Electron beams for flue gas treatment

Zbigniew Zimek Centre for Radiation Research and Technology Institute of Nuclear Chemistry and Technology Warsaw, Poland

z.zimek@ichtj.waw.pl



#### SCHEME OF ACIDIC RAIN FORMATION



# Electron Beam Technology as Eco-friendly solution

No secondary waste generation;

- No catalysts, no heating and easy for automation;
  Experience in pilot plants and several industrial plants;
- Economical advantages in capital cost and O&M cost;
- The process by-product is used as agriculture fertilizer;
- Technical advantages of electron beam process.

## RADIATION TECHNOLOGY APPLIED IN ENVIRONMENT PROTECTION

| Phase  | Object               | Additives                         | Process                 |
|--------|----------------------|-----------------------------------|-------------------------|
| Gas    | Flue gas             | SO <sub>2</sub> ; NO <sub>x</sub> | Removal                 |
|        | VOC                  | Organic compounds                 | Degradation,<br>removal |
| Liquid | Drinking<br>water    | Chemical pollutants               | Degradation,<br>removal |
|        | Wastewater           | Bacteria; viruses;<br>parasites   | Hygenizataion           |
|        | Industrial<br>wastes | Organic and nonorganic compounds  | Degradation,<br>removal |
| Solid  | Sewage<br>sludge     | Bacteria; viruses;<br>parasites   | Hygenizataion           |
|        | Solid<br>materials   | Agriculture wastes                | Transformation 4        |

# TECHNOLOGY DEVELOPMENT

- Early phase (Japan, 1970's)
- Pilot plants phase (Japan, USA, Germany, Poland 1980's)
- Industrial plants phase (China, Poland, late 90's)
- Recent attempts (China, Bulgaria, Middle East)

#### ELECTRON BEAM FLUE GAS TREATMENT PROCESS



# Main advantages of the process

- Multipollution control technology;
- High efficiency of pollutants removal;
- High flexibility of installation;
- Usable byproduct creation;
- Dry and wasteless process;
- Simplicity of the installation;
- Ease of control and operation;
- Ease of retrofitting;
- Economically competitive process.

#### REACTION VESSELS CONSTRUCTION FOR FLUE GAS TREATMENT



#### PILOT AND INDUSTRIAL FACILITIS FOR FLUE GAS TREATMENT

| Place                        | Flow rate<br>[Nm <sup>3</sup> /h] | Power<br>[MW] | Accelerator                                            | SO <sub>2</sub> /NO <sub>x</sub><br>[ppm] |
|------------------------------|-----------------------------------|---------------|--------------------------------------------------------|-------------------------------------------|
| Indianapolis, USA<br>(1984)  | 24 000                            | -             | 2x800 keV; 160 kW                                      | 1000/400                                  |
| Badenwerk,<br>Germany (1985) | 20 000                            | -             | 2x300 keV; 180 kW                                      | 500/500                                   |
| Kawęczyn,<br>Poland (1990)   | 20 000                            | -             | 2×700 keV; 100 kW                                      | 600/250                                   |
| Nagoya, Japan<br>(1992)      | 12 000                            | -             | 3×800 keV; 108 kW                                      | 1000/300                                  |
| Chengdu, China<br>(1997)     | 300 000                           | 90            | 2x800 keV; 400 mA,<br>640 kW                           | 1800/400                                  |
| Pomorzany,<br>Poland (2002)  | 270 000                           | 112           | 4×800 keV; 375 mA<br>1 200 kW                          | 385/340                                   |
| Nisi-Nagoya,<br>Japan (1998) | 620 000                           | 220           | 6×800 keV; 500 mA<br>2 400 kW                          | -                                         |
| Hangzhou, China<br>(2002)    | 305 400                           | -             | 2×800 keV; 400 mA<br>640 kW                            | 1800/400                                  |
| Beijing, China<br>(2005)     | 640 000                           | 150           | 2×1 000 keV; 500 mA<br>1×1 000 keV; 300 mA<br>1 300 kW | 1900/400                                  |
| Svishtov,<br>Bulgaria (2008) | 600 000                           | 120           | 4×900 keV; 400 mA<br>1 400 kW                          | 1680/780                                  |



#### LAE 13/9 Elektronika 10/10









#### ELECTRON ACCELERATORS OF CENTRE FOR RADIATION RESEARCH AND TECHNOLOGY, INCT

| Type of accelerator | Energy and  | Remarks              |  |
|---------------------|-------------|----------------------|--|
|                     | Beam power  |                      |  |
| LAE 13/9            | 5-13 MeV    | R&D                  |  |
| linac               | 9 kW        | Radiation processing |  |
| AS 2000             | 0,1-2 MeV   | R&D                  |  |
| electrostatic       | 0,2 kW      |                      |  |
| IŁU 6               | 0,5 - 2 MeV | R&D                  |  |
| resonans            | 20 kW       | Pilot plant          |  |
| Elektronika 10/10   | 10 MeV      | Radiation processing |  |
| linac               | 15 kW       | (two units)          |  |
| LAE 10              | 10 MeV      | Basic research       |  |
| linac               |             |                      |  |

#### INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY ul. Dorodna 16, 03-195 Warsaw, Poland

## INCT pathway to EB Process Industrial Implementation

- 1987 Laboratory unit; 400 Nm<sup>3</sup>/h, accelerator: 20kW, 2 MeV
- 1990 Pilot Plant PS Kawęczyn; 20 000 Nm³/h, accelerators: 2 x 50 kW, 700 keV
- 2002 Industrial Plant PS Pomorzany; 270 000 Nm<sup>3</sup>/h, accelerators: 4 x 262.5 kW, 700 keV



#### ILU 6 ACCELERATOR Energy 0.5-2 MeV Beam power 20 kW Frequency 127 MHz



#### Oil burner



Schematic diagram of laboratory scale electron-beam flue gas treatment (EBFGT) installation

1-oil - fired burner 2-orifice 3-preliminary soot filter 4-soot filter 5-desage of water vapour 6-gas sampling point 7-armonic injection 8-process vessel 9-electron beam accelerator 10-retention chamber 11-bag Ster 12-gas sampling point 13-ton 14-stock 15-concrete wall 16-concrete door



# Empirical model of NO<sub>x</sub> i SO<sub>2</sub> removal in pilot plant

Removal efficiency NO<sub>x</sub> ( $\eta_{NOx}^{m}$ ), [%]  $\eta_{NOx}^{m} = 80.417\{1 - exp(-0.2587D)\}(1.03495 - 0.00007[NO_{x}]_{0})$ Removal efficiency SO<sub>2</sub> ( $\eta_{SO2}^{m}$ ), [%]  $\eta_{SO2}^{m} = 0.96(144.9787 - 1.12341T_{pn}^{+} + 0.00226T_{pn}^{-2})(0.85732 + 0.01423H)(0.98528 + 0.00226D)(1.1777 - 0.79092/\tau)$ 

| Inlet<br>temperat<br>ure<br>T <sub>pn</sub> [°C] | Volume<br>content of<br>water vapor<br>H [% vol] | Absorb<br>ed dose<br>D [kGy] | Inlet NO <sub>x</sub><br>concentr.<br>[NO <sub>x</sub> ] <sub>0</sub><br>[ppm] | Average<br>residence<br>time<br>τ [s] | Flue gas<br>flow rate<br>Q <sub>sp</sub><br>[m³/h] | Ammonia<br>stoichiomet.<br>α |
|--------------------------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|------------------------------|
| 54.9-<br>78.8                                    | 6.7-12.4                                         | 2.8-<br>12.7                 | 127-216                                                                        | 3.56-14.43                            | 4216-<br>17082                                     | 0.87-0.93                    |

A.G. Chmielewski et al.: Radiat. Phys. Chem. 57 (2000) 527

#### Control, monitoring and data management system



## Electron beam process at EPS Pomorzany



Boiler; 2. Electrostatic precipitator; 3. Spray cooler; 4. Ammonia water container;
 Ammonia evaporator; 6. Accelerator; 7. Reaction vessel; 8. Electrostatic precipitator

#### Facility for flue gas treatment at EPS Pomorzany





Electrostatic precipitator



#### Block diagram





Ammonia water container

Ammonia injection

EPS Pomorzany



**Product collection** 



NHV, Japan

EPST-800-102 DC power supply

50 Hz Frequency Phase 3 1100 V Input voltage AC power 1300 kVA Output voltage 800 kV Load current 1000 mA HV output 2 Oil volume 27000 I 48000 kg Total mass Volume of container 51 m<sup>3</sup> Dimensions 2.8x6.5x4.7 m



Accelerating head (pressure tank)

Scanning horn and reaction vessel

Nominal energy700 keVNominal beam current375 mABeam power262.5 kWScan width225 cmDose uniformity± 5 %3x380 V, 50 Hz, 460 kVAN° of accelerating heads4Total beam power1050 kWProducer:Nissin High Voltage



# Reaction vessel window





#### **Power Station Pomorzany**, **Szczecin** Industrial Facility for Flue Gas Treatment



#### The obtained results

The dependence of  $SO_2$  and  $NO_x$  removal efficiency on dose



# The by-product



| Composition:                    |            |
|---------------------------------|------------|
| $(NH_4)_2 SO_4$                 | 45 - 60%   |
| NH <sub>4</sub> NO <sub>3</sub> | 22 - 30%   |
| NH <sub>4</sub> Cl              | 10 - 20%   |
| moisture                        | 0,4 - 1%   |
| water insoluble parts           | 0,5 - 2%   |
| by-product yield:up to          | o 700 kg/h |

#### Contents of heavy metals (mg/kg) in the byproduct and limits for heavy metals content in the NPK fertilizer established in some countries

| As    | Cd    | Cr    | Со        | Pb         | Hg         | Ni         | Zn         | Remarks                                                                                                       |
|-------|-------|-------|-----------|------------|------------|------------|------------|---------------------------------------------------------------------------------------------------------------|
| <0.02 | <0.01 | 0.43  | 0.03      | 1.01       | <0.03      | 63.5       | 18.3       | averaged values for<br>byproducts collected by<br>cartridge bag filter                                        |
| 0.24  | 0.09  | 1.61  | 0.03      | 0.54       | 1.41       | 22.80      | 1476       | byproducts collected by<br>ESP                                                                                |
|       |       | l     | _imits fo | or heavy i | netals con | tent in NI | PK fertili | zer                                                                                                           |
| 41    | 39    |       |           | 300        | 17         | 420        | 2800       | US EPA CFR40 Part. 503                                                                                        |
| 75    | 20    |       | 150       | 500        | 5          | 180        | 1350       | Canadian Fertilizer Act<br>(1996)                                                                             |
| 50    | 50    |       |           | 140        | 2          |            |            | Polish standard                                                                                               |
|       | 32.2  | 276.8 | 12.9      | 17.8       |            | 72.3       |            | mean values of heavy<br>metals concentrations in<br>fertilizers marketed<br>in the Kingdom of Saudi<br>Arabia |

## Different method comparison

| Emission control    | Investment             | Annual                 |  |
|---------------------|------------------------|------------------------|--|
| Linission control   | cost                   | operational cost       |  |
| mernou              | (USD/kW <sub>e</sub> ) | (USD/kW <sub>e</sub> ) |  |
| Wet flue gas        | 120                    | 3.0                    |  |
| desulphurisation    |                        |                        |  |
| Selective catalytic | 110                    | 4.6                    |  |
| reduction           |                        |                        |  |
| Wet FGD + SCR       | 230                    | 7.6                    |  |
| Electron beam FGT   | 160                    | 7.35                   |  |

- Accelerators improvement,
- Adjustment for various pollutants - multipollutant control,
- Adjustment for various, technological processes,
- Costs lowering,
- New implementations.

VOC removal

efficiency





# Mercury removal

Mercury oxidation proceeds in reaction chamber



At medium energy levels, approximately 98% of gaseous mercury vapor was readily oxidized.

Experiments were performed for following parameters:Hg concentration in gasabout 16  $\mu$ g/m³applied doses of E-beam2.5 - 10 kGy

Jo-Chun Kim, Ki-Hyun Kim, Al Armendariz and Mohamad Al-Sheikhly: Electron Beam Irradiation for Mercury Oxidation and Mercury Emissions Control, J. Envir. Engrg. Volume 136, Issue 5, pp. 554-559 (May 2010)

## ANNUAL POLLUTANTS EMISSIONS





## CARGO SHIPS





## General view of the pilot plant in Saudi Arabia



- 1 stack of F 1001 boiler;
- 2 boiler F1001;
- 3 flue gas duct;
- 4 control room;
- 5 humidification unit;
- 6 pilot plant stack;

- 7 bag filter;
- 8 insulated duct part;
- 9 cyclone;
- 10 ammonia storage and injection unit;
- 11 EB mobile unit.





#### MOBILE ACCELERATR SYSTEM





# TPS Sviloza, Bulgaria



Thermal Power Station generate flue gases from all boilers - 600 000 Nm<sup>3</sup>, with emission of SO2  $\rightarrow$  2800 - 4800 mg/Nm<sup>3</sup>, NOx  $\rightarrow$  1200 - 1600 mg/Nm<sup>3</sup> and dust  $\rightarrow$  200 - 1400 mg/Nm<sup>3</sup>.

## ACCELERATOR TECHNOLOGY FOR ENVIRONMENTAL APPLICATION

Best accelerator selection and radiation facility design with possibly:

- Low electron energy,
- High beam power,
- High accelerator electrical efficiency,
- High beam utilization,
- High reliability/avalability level.

Progress in accelerator technology development is based on new constructions and components,

Support of R&D study by governmental and international institutions is needed.

# The principal parameters to be achieved for accelerators applied for flue gas treatment

- □ Electron energy 0.8 1.2 MeV;
- Beam power 300 500 kW;
- High reliability for long time operation (>6000 h/y);
- Availability above 95 %;
- Electron beam cost 1.5-2.5 \$/W;
- Electrical efficiency >80 %;
- High current density, low level losses windows;
- □ Fault protection systems.



#### Double beam path scanning horn



Two-windows extraction device: <sup>B</sup> 1 - ion vacuum pumps, 2 - coils and cores of the beam scanning system, 3 - cylinder flange, 4 - foil blow, 5 - air jet cooling, 6 - frame for fixation of foil, 7 - extraction foils.



ELV 12

## coreless transformer accelerator

Electron energy 1 MeV Beam power 400 kW Frequency 1000 Hz One power supply Three scanners





# ELEKTRON 23 1 MeV, 500 kW





The DC high voltage is generated by three-phase cascade generator with inductive coupling.

NIIEFA, St Petersburg, Russia

## HV electron accelerator Elektron-23

- 1. Accelerating voltage: 800-1000 kV;
- Accelerating voltage instability during one hour of operation excluding ripples with frequency 50 Hz and more, not higher than: ± 2 %;
- 3. Beam current: 0-500 mA;
- Electron beam current instability during one hour of operation, not higher than: ± 2 %;
- 5. Irradiation zone max length on the outlet window foil:
  230 cm;
- 6. Linear beam current non-uniformity on the 10 cm distance from the outlet window foil on the irradiation zone max length, not higher than: ± 10 %;
- 7. AC/DC conversion efficiency, not less than: 90%.

#### Barriers for Industrial Application (why e-beam processes are not widely used?)

- Public acceptances:
  - Uneasy for the radiation safety;
  - New species formed by radiation.
- Technical problems:
  - Reliability for year-round operation;
  - Analysis of by-product (toxicity);
  - Scaling up from laboratory to industrial implementation.
- Competition with other processes (economics):
  - Difficult to beat the conventional processes;
  - High cost for pilot plant construction;
  - High investment cost and long returns;
  - No alternatives or by-passes for shut-down;
  - Not universal for all environmental plant.
- Regulation from Authorities.

# CONCLUSIONS

Characteristics steps can be recognized in the past of accelerator development. Present stage of accelerator technology perfection includes: cost effectiveness, reliability, compactness and introduction of MW beam power level.

The electrical efficiency is very important parameter for high power accelerators. Special attention should be devoted to optimize electrical energy consumption for accelerator and auxiliary equipment installed in radiation facility. New systems must be proven in an industrial confirmed acceptance, so introduction of a new accelerator technology can require a number of years for widespread market penetration.

Major industrial accelerator producers are located in USA, Russia, Japan, France and Belgium. Several other countries including Poland are capable to produce accelerators on limited scale.

The progress in accelerator technology is not a quick process but can be easily noticed in longer time scale.

Electron Beam Technology has been one of the promising process for environmental treatment, such as Flue gas/VOC, Water/ Wastewater, and Sludge from 1970s. Implementation of large scale plant has demonstrated the efficiency of system both in technically and economically.

Accelerators of high power (several hundreds kilowatt) are already available in the market, and some of them have proved their reliability in long term operation in Flue gas treatment and wastewater treatment.

The application of electron beam to the treatment of pollutants has emerged as one of effective methods and some of the newly developed electron beam technologies could be able to contribute to treatment of pollutants from the human activities.

# Thank you for your attention

