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a Higgs boson was discovered !

I couldn’t find
CMS version of 

H → γγ animation
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It seems...
Higgs sector is also described by
weakly coupled, perturbative QFT. 
(at least no sign of strong interaction, so far...) 

Higgs

126 GeV Higgs



By the way... 
perturbative, weakly coupled Higgs sector
is consistent with the existence of 
heavy right-handed neutrinos 
which are (weakly) coupled to Higgs.

Higgs

R.H.neutrino

L = LSM +
1

2
NR(i/@ +MR)NR + y⌫NR`LH + h.c.

(3) Leptogenesis

(1) small neutrino masses

(2) matter unification   
in 16 of SO(10)

126 GeV Higgs

... implying weakly coupled, perturbative Higgs sector
up to right-handed neutrino scale. (say, > 1010 GeV.)
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fine-tuning problem

(fine tuning like   1.0000000000000001 - 1)

   no  fine-tuning

(“little” fine tuning  1.01-1 or 1.001-1 or...)

“little” 

�1

2
m2

Higgs ' |µ|2 +m2 (tree)
Hu

+m2 (loop)
Hu

126 GeV Higgs
Perturbative Higgs sector up to intermediate scale?

... then, Supersymmetry is the most
 attractive candidate for BSM physics.

 naturalness

 gauge coupling unification
 DM 
  muon g-2
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Let’s recall the motivations of 
TeV scale SUSY.....

                   naturalness

             muon g-2

             Dark Matter

             Coupling Unification

             .....

126 GeV Higgs and SUSY
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in SUSY...
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in SUSY...

too small...

g2 cos2 2�

8 cos

2 ✓W
' 0.069 cos

2
2�

126 GeV Higgs and naturalness



...requires heavy stop 
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on the other
 hand

Higgsino mass

soft mass for
up-type Higgs



for large tan�. (↵ ' At/mstop
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large µ  ----->  fine-tuning.
e.g.,

' |µ|2 +m2 (tree)

Hu
+ �m2 (loop)

Hu

requires Light Higgsino
to avoid a fine-tuning.
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Fine-tuning worse than 1% seems unavoidable in MSSM.
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Fine-tuning worse than 1% seems unavoidable in MSSM.

L.J.Hall, D.Pinner, J.T.Ruderman, 1112.2703 
  (Λmess = 10 TeV is assumed.)

mh = 124-126 GeV

fine tuning 1%

fine tuning 0.5 %
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Exception: Focus-point (-like) models:
fine-tuning w.r.t. dimensionful parameters can be 
ameliorated by “tuning” dimensionless parameters.( )



Fine-tuning worse than 1% seems unavoidable in MSSM.

126 GeV Higgs and naturalness

difficult to reconcile within MSSM

CMSSM/mSUGRA example: Higgs mass is maximized by A-term,
while b -> sγ constraint is satisfied. (Thanks to Motoi Endo)

[ See M.Endo, KH, S.Iwamoto, K.Nakayama, N.Yokozaki ’11 ]

example: CMSSM/mSUGRA
126 GeV Higgs can be realized
with light stop,
if maximally enhanced by A-term.
But,......
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126 GeV Higgs can be realized
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if maximally enhanced by A-term.
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Exception: focus-point (-like) models: 
Fine-tuning w.r.t dimensionful parameters can be 
ameliorated by “tuning” dimensionless parameters.( )

fine-tuned.



implies Beyond MSSM models.
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implies Beyond MSSM models.
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Naturalness requires light Higgsino and light stop,
which are searched for at the LHC.
(If discovered, Higgsinos may be further studied at ILC.)
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126 GeV Higgs and SUSY

126 GeV Higgs +

126 GeV Higgs +
based on recent works

M.Endo, KH, S.Iwamoto, N.Yokozaki, arXiv:1108.3071, 1112.5653, 1202.2751               
M.Endo, KH, S.Iwamoto, K.Nakayama, N.Yokozaki, arXiv:1112.6412               
M.Endo, KH, K.Ishikawa, S.Iwamoto, N.Yokozaki, arXiv:1212.3935 
M.Endo, KH, S.Iwamoto, T.Yoshinaga, arXiv:1303.4256
M.Endo, KH, T.Kitahara, T.Yoshinaga, arXiv:1306.xxxx (to appear soon)

Motivations of TeV scale SUSY.....

                   naturalness

             muon g-2



 126 GeV Higgs + muon g-2



 126 GeV Higgs + muon g-2

Hagiwara, Liao, Martin, Nomura, 
Teubner: 1105.3149 + Refs. therein

> 3σ deviation !

muon g-2

 Davier, Hoecker, Malaescu, 
Zhang: 1010:4180 + Refs. therein



> 3σ deviation !

... maybe it’s just a statistical fluctuation... 
     (it’s one of many SM tests... )
... and/or maybe theoretical uncertainty is underestimated...
     (e.g., hadronic light-by-light contribution... )

... maybe it’s a signature of BSM physics !!

 126 GeV Higgs + muon g-2

muon g-2



> 3σ deviation !

...can be explained by SUSY.

... if smuon and
chargino/neutralino
are O(100 GeV).

 126 GeV Higgs + muon g-2

muon g-2



difficult to reconcile in typical models
(mSUGRA/GMSB/AMSB/NMSSM (small tanβ) ...)

heavy stop light smuon/ inos

 126 GeV Higgs + muon g-2
However,...



difficult to reconcile in typical models
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heavy stop light smuon/ inos

 126 GeV Higgs + muon g-2

Example in CMSSM/mSUGRA:
Higgs mass is maximized by A-term, 
while b -> sγ constraint is satisfied. 

(Figure thanks to Motoi Endo.)
[ See M.Endo, KH, S.Iwamoto, 
K.Nakayama, N.Yokozaki ’11 ]

However,...



 126 GeV Higgs + muon g-2

(1) general MSSM
(2) model building

2 approaches

difficult to reconcile in typical models
(mSUGRA/GMSB/AMSB/NMSSM (small tanβ) ...)

heavy stop light smuon/ inos
However,...



 126 GeV Higgs + muon g-2

(1) general MSSM
(2) model building

2 approaches

difficult to reconcile in typical models
(mSUGRA/GMSB/AMSB/NMSSM (small tanβ) ...)

heavy stop light smuon/ inos
However,...



“g-2 motivated” MSSM

>> 1 TeV
to explain 
Higgs mass

= O(100 GeV)
to explain muon g-2

Can we test it ??



Chargino contribution Neutralino contribution

. .
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Figure 1: The SUSY contributions to the muon g − 2 which give the leading terms of the
expansion in mZ/mSUSY. The photon (wavy line) is attached to all the charged particles.
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, (5b)
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[(x− 1)(x− 3) + 2 lnx] , (5c)

G4(x) =
1
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[(x− 1)(x+ 1)− 2x ln x] . (5d)

Even though these expressions are useful for numerical calculations, they are not particularly
illuminating for the purpose of understanding their dependences on the SUSY parameters.
The main disadvantage of the above expressions is that they are written in terms of the
mass eigenstates, in terms of which the dependences on the SUSY breaking parameters are
hidden by the electroweak symmetry breaking that causes complex mixings.

In the weak eigenstates, the structure of the one-loop contributions becomes much more
transparent. This simplification occurs since the expressions in the weak eigenstates are
equivalent to the mZ/mSUSY expansion, where mSUSY is the typical SUSY breaking mass
scale. The price we have to pay is that the leading terms in the expansion are not useful
when mSUSY ∼ mZ . However, we will find below that this expansion is very useful when
analyzing the SUSY parameter dependence.

The leading terms in the mZ/mSUSY expansion are given by the five diagrams (a) to (e)
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Case1 Case2

(usually dominant) (subdominant)

two representative parameter regions

enhanced when
Higgsino, Wino, smuon(L)

are light.

enhanced when
Bino, smuon(L+R)

are light 
(and µ is large).

“g-2 motivated” MSSM
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jets + missing pT search.
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 ATLAS 5.8fb-1@8TeV result.)
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LHC started exclude

g-2 motivated regions !

(1) If discovered at
 LHC, 

--> further test at
 ILC 

whether they are rea
lly 

responsible for the 
g-2.

(2) Some regions are 

difficult to cover at
 LHC. 

--> ILC may cover them.
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The main disadvantage of the above expressions is that they are written in terms of the
mass eigenstates, in terms of which the dependences on the SUSY breaking parameters are
hidden by the electroweak symmetry breaking that causes complex mixings.
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split family   Ibe,Yanagida,Yokozaki,’13,...
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MSSM + vector-like matter

Idea:
In MSSM, Ytop (and Atop) raises the Higgs mass.
--> Add new vector-like matters 
    with a Yukawa coupling to Higgs.
    W = Ytop Q3U3Hu + Y’Q’U’Hu

�m2
Higgs / �H (' 0.13)

= �(tree)
H + ��(loop)

H

��(loop)
H / Y 4

top · (top, stop-loop)

 126 GeV Higgs + muon g-2



Idea:
In MSSM, Ytop (and Atop) raises the Higgs mass.
--> Add new vector-like matters (10+10bar)
    with a Yukawa coupling to Higgs.
    W = Ytop Q3U3Hu + Y’Q’U’Hu

 [Okada,Moroi,’92;.....Babu,Gogoladze,Rehman,Shafi,’08; Martin,’09]

�m2
Higgs / �H (' 0.13)

= �(tree)
H + ��(loop)

H

��(loop)
H / Y 4

top · (top, stop-loop)

+Y04 · (new vector-loop)

 126 GeV Higgs + muon g-2
MSSM + vector-like matter



_ _ _ _

_ _ _

Setup
Add vector-like 10=(Q’,U’,E’) and 10=(Q’,U’,E’).

   W = Y’Q’U’Hu + MQ’Q’Q’ + MU’U’U’ + ME’E’E’
       (and corresponding soft terms)
---> new contribution to the Higgs mass

      
     [mF (mS) are fermion (scalar) masses of vectors.
      2-loop effect can be large. ]

 126 GeV Higgs + muon g-2
MSSM + vector-like matter
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can be large for mF << mS and Y’≈ 1. 



can be large for mF << mS and Y’≈ 1. 
comments:
1. vector-like fermion mass mF:
    We take MQ’ = MU’ (= ME’) ～ 1 TeV.

 Higgs production changes only a few %.
 Corrections to EW precision is small.
 LHC bound is also evaded.
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can be large for mF << mS and Y’≈ 1. 
comments:
2. RGEs of Y’ and A’ have quasi-fixed points.

Y’

[S.P.Martin 0910.2732].



 126 GeV Higgs + muon g-2
MSSM + vector-like matter

can be large for mF << mS and Y’≈ 1. 
comments:
2. RGEs of Y’ and A’ have quasi-fixed points.

 Y’≈ 1, model independently.
 A’<< mS. A-term contribution is small.

Y’

[S.P.Martin 0910.2732].



 126 GeV Higgs + muon g-2
MSSM + vector-like matter

can be large for mF << mS and Y’≈ 1. 
comments:
3. 1-loop β-function vanishes for SU(3).
         (10+10* corresponds to Nf=3, 3Nc-6-Nf=0)

 2-loop RGE is important, in particular
         for gluino mass.

[S.P.Martin 0910.2732].
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In the following, let’s see the results for 
GMSB models with vector-like matters 
(= “V-GMSB” models).

(*) GMSB = Gauge-Mediated SUSY Breaking 
 ..... solves SUSY FCNC/CPV problems.

M.Endo, KH, S.Iwamoto, N.Yokozaki [1108.3071, 1112.5653, 1202.2751]
M.Endo, KH, K.Ihikawa, S.Iwamoto, N.Yokozaki [1212.3935] 
J.L.Evans, M.Ibe, T.T.Yanagida [1108.3437]
S.P.Martin, J.D.Wells [1206.2956]

Results



muon g-2 explained (1σ)
(2σ)

 126 GeV Higgs + muon g-2

for “V-GMSB”
Results M.Endo, KH, K.Ishikawa, S.Iwamoto, N.Yokozaki, arXiv:1212.3935 
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muon g-2 explained (1σ)
(2σ)
Higgs mass 
125-126 GeV

LHC constraint
s ?

 126 GeV Higgs + muon g-2

for “V-GMSB”
Results M.Endo, KH, K.Ishikawa, S.Iwamoto, N.Yokozaki, arXiv:1212.3935 



NLSP = stau
LHC signal
= long-lived charged particle

NLSP = neutralino
LHC signal
= jets + missing energy

 126 GeV Higgs + muon g-2

for “V-GMSB”
Results M.Endo, KH, K.Ishikawa, S.Iwamoto, N.Yokozaki, arXiv:1212.3935 
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[* using
  ATLAS result (5.8fb-1@8TeV)
  for jets + missing
 and CMS result (5.0fb-1@7TeV)
 for long-lived charged particle.]
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Results

New LHC results
reported after our analysis.
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stau NLSP region is 
completely excluded.

[CMS: m(stau) > 339 GeV
with Drell-Yang direct]

neutralino NLSP region
is still allowed.

We interpreted 8 TeV 20fb^-1 result
[ATLAS-CONF-2013-047]

for “V-GMSB”

New analysis: thanks to Kazuya Ishikawa.
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No problem !

Many many related works recently..... (too many to list all...)
Ibe,Yanagida’11,    Ibe,Matsumoto,Yanagida’12, 
Bhattacherjee,Feldstein,Ibe,Matsumoto,Yanagida’12, 
Hall,Nomura’11,    Hall,Nomura,Shirai’12,   
Giudice,Strumia’11,    Arvanitaki,Craig,Dimopoulos,Villadoro’12
Arkani-Hamed,Gupta,Kaplan,Weiner,Zorawski’12,    Ibanez,Valenzuela’13,
Jeong,Shimosuka,Yamaguchi’11,    Hisano,Ishiwata,Nagata’12,    Sato,Shirai,Tobioka’12,
Moroi,Nagai’13,    McKeen,Pospelov,Ritz’13,
Hisano,Kuwahara,Nagata’13,    Hisano,Kobayashi,Kuwahara,Nagata’13,   etc etc.....

Motivated by
126 GeV Higgs

+ no SUSY signal
 + FCNC/CP, cosmology,..



 e.g., CMSSM/mSUGRA
 scalars >> gauginos/Higgsinos

 126 GeV Higgs + Dark Matter
 126 GeV Higgs + coupling unification

No problem !

Typical DM = Wino DM   (AMSB)
* if thermal relic,... 2.7 TeV   (>> LHC reach)

(Hisano,Matsumoto,Nagai,Saito,Senami’07)

* if non-thermal, it can be lighter.
* anti-proton @AMS-02 expected ?!

Motivated by
126 GeV Higgs

+ no SUSY signal
 + FCNC/CP, cosmology,..



 e.g., CMSSM/mSUGRA
 scalars >> gauginos/Higgsinos

 126 GeV Higgs + Dark Matter
 126 GeV Higgs + coupling unification

No problem !

Typical DM = Wino DM   (AMSB)
* if thermal relic,... 2.7 TeV   (>> LHC reach)

(Hisano,Matsumoto,Nagai,Saito,Senami’07)

* if non-thermal, it can be lighter.
* anti-proton @AMS-02 expected ?!

Motivated by
126 GeV Higgs
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 + FCNC/CP, cosmology,..

See talk by S.Matsumoto 

tomorrow !!



 e.g., CMSSM/mSUGRA
 scalars >> gauginos/Higgsinos

 126 GeV Higgs + Dark Matter
 126 GeV Higgs + coupling unification

No problem !

--> makes 
coupling unification
better.

[Hisano,Kuwahara,Nagata’13,  
Hisano,Kobayashi,Kuwahara,Nagata’13]

Motivated by
126 GeV Higgs

+ no SUSY signal
 + FCNC/CP, cosmology,..



motivations model LHC/ILC/other signals

126 GeV Higgs
+ naturalness

implies beyond MSSM 

(e.g. NMSSM)
See talk by K.S.Jeong !

light stop and 
light Higgsino.

126 GeV Higgs
+ muon g-2
   (>3σ !!)

difficult in simple models

(1) general MSSM
(2) model building

(1) “g-2 motivated MSSM”
--> can be tested by 
   non-colored particle search 
   at LHC/ILC.
(2) example: “V-GMSB”
--> barely alive. tested soon.

 126 GeV Higgs
+ Dark Matter

* No problem in simple models (e.g., CMSSM/mSUGRA).

* “light gauginos/Higgsinos + heavy scalars” scenario works well.
    Wino Dark Matter  See talk by S.Matsumoto !
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* “light gauginos/Higgsinos + heavy scalars” scenario works well.
    Wino Dark Matter  See talk by S.Matsumoto !

SUMMARY 
SUSY < O(TeV)  after Higgs discovery



•backup



simplest possibility: heavy SUSY

Fig. from 
P.Draper, P.Meade, M.Reece, S.Shih ’11 Fig. from L.Hall, Y.Nomura, S.Shirai ’12

no stop mixing
large tanβ

heavy scalar scenario

+ many related works

A-term small
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o 
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126 GeV Higgs and SUSY



Fig. from
N.Arkani-Hamed, A.Gupta, D.E.Kaplan, N.Weiner, T.Zorawski’12



[ L.J.Hall, D.Pinner, J.T.Ruderman, 1112.2703 ]



generalized
NMSSM

G.G.Ross, 
K.Schmidt-Hoberg, 
F.Staub [1205.1509]

Higgs
mass

a few % 
fine-tuning



from talk by M.Endo @ Hokkaido Winter School’13





for “V-GMSB”
Results

M.Endo, KH, K.Ishikawa, 
S.Iwamoto, N.Yokozaki, 

arXiv:1212.3935 

     3    3.00000000e+01   # tanb
     4    1.00000000e+00   # sign(mu)
     1    1.65000000e+05   # lambda
     2    1.00000000e+06   # M_mess
     5    1.00000000e+00   # N5

     1    1.00000000e+03   # MQ'(SUSY)
     2    1.00000000e+03   # MU'(SUSY)
     3    1.00000000e+03   # ME'(SUSY)
     4    1.00000000e+00   # Y'(input)
     5    0.00000000e+00   # Y''(input)

Block VECTORMASS  
   8000001     9.19246145e+02   # t_1'
   8000002     1.08784791e+03   # t_2'
   8000003     1.00000000e+03   # b'
   8000004     1.00000000e+03   # tau'
   8000005     2.04454519e+03   # ~t_1'
   8000006     2.20498371e+03   # ~t_2'
   8000007     2.35226167e+03   # ~t_3'
   8000008     2.47452620e+03   # ~t_4'
   8000009     2.20345618e+03   # ~b_1'
   8000010     2.46108407e+03   # ~b_2'
   8000011     1.04125672e+03   # ~tau_1'
   8000012     1.05215246e+03   # ~tau_2'

 Block MASS                      # Mass spectrum

       25     1.25297e+02   # h0
        35     1.66854258e+03   # H0
        36     1.66853938e+03   # A0
        37     1.67070990e+03   # H+
   1000021     1.30320381e+03   # ~g
   1000022     2.24794391e+02   # ~neutralino(1)
   1000023     4.42870366e+02   # ~neutralino(2)
   1000024     4.43014726e+02   # ~chargino(1)
   1000025    -1.60827881e+03   # ~neutralino(3)
   1000035     1.60992366e+03   # ~neutralino(4)
   1000037     1.61068696e+03   # ~chargino(2)
   1000001     2.20271713e+03   # ~d_L
   1000002     2.20134932e+03   # ~u_L
   1000003     2.20270645e+03   # ~s_L
   1000004     2.20133863e+03   # ~c_L
   1000005     2.05190037e+03   # ~b_1
   1000006     1.90874207e+03   # ~t_1
   1000011     6.53371235e+02   # ~e_L
   1000012     6.48048188e+02   # ~nue_L
   1000013     6.53263452e+02   # ~mu_L
   1000014     6.48034900e+02   # ~numu_L
   1000015     2.51278423e+02   # ~stau_1
   1000016     6.39706366e+02   # ~nu_tau_L
   2000001     2.11013140e+03   # ~d_R
   2000002     2.11698121e+03   # ~u_R
   2000003     2.11011126e+03   # ~s_R
   2000004     2.11697894e+03   # ~c_R
   2000005     2.10255419e+03   # ~b_2
   2000006     2.09034095e+03   # ~t_2
   2000011     3.17876514e+02   # ~e_R
   2000013     3.17821740e+02   # ~mu_R
   2000015     6.60554188e+02   # ~stau_2


