
Puppet at USCMS-T1 and
FermiLab (and Beyond)

Tim Skirvin
USCMS-T1 @ FNAL

tskirvin@fnal.gov

Supported in part by the Department of Energy
DE-AC02-07CH11359

Tim Skirvin @ FNAL, October 30, 2013 1

A Few Things About Puppet
•  I’m not going to describe the tool in detail.
•  It’s not the only solution out there, but it’s a pretty good

one.
•  Has the strengths and weaknesses of a programming

language (but it isn’t one)
•  Puppet and Ruby are both moving targets

§  Example: ‘include’ has been deprecated and then un-
deprecated over the last ~18 months

§  Collaboration with the rest of the world depends on following
then-current shared best practices

•  Puppet Labs is facing the startup “Market Share vs
Income” inflection point
§  They’re pushing Puppet Enterprise; we don’t want it.

Tim Skirvin @ FNAL, October 30, 2013 2

Another Thing About Puppet: Cattle vs Pets

Metaphor
popularized by

Tim Bell @
CERN

Tim Skirvin @ FNAL, October 30, 2013 3

We all have to
support both Pets

and Cattle

Configuration Management @ FNAL

•  Lots of teams with separate infrastructures
•  Shared infrastructure is fairly generic: DNS,

Kerberos, syslog service, Scientific Linux
•  As of mid-2013, ~ 5 teams had transitioned to

Puppet for configuration management
§  Mix of Puppet 2 and Puppet 3
§  svn or git for version control back-ends
§  Extremely varied design patterns and styles
§  Minimal code-sharing or collaboration between teams

® This isn’t the ideal state!

Tim Skirvin @ FNAL, October 30, 2013 4

Configuration Management @ USCMS-T1
(as of Jan 2013)

•  Three major “classes” of hosts
§  Workers: ~800 hosts (cattle)
§  Storage: ~300 hosts (mostly cattle)
§  Servers: ~100 hosts (mostly pets)

•  All hosts run SLF5
•  ROCKS for system installation

§  Provides configuration management by reinstallation

•  bcfg2 for ongoing configuration management
§  Manages ~10 files, mostly consistent across all hosts
§  CVS backend

Tim Skirvin @ FNAL, October 30, 2013 5

•  Little change in worker-storage-server mix
•  Migrate all hosts to SLF6
•  Cobbler for system installation
•  Puppet for ongoing configuration management

§  Newest version (Puppet 3) (no, we probably won’t stay on the bleeding edge)

®  Puppet Dashboard for viewing reports
®  puppetdb backend for automated reports/queries
®  Separated out Certificate Authority
®  Load-balanced front-ends

§  Manages ~250 resources on a worker node
§  git backend

•  Build local RPMs, rather than /opt + rsync
Tim Skirvin @ FNAL, October 30, 2013 6

Configuration Management @ USCMS-T1
(goal state)

Puppet @ USCMS-T1

Tim Skirvin @ FNAL, October 30, 2013 7

Training the Team

•  Configured an initial environment for testing and
(limited) production use

•  Hosted on-site Professional Training
§  Puppet Fundamentals for System Administrators

https://puppetlabs.com/services/training/puppet-fundamentals

§  2x 3-day sessions, ~25 people total from FNAL (including
all sysadmins from USCMS-T1)

•  Started by working on the Cattle
§  Workers are simple conceptually, but have to be fully

automated – no manual steps allowed!
§  Pets can be ~90% automated, but are more specialized.

Tim Skirvin @ FNAL, October 30, 2013 8

Defining Best Practices

•  http://docs.puppetlabs.com/guides/style_guide.html
§  We have a local style guide as well

•  https://github.com/rodjek/puppet-lint
§  This can be hooked into your editor or IDE

•  git pre-commit and post-receive hooks to validate
code and templates
§  Per-user local pre-commit hooks to check syntax quickly

•  What doesn’t go into puppet?
§  Scripts and code should go into separate RPMs
§  “Secret” data (e.g. passwords, keytabs) should not go into

the main code repository
§  Disks and networks are configured via cobbler

Tim Skirvin @ FNAL, October 30, 2013 9

Creating an FNAL Puppet Community

•  CMS is extremely interested in sharing code and
experience with our peers

•  Created a central puppet-users@fnal.gov community and
mailing list at Fermi
§  Mostly a fork from linux-users team run by Pat and Connie
§  Allows everyone to speak a common language
§  Gives us a place to share experiences and tools

® …I guess I don’t have to explain that to HEPiX!
§  Gave us the clout to bring in professional trainers

•  Semi-Regular meetings (~1/month)
§  Lunch-and-learns; semi-formal meetings; whatever comes up

Tim Skirvin @ FNAL, October 30, 2013 10

Puppet Environments + Git

•  https://puppetlabs.com/blog/git-workflow-and-
puppet-environments

•  Individuals can create their own git branches for
development and testing without intefering with the
“production” environment

•  Ready-to-test changes go into an “itb” branch,
which is tracked by development hosts

•  Tested changes can be promoted to “production”
based on standard code promotion techniques.

•  This has proven to be extremely useful!

Tim Skirvin @ FNAL, October 30, 2013 11

Hiera

•  http://projects.puppetlabs.com/projects/hiera
•  Provides a mechanism for separation of code and

configuration data within the Puppet tree.
•  Can provide data out of a variety of back-ends:

yaml, json, databases, .gpg files (for passwords)
•  Makes it much easier to provide per-host or per-role

defaults and overrides of standard behaviour
•  This is fairly new, and not fully documented yet, but

worth exploring.
•  Frankly, this is just good. Use this if you can!

Tim Skirvin @ FNAL, October 30, 2013 12

Puppet Roles + Profiles

•  http://www.craigdunn.org/2012/05/239/
•  Provides a clear abstraction layer to distinguish

puppet modules and host configuration.
•  Every host has a single defined role

§  e.g. ‘gridworker’, ‘puppetmaster’, ‘ganglia’

•  Each role has 1+ profiles
§  e.g. ‘database’, ‘webserver’, ‘condor client’

•  Each profile loads puppet modules
§  e.g. ‘mysql’, ‘apache’, ‘condor::client’

Tim Skirvin @ FNAL, October 30, 2013 13

Puppet Forge

•  http://forge.puppetlabs.com/
•  Provides a central repository of “semi-blessed”

puppet modules (think Perl’s CPAN)
§  Plus: somebody else has written the code
§  Minus: their requirements probably weren’t the same as

ours
§  Plus: somebody else is often maintaining the code
§  Minus: it’s difficult to integrate necessary local changes

with upstream code, so it may be easier to just fork
§  Minus: publicly-usable code generally requires loads of

possible parameters -> unwieldy codes

•  We are using Forge modules where reasonable, but
we recognize their limitations.

Tim Skirvin @ FNAL, October 30, 2013 14

Puppet Labs Standard Library

•  http://forge.puppetlabs.com/puppetlabs/stdlib
•  Provides a library of tools to enhance puppet

§  Work around scope limitations: ensure_resource,
ensure_packages, getvar

§  Work with arrays: flatten, grep, is_array
§  Data type validation: validate_array, validate_hash
§  Helper plugins: facter_dot_d

•  You should be using this.

Tim Skirvin @ FNAL, October 30, 2013 15

Local Puppet Module Development
•  condor – start from scratch, need to share with the world

§  Support code fragments in /etc/condor/config.d
§  When to restart/reconfig puppet based on config changes?
§  Good candidate for sharing on the Forge

•  eos, dcache – need to codify existing practices
§  Good candidates for sharing within FNAL (for starters)

•  cvmfs – basing on code from multiple sources
§  CERN: https://github.com/cernops/puppet-cvmfs
§  UK GridPP: https://github.com/HEP-Puppet/puppet-cvmfs
§  Tyler (FEF@FNAL) maintains a local module as well

•  puppet itself
§  Existing modules on the Forge were a good start, but didn’t

exactly match our needs

•  So many more!
Tim Skirvin @ FNAL, October 30, 2013 16

Cobbler

•  http://www.cobblerd.org/
•  Disk layouts are defined within Cobbler
•  Networks are configured at install-time

§  Don’t want to let Puppet break anything that it can’t fix

•  Wrote wrapper scripts to integrate existing CMDB
data (MACs + IP addresses)

•  XMLRPC API allows puppet CA to auto-sign certs
based on Cobbler’s to-be-installed database

•  Everything else is managed by a Puppet run on
initial installation.

Tim Skirvin @ FNAL, October 30, 2013 17

Next Steps

Tim Skirvin @ FNAL, October 30, 2013 18

Upcoming Challenges @ USCMS-T1

•  More and better internal documentation
§  …and maybe share it with our collaborators?

•  Scaling to ~1500 nodes
•  Retire the ROCKS servers entirely
•  How to avoid becoming a “Ruby Shop”
•  Tracking Ruby and Puppet
•  Balancing Cobbler vs Puppet
•  Changing the mindset to separate pets vs cattle
•  Better use of/more effective test suites

Tim Skirvin @ FNAL, October 30, 2013 19

Upcoming Goals - Local

•  Start contributing modules to the Forge
•  Take advantage of community “best practices”, e.g.

Vagrant for unit testing
•  Bring in trainers for Puppet Advanced training
•  Increased collaboration with the larger Puppet

community

Tim Skirvin @ FNAL, October 30, 2013 20

Working with the HEPiX Community

•  https://twiki.cern.ch/twiki/bin/view/HEPIX/
ConfigManagement
§  Oh look, this working group already exists!

•  How can we best share our configuration
management experiences with our community?

•  Do we have code that we can share?
§  What needs to be shared, anyway?
§  If we are going to share, are we going to have standards?

•  What about support tools: git/svn, cobbler, etc?
•  How do we integrate non-HEP groups?

Tim Skirvin @ FNAL, October 30, 2013 21

