 10 - 30\%$	$\pm 20 - 27\%$	$\pm 10 - 33\%$	$\pm 12.4\% - 30\%$
Norm. $Z \rightarrow \ell \ell$: e fakes τ_h (†)	±20%	±20%	±36%	±22%
Norm. $Z \rightarrow \ell \ell$: μ fakes τ_h (†)	±30%	±30%	±30%	±30%
Norm. $Z \to \ell \ell$: jet fakes τ_h	±20%	±20%	±20%	±40%

Theory Uncertainties (SM)		Propagation into Limit Calculation		
Uncertainty	Uncert.	0-Jet 1-Jet VBF		
PDF (†*)	-	-	$\pm 2 - 8\%$	$\pm 2 - 8\%$
$\mu_r/\mu_f(gg \to H)$ (†*)	-	-	±10%	±30%
$\mu_r/\mu_f(qq \rightarrow H)$ (†*)	-	-	$\pm 4\%$	±4%
$\mu_r/\mu_f(qq \to VH) \ (\dagger^*)$	-	-	$\pm 4\%$	$\pm 4\%$
UE & PS (†*)	_	-	$\pm 4\%$	$\pm 4\%$


Signal Strength: CMS



Signal Probability

