
RACF Condor and ATLAS Multicore Jobs

Condor at the RACF and
matching heterogeneous jobs with heterogeneous

resources in our ATLAS workflow

October 2013
William Strecker-Kellogg

2

Talk Outline

● RHIC/ATLAS Computing Facility (RACF)

– Our Condor Setup

– Recent Changes
● Hierarchical Group Quotas in ATLAS

– Issues, problems, and solutions
● Supporting Multicore Jobs

– Where we are and where we'd like to be
● Speculation about future developments

3

RACF Batch System Overview

● Condor pools at the RACF

– PHENIX—12.7kCPU

– STAR—11.9kCPU

– ATLAS—14.0kCPU

● Characteristics

– RHIC—federation of individual
users, some central control,
data on nodes

– ATLAS—tightly controlled,
master batch system
(PANDA), central data, strict
group layout

● Smattering of smaller experiments
are users of batch system

– LBNE

– Dayabay

– LSST

– BRAHMS / PHOBOS

4

How We Use Condor at the RACF

● Job Submission

– ATLAS—jobs submitted
locally via 6 main submit
nodes, each handling 3-4k
jobs, coming from PANDA
through autopyfactory

– PHENIX + STAR
● Interactive machines (20

and 10 respectively) allow
direct user submission

● Special nodes for
submitting to special
queues (CRS / Anatrain)

● 4 Central Managers

– Need >4Gb RAM
● 1Gb each for collector +

negotiator
● Collector sometimes forks

so need extra 1-2 Gb

● Condor Packages

– Build our own from any git
snapshot, configure to only
include libraries / features we use

– Configuration is puppet-managed

5

Configuration Changes

● Since 7.8.x condor allows
configuration macros in a
config.d/ directory

● Leveraged to make puppet-
management much easier

– Single files much easier to
handle

● Reduced by thousands of
lines the configs we maintain

– Mostly same main config
over-and-over

Old Way

Main Config:

LOCAL_COFIG_FILES = /dir/filea, /dir/fileb

Order:

1. /etc/condor_config (or $CONDOR_COFIG)

2. /dir/filea

3. /dir/fileb

New Way
Main Config:

LOCAL_CONFIG_DIR = /etc/condor/config.d/

LOCAL_COFIG_FILES = /dir/filea, /dir/fileb

Order:

1. /etc/condor_config (or $CONDOR_COFIG)

2. /etc/condor/config.d/* (in alphanumeric order)

3. /dir/filea

4. /dir/fileb

6

ATLAS Structure

● Flat, uniform farm in both hardware and
software (for now)

● PANDA Queues map to
AccountingGroup(s)

● Hierarchical structure

● Only leaf nodes have jobs submitted to
them

● Spillover between arbitrary (related)
groups

– short and long can share but are
constrained to 4k by parent
(analysis)

– grid can accept all surplus not
used by ATLAS

Key

Turquoise
leaf group with jobs

Blue
middle group, quota is sum of children, no jobs

Red arrow
group has accept_surplus on

<root>

analysis
(4000)

test
160

production
9060

long
2000

short
2000

grid
40

prod
(9220)

atlas
(13220)

7

ATLAS Structure Example

<root>

analysis
(4000)

test
160

production
9060

long
2000

short
2000

grid
40

prod
(9220)

atlas
(13220)

group_atlas.analysis

group_atlas.analysis.short

group_atlas

group_atlas.prod

group_atlas.prod.production

8

Multicore Support 1st Attempt

● Static slots

– Initially a test queue with a group under production

– 24-core machines with 2x8CPU and 8x1CPU slots

● Others with just 3x8CPU slots

– Jobs set to require (CPUS == 8) in job-description-file

● Discovered problem with groups—wanted quota usage to be #CPUs (default
slot-weight)—but jobs wouldn't match correctly (see condor ticket #2958)

– Fix was provided, but still failed when any group has accept_surplus
enabled

● We need HGQ with accept_surplus and multicore jobs in ATLAS

– Kludge fix: set slot-weight to 1, but this throws off accounting/fairness

9

Node Consistency

● Reasons to avoid hard partitioning:

– Balance between queues changes frequently
● Made >30 adjustments this year so far

– Configs need to change to adapt to differing workloads

– Limitations of Condor in altering fundamental machine characteristics
● Can't change slot count or slot resource-makeup without restart
● Restart = full drain == inefficient

– Even harder for cloud nodes
● Maintain balance with machines appearing and disappearing

● Theme: keep nodes the same!
– Even with tools like puppet, partitioning the farm by config is inefficient

10

Multicore Problems in ATLAS

● Three Problems

– Previously mentioned
multicore support

– Long standing structural issue
with group-quotas and surplus-
sharing.

● Children with accept_surplus
would violate parent group's quota
under certain circumstances

– (longer term) Jobs can only
split along local resources like
CPU, Disk, RAM.

● Will need to define arbitrary
“consumable” resources

Q: How to integrate multicore
jobs into existing groups?

Q: How to integrate high-
memory jobs into existing
groups?

A: Partitionable Slots (pslots)!

Not Working With Group
Quotas

11

Fixing bugs in Condor

● Over summer a period of
intensive development / testing in
collaboration with the Condor
team to fix these issues

– Built a VM testbed, rapid build
& test of patches from condor
team

– Built new monitoring interface

– After many cycles, had
working config with
partitionable slots and HGQ
with accept_surplus!

Supposed to stay here...

...now, it does

12

Bugfix Testbed Details

● Rapid build, test, deploy cycle from git
patches:

– Email patches

– Build condor

– Run test job feeder

– Change parameters & examine
behavior

● Job Feeder

– Define groups in config file, with differing
random job-length ranges and cpu-
requirements

– Variable workload: keep N idle jobs of
each group in queue at all times

– Live-tune to simulate real-life workload
scenarios

13

Multicore jobs visualized

● Weighted random job
generator

– Give weights for how
much of the queue
should be what species
of job

● Visualized here, not much
control over this allocation
is currently possible

Multicore jobs visualized

● Weighted random job
generator

– Give weights for how
much of the queue
should be what species
of job

● Visualized here, not much
control over this allocation
is currently possible

15

Multicore Support After Fixes

● Fully utilize partitionable slots

– All traditional nodes (standard x86) can have same configuration:

For now, we can live with this since all our hardware is “traditional”

● Fix works perfectly when accept_surplus is enabled for any combination of groups

● Only works with SlotWeight=Cpus

– High-memory jobs can be accommodated by asking for more CPUs

– Need ability to partition better, what about low-memory high-cpu jobs?

– Weight should be a (linear) function of all consumable resources

SLOT_TYPE_1 = 100%
NUM_SLOTS = 1
NUM_SLOTS_TYPE_1 = 1
SLOT_TYPE_1_PARTITIONABLE = True
SlotWeight = Cpus

16

High Memory Jobs Pose Potential Problem

● Clockwise from top-left:

– Ok, Ok, NOT OK!
● General problem:

– Inefficiencies in heterogeneous jobs
scheduling to granular resources

– This is just with two dimensions, imagine
when GPUs, Disk Space, Xeon PHI
CoProcessors, etc... come into play

17

Partitionable Slot Requirements

● Want to be able to slice by RAM, CPU, and possibly Disk

– In the future slicing by any local-resource (GPU...)
● Want sane (configurable) defaults for existing job-configs

– Request: 1 core, TotalRam/TotalCPU memory, etc...
● Want no complete starvation of larger jobs that can be

accommodated somewhere

– Implies some form of defragmentation/draining

– Ideally defragmentation would be group-aware

18

Defragmentation In Detail

● Scheduler-aware defragmentation would help

1 Spread “pain” of defragmentation across users/groups

2 Ensure fair-share respected for users/groups across
schedulers

● Implementation ideas

1 Look-ahead at queue to determine defrag targets
● Looking at demand from idle jobs in queue, or allowing users to provide targets

2 Keep historical data to improve heuristics
● “This user's jobs in this cluster typically run for X hours”, etc...

19

Data Driven Scheduling

● Given a queue of idle work, no a priori knowledge of the
throughput requirement

– Resource partitioning for a given workload
● E.g. Do 8-core jobs finish in 1/8th the time of a single core job?

– VM provisioning for a given work queue

● Historical data collection can help—up to a point

– Rely on users to provide information on job throughput?
● Do they even know beforehand?
● In a system like ATLAS, there are way too many layers

between the user and the executing job for this to work

20

The Problem of Weights and Costs

● What does slot-weight mean with heterogeneous resources?

– Job of administrator to determine how much to “charge” for resource usage,
e.g. cpus + 1.5 * (ram exceeding cpus * ram/core)

– Are these weights normalized to what simple CPU counting would give?
● If not, then what does the sum of the slot-weights represent
● How to represent resources in same box that are completely orthogonal to

ordinary jobs (GPUS, Xeon PHI, etc...)
● Group quotas related to sum of slot-weights, needs to be constant pool-wide

regardless of allocation (cost functions must be linear?)

– Weight related to the maximum capacity

– CPUs are an irreducible resource
● Jobs must request at minimum 1 core each
● Should other resources be quantized?

21

Future Speculation

● Don't think of matching a job to a slot

– Jobs are a set of resource-requirements

– A compute farm is a large pool of
resources chopped up in arbitrary places

– A “match” is a multidimensional slice of a
resource that can satisfy the job's
requirements

● Larger “blobs” of compute are better—
quantization of resources leads to inefficiency

– Which looks easier to fit jobs into, the top
or bottom picture?

● Breaking down barriers between nodes—
increased use of MPI-like software with
NUMA-aware scheduling making other
machines just like farther away NUMA
nodes?

22

Thank You!

Questions? Comments?

	Title
	Outline
	RACF Overview
	Condor @ RACF
	Configuration Changes
	ATLAS HGQ
	ATLAS Example
	First Multicore
	Node Consistency
	Multicore Problems
	Bugfixes
	Bugfix Testbed
	Update Visualization
	Visualided MC jobs
	Multicore Status After Fixes
	Mismatched jobs
	PSlot WIshlist
	Defrag
	Scheduling Heuristics
	What is Slot Weight
	Future
	Fin

