Introduction to Accelerator Physics

Bernhard Holzer, CERN

A Real Introduction ...

Example: Kernphysik & Isotope : |SOLDE

Und schlussendlich die Teilchen Physik

Standard Model: Worum gehts eigentlich ??

Standard Model: Worum gehts eigentlich ?? um den Versuch Ordnung & Systematik zu erkennen

I.) A Bit of History

$$N(\theta) = \frac{N_i nt Z^2 e^4}{(8\pi\varepsilon_0)^2 r^2 K^2} * \frac{1}{\sin^4(\theta/2)}$$

Rutherford Scattering, 1911

Using radioactive particle sources: α -particles of some MeV energy

1.) Electrostatic Machines: The Cockcroft-Walton Generator

- **1928**: Encouraged by Rutherford Cockcroft and Walton start the design & construction of a high voltage generator to accelerate a proton beam
- 1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube

on 400 kV level Accelerator: evacuated glas tube Target: Li-Foil on earth potential Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

Problem: DC Voltage can only be used once

2.) Electrostatic Machines: (Tandem -) van de Graaff Accelerator (1930 ...)

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle or twice ? The "Tandem principle": Apply the accelerating voltage twice by working with negative ions (e.g. H⁻) and stripping the electrons in the centre of the

structure

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:

Energy gained after n acceleration gaps

$$E_n = n * q * U_0 * \sin \psi_s$$

n number of gaps between the drift tubes q charge of the particle U_0 Peak voltage of the RF System Ψ_s synchronous phase of the particle

* acceleration of the proton in the first gap

* voltage has to be "flipped" to get the right sign in the second gap \rightarrow RF voltage \rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

Time span of the negative half wave: $\tau_{RF}/2$ Length of the Drift Tube: $l_i = v_i * \frac{\tau_{rf}}{2}$ Kinetic Energy of the Particles $E_i = \frac{1}{2}mv^2$

valid for non relativistic particles ...

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: \approx 20 MeV per Nucleon $\beta \approx 0.04 \dots 0.6$, Particles: Protons/Ions

Accelerating structure of a Proton Linac (DESY Linac III)

 $E_{total} = 988 \, M \, eV$ $m_0 c^2 = 938 \, M \, eV$

 $p = 310 \, M \, eV \, / \, c$ $E_{kin} = 50 \, M \, eV$

Beam energies

Energy Gain per "Gap":

 $\boldsymbol{W} = \boldsymbol{q} \; \boldsymbol{U}_0 \, \sin \omega_{\boldsymbol{RF}} \boldsymbol{t}$

1.) reminder of some relativistic formula

rest energy $E_{\theta} = m_{\theta}c^2$

total energy
$$E = \gamma * E_0 = \gamma * m_0 c^2$$

kinetic energy $E_{kin} = E_{total} - m_{\theta}c^2$

momentum

$$E^2 = c^2 p^2 + m_0^2 c^4$$

4.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: Bend a Linac on a Spiral Application of a constant magnetic field keep B = const, RF = const

→ Lorentzforce

$$\vec{F} = q * (\vec{v} \times \vec{B}) = q * v * B$$

$$q * v * B = \frac{m * v^2}{R} \rightarrow B * R = p/q$$

increasing radius forincreasing momentum→ Spiral Trajectory

revolution frequency

$$\omega_z = \frac{q}{m} * B_z$$

the cyclotron (rf-) frequency is independent of the momentum

Cyclotron:

- ω is constant for a given q & B
- !! $B^*R = p/q$ large momentum \rightarrow huge magnet
- !!!! ω ~ 1/m ≠ const works properly only for non relativistic particles

PSI Zurich

Application: Work horses for medium energy protons Proton / Ion Acceleration up to ≈ 60 MeV (proton energy) nuclear physics radio isotope production, proton / ion therapy

1.) Introduction and Basic Ideas

" ... in the end and after all it should be a kind of circular machine" → need transverse deflecting force

Lorentz force
$$\vec{F} = q * (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines: $v \approx c \approx 3*10^8 \ m/s$

Example:

$$B = 1T \implies F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$

$$F = q * 300 \frac{MV}{m}$$
equivalent E

equivalent *E* electrical field:

technical limit for el. field: \triangleright

$$E \le 1 \frac{MV}{m}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi\rho = 17.6 \text{ km} \approx 66\%$$

$$\boldsymbol{B} \approx 1 \dots 8 \ \boldsymbol{T}$$

rule of thumb:

"normalised bending strength"

2.) Focusing Properties – Kurzer Ausflug in die klassische Mechanik

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x:

$$m * \frac{d^2 x}{dt^2} = -c * x$$

general solution: free harmonic oszillation

$$x(t) = A * \cos(\omega t + \varphi)$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to?

..... the design orbit

$$F(x) = q * v * B(x)$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit linear increasing Lorentz force linear increasing magnetic field $B_y = g x$ $B_x = g y$

normalised quadrupole field:

simple rule:

$$= 0.3 \frac{g(T/m)}{p(GeV/c)}$$

LHC main quadrupole magnet

 $g \approx 25 \dots 220 \ T / m$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{B} = \vec{\lambda} + \frac{\partial \vec{E}}{\partial t} = 0$$

$$\Rightarrow \qquad \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = g$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B^*\rho = p / q$)

Dipole Magnet

Quadrupole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

$$k := \frac{g}{p/q}$$

3.) The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!}m x^2 + \frac{1}{3!}n x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

***** Equation for the horizontal motion:

$$x'' + x \left(\frac{1}{\rho^2} + k\right) = 0$$

x = particle amplitude x' = angle of particle trajectory (wrt ideal path line)

* Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

 $k \leftrightarrow -k$ quadrupole field changes sign

$$y'' - k \ y = 0$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K = 1/\rho^2 + k$... vert. Plane: K = -k

$$\boldsymbol{x}'' + \boldsymbol{K} \boldsymbol{x} = \boldsymbol{0}$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)$$

For convenience expressed in matrix formalism:

$$\binom{x}{x'}_{s1} = M_{foc} * \binom{x}{x'}_{s0}$$

$$M_{foc} = \begin{pmatrix} \cos\left(\sqrt{|K|}l\right) & \frac{1}{\sqrt{|K|}} \sin\left(\sqrt{|K|}l\right) \\ -\sqrt{|K|} \sin\left(\sqrt{|K|}l\right) & \cos\left(\sqrt{|K|}l\right) \end{pmatrix}$$

$$\boldsymbol{x}'' - \boldsymbol{K} \boldsymbol{x} = \boldsymbol{0}$$

Ansatz: Remember from school

$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{def oc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent ", ... the particle motion in x & y is uncoupled"

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

Question: what will happen, if the particle performs a second turn ?

Х PCPLOT Mindow 1 Teilchenbahnen und Enveloppe 100 0 0 ШШ -100 10 20 30 40 0 s/m — -->

\dots or a third one or \dots 10¹⁰ turns

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion:

$$x''(s) - k(s)x(s) = 0$$

restoring force ≠ const, k(s) = depending on the position s k(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

Amplitude of a particle trajectory:

Maximum size of a particle amplitude

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \varphi)$$

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$$

The Beta Function

 β determines the beam size ... the envelope of all particle trajectories at a given position "s" in the storage ring under the influence of all (!) focusing fields.

It reflects the periodicity of the magnet structure.

The Beta Function: Lattice Design & Beam Optics

The beta function determines the maximum amplitude a single particle trajectory can reach at a given position in the ring. It is determined by the focusing properties of the lattice and follows the periodicity of the machine.

Beam Emittance and Phase Space Ellipse

$$\varepsilon = \gamma(s) * x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2$$

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x' for each accelerator element according to matrix formalism and plot x, x' at a given position "s" in the phase space diagram

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}_{s1} = \mathbf{M}_{turn} * \begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}_{s0}$$

A beam of 4 particles – each having a slightly different emittance:

Emittance of the Particle Ensemble:

single particle trajectories, N \approx 10 11 per bunch

Gauß Particle Distribution:

$$\rho(\mathbf{x}) = \frac{N \cdot \mathbf{e}}{\sqrt{2\pi}\sigma_{\mathbf{x}}} \cdot \mathbf{e}^{-\frac{1}{2}\frac{\mathbf{x}^{2}}{\sigma_{\mathbf{x}}^{2}}}$$

particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

LHC:
$$\beta = 180 m$$

 $\varepsilon = 5 * 10^{-10} m rad$

 $\sigma = \sqrt{\varepsilon^* \beta} = \sqrt{5^* 10^{-10} m^* 180 m} = 0.3 mm$

aperture requirements: $r_0 = 17 * \sigma$

Example: Luminosity run at LHC

$$\beta_{x,y} = 0.55 m \qquad f_0 = 11.245 \, kHz$$

$$\varepsilon_{x,y} = 5 * 10^{-10} \, rad \, m \qquad n_b = 2808$$

$$\sigma_{x,y} = 17 \, \mu m \qquad L = \frac{1}{4\pi e^2 f_0 n_b} * \frac{I_{p1} I_{p2}}{\sigma_x \sigma_y}$$

 $I_{p} = 584 \, mA$

$$L = 1.0 * 10^{34} / cm^2 s$$

The LHC Mini-Beta-Insertions

... clearly there is ano

... unfortunately ... in general high energy detectors that are installed in that drift spaces

are a little bit bigger than a few centimeters ...

III. The Acceleration

Where is the acceleration?

Install an RF accelerating structure in the ring:

B. Salvant N. Biancacci

The Acceleration & "Phase Focusing" △p/p≠0 below transition

The Acceleration above transition

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now ??? with the dipole magnets !

The RF system: IR4

Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Bunch length (4 σ)	ns	1.06
Energy spread (2σ)	<i>10</i> -3	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	<i>16</i>
Energy gain/turn	keV	485
Synchrotron	Hz	23.0
frequency		

... und wozu das alles ?? High Light of the HEP-Year natuerlich das HIGGS

ATLAS event display: Higgs => two electrons & two muons

The High light of the year

production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator: ... the luminosity

$$R = L * \Sigma_{react} \approx 10^{-12} b \cdot 25 \frac{1}{10^{-15} b} = some 1000 H$$

$$\int_{S=7 \text{ TeV}}^{Q} \int_{S=7 \text{ TeV}}^{S=7 \text{ TeV}} \int_{R=1}^{Q} typiche Teilchen Groesse} \int_{LdC Delivered}^{LdC Delivered} \int_{LdC Delivered}^{LdC Delivered} \int_{Deli \text{ Teil} Recorded: 21.3 B'}^{Q} \int_{Delivered}^{LdC Delivered} \int_{Delive$$

The luminosity is a storage ring quality parameter and depends on beam size (β !!) and stored current

$$L = \frac{1}{4\pi e^2 f_0 b} * \frac{I_1 * I_2}{\sigma_x^* * \sigma_y^*} \qquad \Delta p/p = 5*10^{-4}$$

20 vertices

European Strategy Recommendation for the future of particle physics: FCC

