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Talk Outline

● RHIC/ATLAS Computing Facility (RACF)

– Our Condor Setup

– Recent Changes
● Hierarchical Group Quotas in ATLAS

– Issues, problems, and solutions
● Supporting Multicore Jobs

– Where we are and where we'd like to be
● Speculation about future developments
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RACF Batch System Overview

● Condor pools at the RACF

– PHENIX—12.7kCPU

– STAR—11.9kCPU

– ATLAS—14.0kCPU

● Characteristics

– RHIC—federation of individual 
users, some central control, 
data on nodes

– ATLAS—tightly controlled, 
master batch system 
(PANDA), central data, strict 
group layout

● Smattering of smaller experiments 
are users of batch system

– LBNE

– Dayabay

– LSST

– BRAHMS / PHOBOS
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How We Use Condor at the RACF

● Job Submission

– ATLAS—jobs submitted 
locally via 6 main submit 
nodes, each handling 3-4k 
jobs, coming from PANDA 
through autopyfactory

– PHENIX + STAR
● Interactive machines (20 

and 10 respectively) allow 
direct user submission

● Special nodes for 
submitting to special 
queues (CRS / Anatrain)

● 4 Central Managers

– Need >4Gb RAM
● 1Gb each for collector + 

negotiator
● Collector sometimes forks 

so need extra 1-2 Gb 

● Condor Packages

– Build our own from any git 
snapshot, configure to only 
include libraries / features we use

– Configuration is puppet-managed
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Configuration Changes

● Since 7.8.x condor allows 
configuration macros in a 
config.d/ directory

● Leveraged to make puppet-
management much easier

– Single files much easier to 
handle

● Reduced by thousands of 
lines the configs we maintain

– Mostly same main config 
over-and-over

Old Way

Main Config:

LOCAL_COFIG_FILES = /dir/filea, /dir/fileb

Order:

1. /etc/condor_config (or $CONDOR_COFIG)

2. /dir/filea

3. /dir/fileb

New Way
Main Config:

LOCAL_CONFIG_DIR = /etc/condor/config.d/

LOCAL_COFIG_FILES = /dir/filea, /dir/fileb

Order:

1. /etc/condor_config (or $CONDOR_COFIG)

2. /etc/condor/config.d/* (in alphanumeric order)

3. /dir/filea

4. /dir/fileb
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ATLAS Structure

● Flat, uniform farm in both hardware and 
software (for now)

● PANDA Queues map to 
AccountingGroup(s)

● Hierarchical structure

● Only leaf nodes have jobs submitted to 
them

● Spillover between arbitrary (related) 
groups

– short and long can share but are 
constrained to 4k by parent 
(analysis)

– grid can accept all surplus not 
used by ATLAS

Key

Turquoise
leaf group with jobs

Blue
middle group, quota is sum of children, no jobs

Red arrow
group has accept_surplus on

<root>

analysis
(4000)

test
160

production
9060

long
2000

short
2000

grid
40

prod
(9220)

atlas
(13220)
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ATLAS Structure Example

<root>

analysis
(4000)

test
160

production
9060

long
2000

short
2000

grid
40

prod
(9220)

atlas
(13220)

group_atlas.analysis

group_atlas.analysis.short

group_atlas

group_atlas.prod

group_atlas.prod.production
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Multicore Support 1st Attempt

● Static slots

– Initially a test queue with a group under production

– 24-core machines with 2x8CPU and 8x1CPU slots

● Others with just 3x8CPU slots

– Jobs set to require (CPUS == 8) in job-description-file

● Discovered problem with groups—wanted quota usage to be #CPUs (default 
slot-weight)—but jobs wouldn't match correctly (see condor ticket #2958)

– Fix was provided, but still failed when any group has accept_surplus 
enabled

● We need HGQ with accept_surplus and multicore jobs in ATLAS

– Kludge fix: set slot-weight to 1, but this throws off accounting/fairness
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Node Consistency

● Reasons to avoid hard partitioning:

– Balance between queues changes frequently
● Made >30 adjustments this year so far

– Configs need to change to adapt to differing workloads

– Limitations of Condor in altering fundamental machine characteristics
● Can't change slot count or slot resource-makeup without restart
● Restart  =  full drain  ==  inefficient

– Even harder for cloud nodes
● Maintain balance with machines appearing and disappearing

● Theme: keep nodes the same!
– Even with tools like puppet, partitioning the farm by config is inefficient
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Multicore Problems in ATLAS

● Three Problems

– Previously mentioned 
multicore support

– Long standing structural issue 
with group-quotas and surplus-
sharing.

● Children with accept_surplus 
would violate parent group's quota 
under certain circumstances

– (longer term) Jobs can only 
split along local resources like 
CPU, Disk, RAM.

● Will need to define arbitrary 
“consumable” resources

Q: How to integrate multicore 
jobs into existing groups?

Q: How to integrate high-
memory jobs into existing 
groups?

A: Partitionable Slots (pslots)!

Not Working With Group 
Quotas
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Fixing bugs in Condor

● Over summer a period of 
intensive development / testing in 
collaboration with the Condor 
team to fix these issues

– Built a VM testbed, rapid build 
& test of patches from condor 
team

– Built new monitoring interface

– After many cycles, had 
working config with 
partitionable slots and HGQ 
with accept_surplus!

Supposed to stay here...

...now, it does
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Bugfix Testbed Details

● Rapid build, test, deploy cycle from git 
patches:

– Email patches

– Build condor

– Run test job feeder

– Change parameters & examine 
behavior

● Job Feeder

– Define groups in config file, with differing 
random job-length ranges and cpu-
requirements

– Variable workload: keep N idle jobs of 
each group in queue at all times

– Live-tune to simulate real-life workload 
scenarios
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Multicore jobs visualized

● Weighted random job 
generator

– Give weights for how 
much of the queue 
should be what species 
of job

● Visualized here, not much 
control over this allocation 
is currently possible
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Multicore Support After Fixes

● Fully utilize partitionable slots

– All traditional nodes (standard x86 ) can have same configuration:

For now, we can live with this since all our hardware is “traditional”

● Fix works perfectly when accept_surplus is enabled for any combination of groups

● Only works with SlotWeight=Cpus

– High-memory jobs can be accommodated by asking for more CPUs

– Need ability to partition better, what about low-memory high-cpu jobs?

– Weight should be a (linear) function of all consumable resources

SLOT_TYPE_1 = 100%
NUM_SLOTS = 1
NUM_SLOTS_TYPE_1 = 1
SLOT_TYPE_1_PARTITIONABLE = True
SlotWeight = Cpus
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High Memory Jobs Pose Potential Problem

● Clockwise from top-left:

– Ok, Ok, NOT OK!
● General problem:

– Inefficiencies in heterogeneous jobs 
scheduling to granular resources

– This is just with two dimensions, imagine 
when GPUs, Disk Space, Xeon PHI 
CoProcessors, etc... come into play
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Partitionable Slot Requirements

● Want to be able to slice by RAM, CPU, and possibly Disk

– In the future slicing by any local-resource (GPU...)
● Want sane (configurable) defaults for existing job-configs

– Request: 1 core, TotalRam/TotalCPU memory, etc...
● Want no complete starvation of larger jobs that can be 

accommodated somewhere

– Implies some form of defragmentation/draining

– Ideally defragmentation would be group-aware
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Defragmentation In Detail

● Scheduler-aware defragmentation would help

1 Spread “pain” of defragmentation across users/groups 

2 Ensure fair-share respected for users/groups across 
schedulers

● Implementation ideas

1 Look-ahead at queue to determine defrag targets
● Looking at demand from idle jobs in queue, or allowing users to provide targets

2 Keep historical data to improve heuristics
● “This user's jobs in this cluster typically run for X hours”, etc...
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Data Driven Scheduling

● Given a queue of idle work, no a priori knowledge of the 
throughput requirement

– Resource partitioning for a given workload
● E.g. Do 8-core jobs finish in 1/8th the time of a single core job?

– VM provisioning for a given work queue

● Historical data collection can help—up to a point

– Rely on users to provide information on job throughput?
● Do they even know beforehand?
● In a system like ATLAS, there are way too many layers 

between the user and the executing job for this to work
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The Problem of Weights and Costs

● What does slot-weight mean with heterogeneous resources?

– Job of administrator to determine how much to “charge” for resource usage, 
e.g. cpus + 1.5 * (ram exceeding cpus * ram/core)

– Are these weights normalized to what simple CPU counting would give?
● If not, then what does the sum of the slot-weights represent 
● How to represent resources in same box that are completely orthogonal to 

ordinary jobs (GPUS, Xeon PHI, etc...)
● Group quotas related to sum of slot-weights, needs to be constant pool-wide 

regardless of allocation (cost functions must be linear?)

– Weight related to the maximum capacity 

– CPUs are an irreducible resource
● Jobs must request at minimum 1 core each
● Should other resources be quantized?
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Future Speculation

● Don't think of matching a job to a slot

– Jobs are a set of resource-requirements

– A compute farm is a large pool of 
resources chopped up in arbitrary places

– A “match” is a multidimensional slice of a 
resource that can satisfy the job's 
requirements

● Larger “blobs” of compute are better—
quantization of resources leads to inefficiency

– Which looks easier to fit jobs into, the top 
or bottom picture?

● Breaking down barriers between nodes—
increased use of MPI-like software with 
NUMA-aware scheduling making other 
machines just like farther away NUMA 
nodes?
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Thank You!

Questions? Comments?
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