

UW Madison CMS T2 site report

D. Bradley, T. Sarangi, S. Dasu, A. Mohapatra HEP Computing Group

Outline

- **Evolution**
- **➤** Infrastructure
- **Resources**
- Management & Operation
- Contributions to CMS
- > Summary

Evolution

- ✓ Started out as a grid3 site
- ✓ Played a key role in the formation of the Grid laboratory of Wisconsin (GLOW)
- ✓ HEP/CS (Condor team) collaboration
 - Designed standalone MC production system
 - Adapted CMS software, and ran it robustly in nondedicated environments (UW grid & beyond)
- ✓ Selected as one of the 7 CMS Tier2 site in the US.
- ✓ Became a member of WLCG and subsequently OSG.
- ✓ Serving all OSG supported VOs besides CMS

Infrastructure

- ✓ 3 machine rooms, 16 racks
- ✓ Power supply 650 KW
- ✓ Cooling
 - Chilled water based air coolers and POD based hot aisles

Compute / Storage Resources

- ✓ Compute (SL6)
 - T2 HEP Pool 4200 cores (38K HS06)
 - Adding 1000 cores soon
 - Dedicated to CMS
 - GLOW Pool 3200 cores
 - Opportunistic

✓ Storage (Hadoop)

- Migrated from dCache to hadoop 3 years ago.
- 3PBs distributed across 350 nodes
- Will add 1B soon.
- Being upgraded to hadoop-2.0

Network Configuration

Network Configuration (2)

- ✓ Strong support from compus network team
- ✓ Good rate for CMS data transfer from T1/T2 sites enables data availability on demand and with low latency

Maximum: 1,516 MB/s, Minimum: 0.00 MB/s, Average: 240.48 MB/s, Current: 998.76 MB/s

Software and Services

- ✓ File systems & proxy service
 - AFS, NFS, CernVM-FS (cvmfs), Frontier/Squid
- ✓ Job batch system
 - HTCondor
- ✓ OSG software stack
 - Globus, GUMS, glexec, CEs, SEs, and a lot more
- **✓** Storage
 - Hadoop (hdfs), BestMan2(srm), gridFtp, Xrootd, etc.
- ✓ Cluster management & monitoring
 - Local yum repo, Puppet, Nagios, Ganglia, and a few dozen home grown scripts

Cluster Management & Monitoring

- ✓ Puppet
 - Migrated from Cfengine to Puppet this summer.
- ✓ Nagios
 - Hardware, disks etc.
- ✓ Ganglia
 - Services, memory, cpu/disk usage, I/O, network, storage
- ✓ OSG and CMS dedicated tools
 - RSV, SAM, Hammer Cloud, Dashboard
- **✓** Miscellaneous Scripts
 - Provide redundancy

Contributions to CMS

✓ HTCondor and Glidein technology

- condor_job_router
- condor_ssh_to_job
- condor_gangliad
- condor_defrag
- condor_shared_port & CCB
- file transfer scheduling
- scalability improvements

✓ MC production and analysis infrastructure

• ProdAgent, WMAgent

Any data, Anytime, Anywhere

- ✓ Goal: Make all CMS data transparently available to any CMS physicist, anywhere.
 - Transparent and efficient local/remote data access: no need to know about data location
 - Reliable access i.e. failures are hidden from the user's view
 - Ability to run CMS software from non-CMS managed worker nodes
 - Scheduling excess demand for CPUs to overflow to remote resources
- The technologies that make this possible:
 - xrootd (read data from anywhere)
 - cvmfs + parrot (read software from anywhere)
 - glideinWMS/HTCondor (send jobs anywhere)

Any data, Anytime, Anywhere

- ✓ Underlying technology for data access: Xrootd
 - Works with heterogenous storage systems
 - Data access at registered sites in the data federation via local/global xrootd redirectors (fallback supported)
 - Access to data via authentication
- ✓ Deploying the rest of the AAA technologies gave us added capabilities:
 - Overflow CMS jobs to other HTCondor clusters on our campus
 - Overflow CMS jobs to other sites in Open Science Grid
 - Add Amazon EC2 nodes to our site to increase capacity at the drop of a credit card

Experience with Amazon EC2

- EC2 VMs were configured as WNs in our site
 - Authorized to join HTCondor pool via x509 credential
 - Did not make use of cloud storage
 - Read data via xrootd ← Wisconsin HDFS
 - Write data via SRM → gridftp → Wisconsin HDFS
 - Read software via CVMFS
- Used EC2 Spot market to reduce cost
 - Tradeoff: risk of termination of VM at unpredictable time, causing jobs to die and restart
- Only small-scale trials so far
 - 3 cores for a month
 - 100 cores for a week

Experience with Amazon EC2

Results

- Total cost: \$0.035/equivalent-Wisconsin-core-hour
- This depends a lot on scale and type of workflow:
 - 55% of cost was for CPU
 - 45% of cost was for transferring output (at \$0.12/GB)
 - At larger volumes, price/GB decreases
- Depending on workflow, inefficiency due to spot instance termination:
 - 5-15% loss in efficiency in our trials
 - spot bid was 2x the base spot price

Summary

- ✓ The site is in good health and performing well
- ✓ Making our best effort to maintain the high availability/reliability while productively serving CMS and the grid community.
- ✓ Looking forward to make use of the new 100G network to Chicago as soon as it's available.

Thank You!

Questions / Comments?

UW Madison CMS T2 site report

Backup Slides

Cluster Management - Puppet

- ✓ Entire Tier-2 Cluster is managed by Puppet (open source project)
 - Designed as a Master-Client framework
 - Apache and rails based passenger-fusion supports the http backend for the puppet-master
 - Configuration for each service such as AFS, HDFS, SRM, GUMS are designed as individual modules
 - Configuration catalogs are propagated to each node via inbuilt SSL authentication
 - New implementation and monitoring are done through regular cron jobs

Anydata, Any time, Any where (AAA)

- ✓ Entire Tier-2 Cluster is managed by Puppet (open source project)
 - Designed as a Master-Client framework
 - Apache and rails based passenger-fusion supports the http backend for the puppet-master
 - Configuration for each service such as AFS, HDFS, SRM, GUMS are designed as individual modules
 - Configuration catalogs are propagated to each node via inbuilt SSL authentication
 - New implementation and monitoring are done through regular cron jobs