Operating Dedicated Data Centers – Is It Cost-Effective?

HEPIX – University of Michigan Tony Wong - Brookhaven National Lab

Background

- Spurred by a DOE review of the RACF
 - Successful tests with EC2 and GCE
 - How do RACF costs compare to Amazon's?
- Data not easily available
 - BNL procurement policies
 - Benefited from Keith Chadwick's (FNAL) presentation
 - First time done at RACF

Motivation

- Traditional HENP computing models mostly relied on dedicated data centers until recently
- Budgetary realities (and economies of scale) compel the HENP community to evaluate alternatives
- For-profit providers (Amazon, Google) offer cloud services
- Virtual organizations (OSG, EGI, etc) are harnessing the power of non-dedicated resources

RACF Context at BNL

- Dedicated resources
 - Tier0 for RHIC computing
 - U.S. Tier 1 for ATLAS
 - Two (BNL, Wisconsin) Tier 3 for ATLAS– Other (LBNE, LSST, etc)
- Over 2,200 servers, 23,000 physical cores and 16 PB of worker node-based storage
- Robotic storage and other disk-based distributed storage services

Usage Profiles

- Monte Carlo
 - minimal local dependencies
 - long-running, cpu-bound, low I/O requirements
- Analysis
 - some local dependencies
 - Variable length and I/O requirements
- Interactive
 - significant local dependencies
 - short-running, high I/O requirements

Amazon EC2

	Туре	ECU	RAM (GB)	Storage (GB)	Network I/O	Cost/hr (US\$)
spot	m1.small	1	1.7	160	low	0.007
spot	m1.medium	2	3.75	410	moderate	0.013
On-demand	m1.medium	2	3.75	410	moderate	0.12

- Full details at aws.amazon.com/ec2/pricing.
- Linux virtual instance
 - 1 ECU = 1.2 GHz Xeon processor from 2007 (HS06 ~ 8/core)
 - 2.2 GHz Xeon (Sandybridge) in 2013 → HS06 ~ 38/core
- Pricing is dynamic and region-based. Above prices were current on August 23, 2013 for Eastern US.

Amazon EC2

	Туре	ECU	RAM (GB)	Storage (GB)	Network I/O	Cost/hr (US\$)
spot	m1.small	1	1.7	160	low	0.007
spot	m1.medium	2	3.75	410	moderate	0.013
On-demand	m1.medium	2	3.75	410	moderate	0.12

- Full details at aws.amazon.com/ec2/pricing.
- Linux virtual instance
 - 1 ECU = 1.2 GHz Xeon processor from 2007 (HS06 ~ 8/core)
 - 2.2 GHz Xeon (Sandybridge) in 2013 → HS06 ~ 38/core
- Pricing is dynamic and region-based. Above prices were current on August 23, 2013 for Eastern US.

BNL Experience with EC2

- Ran ~5000 EC2 jobs for ~3 weeks (January 2013)
 - Tried m1.small with spot instance
 - Spent US \$13k
- Strategy
 - Declare maximum acceptable price, but pay current, variable spot price. When spot price exceeds maximum acceptable price, instance (and job) is terminated without warning
 - Maximum acceptable price = 3 x baseline \rightarrow \$0.021/hr
- Low efficiency for long jobs due to eviction policy
- EC2 jobs took ~50% longer (on average) to run when compared to dedicated facility

Google Compute Engine (GCE)

- Standard Instance type (equivalent to EC2's On-Demand)
 - Linux (Ubuntu or CentOS)
 - \$0.132/hr (1 virtual core, 3.75 GB RAM, 420 GB storage) → similar to EC2's on-demand m1.medium
 - Evaluation
 - 458k jobs (mix of evgen, fast sim and full sim)
 - Ran for 7 weeks (March-April 2013)
 - Custom image based on Google's CentOS 6
 - Sergey Panitkin's presentation—ATLAS Cloud Computing R&D.

Costs of Dedicated Facilities

- Direct Costs
 - Hardware (servers, network, etc)
 - Software (licenses, support, etc)
- Indirect Costs
 - Staff
 - Infrastructure
 - Power
 - Space (includes cooling)
 - Other?

Growth of RACF Computing Cluster

Server Costs

- Standard 1-U or 2-U servers
- Includes server, rack, rack pdu's, rack switches, all hardware installation (does not include network cost)
- Hardware configuration changes (ie, more RAM, storage, etc) not decoupled from server costs → partly responsible for fluctuations

Network

- Network 1 GbE connectivity (switch, line cards, cabling, etc) for 900 hosts costs ~\$450k
- Cost per core is ~\$45 assuming our newest configuration (dual 8-core Sandybridge cpu's)
- Assume network equipment is used during the lifetime of the Linux Farm hosts (4 years for USATLAS and 6 years for RHIC)
- Calculate cost per core per year by amortizing cost of network equipment over the lifetime of the servers

Software

- Computing cluster uses mostly open-source software (free)
- Three exceptions
 - Ksplice (reboot-less kernel patching software)
 - Synapsense (real-time 3-D heat map of data center for environmental monitoring) – presentation by Alexandr Zaytsev at CHEP2013
 - Sensaphone (power monitoring and alert system used to detect when on UPS power)
- Negligibly small combined cost (~\$3/core each for RHIC and USATLAS)

Electrical Costs

- Increasingly power-efficient hardware has decreased power consumption per core at the RACF in recent years
- RHIC costs higher than USATLAS due to differences in hardware configuration and usage patterns
- Average instantaneous power consumption per core was ~25 W in 2012

Overall Data Center Space Charges

- Overhead charged to program funds to pay for data center infrastructure (cooling, UPS, building lights, cleaning, physical security, repairs, etc) maintenance—upward trend a concern
- Based on footprint (~13,000 ft² or ~1200 m²) and other factors
- USATLAS occupies ~60% of the total area.
- Rate reset on a yearly basis not predictable

Space Charges for Servers

- Space charges incurred by Linux Farm clusters
- Estimated on approximate footprint occupied
- Charges/core dropping but overall footprint expanding

Historical Cost/Core

	USATLAS	RHIC
Server	\$228/yr	\$277/yr
Network	\$28/yr	\$26/yr
Software	\$3/yr	\$3/yr
Staff	\$34/yr	\$34/yr
Electrical	\$12/yr	\$16/yr
Space	\$27/yr	\$13/yr
Total	\$332/yr (\$0.038/hr)	\$369/yr (\$0.042/hr)

- Includes 2009-2013 data
- BNL-imposed overhead included
- Amortize server and network over 4 or 6 (USATLAS/RHIC) years and use only physical cores
- RACF Compute Cluster staffed by 4 FTE (\$200k/FTE)
- About 25-31% contribution from other-than-server

Trends

- Hardware cost/core is flattening out
- Space charges are trending higher due to internal BNL dynamics
- Network cost trends in medium-term will be affected by technology choices
 - Remain at 1 GbE for now
 - Transition to 10 GbE in 2015?
 - \$63/core (at 2013 prices) \rightarrow substantially lower in 2 years?
 - Is Infiniband a realistic alternative?
 - Evaluation underway (estimate ~30-50% lower than 10 GbE)

Resiliency of Data Storage

- What if duplication of derived data at Tier1 is a requirement?
 - to avoid catastrophic loss of data (ie, fire, hurricane, etc)
 - to overcome hardware failure
- BNL is investigating:
 - Robotic tapes
 - NAS (BlueArc, DDN, MAPr, etc)
 - Worker nodes (via dCache, Hadoop, MAPr, etc)
 - Cloud (EC2, GCE, etc)

Cost of Data Duplication

- Raw costs
 - Cloud (EC2) \rightarrow \$0.05/GB/month
 - Worker nodes \rightarrow \$0.08/GB
 - NAS → \$0.20/GB
 - Tape (T10K) → \$0.03/GB
- Example of 15 PB initial deployment on worker nodes
 - Current usage at RACF
 - Assume 100% duplication
 - Add \$39/yr to cost/core of worker nodes (estimated)
 - High-Availability requirement (UPS back-up costs?)

Total Electrical Usage

Summary

- Cost of computing/core at dedicated data centers compare favorably with cloud costs
 - \$0.04/hr (RACF) vs. \$0.12/hr (EC2)
 - Near-term trends
 - Hardware 💊
 - Infrastructure 🗸
 - Staff 🔿
 - Data duplication
- Data duplication requirements will raise costs and complexity – not a free ride
- This doesn't mean cloud computing isn't useful –it is– but dedicated resources can be competitively priced

Back-up slides

Cost per HS06

Additional RACF Details

- All RACF calculations assumed physical cores
 - In 2013, the RACF average physical core is rated at ~16 HS06
 - 2 ECU rating directly comparable to some EC2 instances
 - In practice, RACF hyperthreads all its physical cores, doubling the number of compute cores
- Hyperthreaded cores
 - adds ~30% to HS06 rating (~21 for 2013)
 - Approximately ~2.6 ECU