
Arithmetic for FPGAs
(all the operators you will never see in a processor)

Florent de Dinechin
e

x

√
x2 +y

2 +z
2

πx

sin
e x+

y

n∑
i=

0
x i

√
x logx

Outline

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 2

Introduction:
FPGAs for computing?

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 3

Finest Programmable Granularity Around

e0

F R

Ck

sb

s

e5

Field-Programmable Gate Array (FPGA)

Mass-produced chips, universally programmable, but:

programming model: the circuit

granularity: the bit

Applications

Rapid prototyping of VLSI circuits

Small series, where a dedicated chip would be too expensive

Universal computing accelerators?

F. de Dinechin FPGA arithmetic 4

Two different ways of wasting silicon

Here are two universally programmable chips.

processeur IBM Power 7 FPGA Xilinx Virtex-4

Who’s best for (insert your computation here) ?

F. de Dinechin FPGA arithmetic 5

Are FPGAs any good at floating-point?

Long ago (1995), people ported the basic operations: +,−,×
Versus the highly optimized FPU in the processor,

each operator 10x slower in an FPGA

This is the inavoidable overhead of programmability.

If you lose according to a metric, change the metric.

Peak marketing lies for double-precision floating-point exponential:

AVX core: 40 cycles / 4 DPExp @ 4GHz: 400 MDPExp/s

FPExp in FPGA: 1 DPExp/cycle @ 500MHz: 500 MDPExp/s

Chip vs chip: 8 Pentium cores vs 200 FPExp/FPGA

Energy/DPExp also much better on FPGA

Single precision comparison even better for FPGA

(Intel MKL vector libm, vs FPExp in FloPoCo version 2.0.0)

F. de Dinechin FPGA arithmetic 6

Dura Amdahl lex, sed lex

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

F. de Dinechin FPGA arithmetic 7

Custom arithmetic (not your Pentium’s)

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

Never compute
1 bit more accurately
than needed!

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

Never compute
1 bit more accurately
than needed!

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

generator
Need a

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

F. de Dinechin FPGA arithmetic 8

Useful operators that make sense in a processor

Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to FMA
(IBM then HP then Intel)

Should a processor include decimal hardware?
Yes say IBM, No say Intel

Should a processor include a multiplier by log(2)?
No of course.

F. de Dinechin FPGA arithmetic 9

Useful operators that make sense in an FPGA or ASIC

Elementary functions ?
Yes iff your application needs it

Divider or square root?
Yes iff your application needs it

Decimal hardware?
Yes iff your application needs it

A multiplier by log(2)?
Yes iff your application needs it

In FPGAs, useful means: useful to one application.

F. de Dinechin FPGA arithmetic 10

Enough work to keep me busy to retirement

Arithmetic operators useful to at least one application:

Elementary functions (sine, exponential, logarithm...)

Algebraic functions (
x√

x2 + y2
, polynomials, ...)

Compound functions (log2(1± 2x), e−Kt2 , ...)

Floating-point sums, dot products, sums of squares

Specialized operators: constant multipliers, squarers, ...

Complex arithmetic

LNS arithmetic

Decimal arithmetic

Interval arithmetic

...

F. de Dinechin FPGA arithmetic 11

What do we call arithmetic operators?

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematical definition (even for floating-point arithmetic)

The operator as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

F. de Dinechin FPGA arithmetic 12

The FloPoCo project

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 13

Floating Point Cores, but not only

Initial goal: FPGA arithmetic the way it should be

that is: open-ended, unlike processor arithmetic

an open-ended list of custom operators

open-ended data formats: all operators fully parameterized

open-ended performance trade-off: flexible pipeline

General philosophy: computing just right

Beyond the plan

the FloPoCo framework was successfully used to design the FPU of
the Kalray processor

FloPoCo provides the floating-point back-end to the PandA project
(politecnico de Milano)

F. de Dinechin FPGA arithmetic 14

Here should come a demo

FloPoCo is freely available from

http://flopoco.gforge.inria.fr/

Command line syntax: a sequence of operator specifications

Options: target frequency, target hardware, ...

Output: synthesizable VHDL.

Written in C++

F. de Dinechin FPGA arithmetic 15

http://flopoco.gforge.inria.fr/

Don’t trust this operator,
it was written by an underpaid computer

FloPoCo is already able to generate an infinite number of operators.
We haven’t tested them all.
Two operators, TestBench and TestBenchFile, generate test benchs for
the operator preceding them on the command line

flopoco FPExp 8 23 TestBenchFile 10000

generates 10000 random tests
flopoco IntConstDiv 16 3 -1 TestBenchFile -2

generates an exhaustive test

Specification-based test bench generation

Not by simulation of the generated architecture!

Operator-specific random generator overloading

FPExp: bias towards the small interval on which it is defined

FPAdder: bias towards catastrophic cancellation

F. de Dinechin FPGA arithmetic 16

One example of operator fusion

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 17

Floating-point sum of squares

x2 + y2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication

half the hardware required

x2, y2, and z2 are positive:

one half of your FP adder is useless

Accuracy can be improved:

5 rounding errors in the floating-point version
(x*x+y*y)+z*z : asymmetrical

The FloPoCo Recipe

Floating-point interface for convenience

Clear accuracy specification for computing just right

Fixed-point internal architecture for efficiency

F. de Dinechin FPGA arithmetic 18

A floating-point adder

λ

LZC/shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex − ey

close path c/f

ex

ez

my

shift

|mx −my |

my

1-bit shift

ex

ez

mx

far path
mz , r

mz , r

sticky

s

gr

prenorm (2-bit shift)

s

F. de Dinechin FPGA arithmetic 19

A fixed-point architecture

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

F. de Dinechin FPGA arithmetic 20

The benefits of custom computing

A few results for floating-point sum-of-squares on Virtex4:

Simple Precision area performance

LogiCore classic 1282 slices, 20 DSP 43 cycles @ 353 MHz

FloPoCo classic 1188 slices, 12 DSP 29 cycles @ 289 MHz

FloPoCo custom 453 slices, 9 DSP 11 cycles @ 368 MHz

Double Precision area performance

FloPoCo classic 4480 slices, 27 DSP 46 cycles @ 276 MHz

FloPoCo custom 1845 slices, 18 DSP 16 cycles @ 362 MHz

all performance metrics improved, FLOP/s/area more than doubled

Plus: custom operator more accurate, and symmetrical

F. de Dinechin FPGA arithmetic 21

Custom also means: custom pipeline

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial

F. de Dinechin FPGA arithmetic 22

One example of operator
specialization

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 23

Division by small integer constants

Motivation

divisions by 3 and by 9 in stencil applications (Jacobi)

Also

fancy address generation

division by 10 for decimal/binary conversion,

exponent processing in floating-point cubic root,

coefficients 1/6 and 1/24 in sine/cosine Taylor formula

...

F. de Dinechin FPGA arithmetic 24

Implementation options

Floating-point, single precision, Virtex 5

as a divider, with one input tied to 3:
1122 Reg + 945 LUT; 17 cycles @ 290 MHz

as an FP multiplier with one input tied to 1/3:
88 Reg + 130 LUT; 2 DSP blocks; 3 cycles @ 500MHz

as an FP “multiplier by a constant”:
149 Reg + 318 LUT; 4 cycles @ 439MHz

the same, but exploiting the periodicity of the constant
(1/3 = 0.010101010101010...)

107 Reg + 197 LUT; 4 cycles @ 422MHz

this work:
105 Reg + 83 LUT ; 3 cycles @ 411 MHz
... and correctly rounded (equivalent to using a divider)

F. de Dinechin FPGA arithmetic 25

Anybody here remembers how we compute divisions?

8

2

62

571 2

37 7 6

iteration body: Euclidean division of a 2-digit decimal number by 3

The first digit is a remainder from previous iteration:
its value is 0, 1 or 2

Possible implementation as a look-up table.

F. de Dinechin FPGA arithmetic 26

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

F

0

D2

020 5

3F 2 D

F. de Dinechin FPGA arithmetic 27

And now for some mathematical obfuscation

procedure ConstantDiv(x , d)
rk ← 0
for i = k − 1 down to 0 do

yi ← xi + 2αri+1 (this + is a concatenation)
(qi , ri)← (byi/dc, yi mod d) (read from a table)

end for
return q =

∑k
i=0 qi .2

−αi , r0
end procedure

Each iteration

consumes α bits of x , and a remainder of size γ = dlog2 de
produces α bits of q, and a remainder of size γ

implemented as a table with α + γ bits in, α + γ bits out

F. de Dinechin FPGA arithmetic 28

Unrolled implementation

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0r3 r2 r1 r0 = r

4

r4 = 0

F. de Dinechin FPGA arithmetic 29

Choice of parameters for a logic-based implementation

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0r3 r2 r1 r0 = r

4

r4 = 0

FPGA logic is LUT-based (Example: LUT6 is a 6-input LUT)

A 6-bit in, 6-bit out LUT consumes 6 LUT6
Easy to pipeline (one register behind each LUT)

Optimal α s.t. α + γ = 6

Efficient for small constants only (need small γ)
Notice that 24 is actually 3...

F. de Dinechin FPGA arithmetic 30

Floating-point has low overhead

01

m < d ′?

+1 h

div by d

1

me

−s − 1
ovftz

Exn

e m

� s � s + 1

ξ

ξ

0

γ

normalisation: small comparison, big mux;
rounding for free! ◦(z/d) = bz/d + 1

2c

◦
(

2s+εm

d

)
=

⌊
2s+εm

d
+

1

2

⌋
=

⌊
2s+εm + d/2

d

⌋
and this + is again a concatenation (h on the picture)

F. de Dinechin FPGA arithmetic 31

Synthesis results on Virtex-5
for pipelined floating-point division by 3

single precision

FF + LUT6 performance

35 Reg + 69 LUT 1 cycle @ 217 MHz
105 Reg + 83 LUT 3 cycles @ 411 MHz

standard correctly rounded divider
1122 Reg + 945 LUT 17 cycles @ 290 MHz

double precision

FF + LUT6 performance

122 Reg + 166 LUT 2 cycles @ 217 MHz
200 Reg + 214 LUT 4 cycles @ 336 MHz

using shift-and-add
282 Reg + 470 LUT 5 cycles @ 307 MHz

F. de Dinechin FPGA arithmetic 32

Conclusion

Was it worth to waste your precious time on division by 3?

(this slide intentionally left blank)

F. de Dinechin FPGA arithmetic 33

My personal record

Two weeks from the first blackboard description of the algorithm
to complete pipelined FloPoCo implementation + paper submission.

Implementation time

10 minutes to obtain a testbench generator

1/2 day for the integer Euclidean division

20 mn for its flexible pipeline

1/2 day for the FP divider by 3

This was advertising for the FloPoCo framework.

F. de Dinechin FPGA arithmetic 34

One example of open-ended
operator

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 35

Just one slide

A polynomial evaluator for arbitrary functions

Example:
flopoco FunctionEvaluator "(sin(x*Pi/2))^ 2" 32 32 4

The string is a mathematical function

32-bit in, 32-bit out

Last-bit accurate (all returned bits hold useful information)

4 is the degree of the polynomial, allows to express a
memory/multiplier trade-off

Works for the set of functions for which it works

Another one is HOTBM.
Still work in progress...

F. de Dinechin FPGA arithmetic 36

Conclusion

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 37

My current crusade

The evil (at least on FPGAs)

“A fast implementation of single-precision floating-point exponential
(but accurate to 2−8 only)”

Do you see why it is wrong?

A line I shall have in each of my talks until the world is saved

Save routing! Save power! Don’t move useless bits around!

Or maybe this one

Do you really need to compute this bit?

F. de Dinechin FPGA arithmetic 38

The “no killer app” theorem

For 20 years, the FPGA community has been waiting for the “killer
application”.
(The widely useful application on which the FPGA is so much better)

Theorem: we’ll wait forever.

Proof: When such an application pops up,

either it is indeed widely useful, and next year’s Pentium will do it
in hardware 10x faster than the FPGA, so it won’t be an FPGA
killer app next year,

or the FPGA remains competitive next year, but it means that it
was not a killer app.

The killer feature of FPGAs is flexibility

To exploit it, we do need infinitely many arithmetic operators.

F. de Dinechin FPGA arithmetic 39

Computing just right

In a Pentium

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!

F. de Dinechin FPGA arithmetic 40

An almost virgin land

Most of the arithmetic literature addresses the construction of SUVs.

F. de Dinechin FPGA arithmetic 41

So when do we have an FPGA in every PC?

When they become as easy to program as processors?

(now that’s a challenge)

(or do we quietly wait for processors to become as messy to program as
FPGAs?)

F. de Dinechin FPGA arithmetic 42

Thanks for your attention

The following people have contributed to FloPoCo:
S. Banescu, N. Brunie, S. Collange, J. Detrey,
P. Echeverŕıa, F. Ferrandi, M. Grad, K. Illyes,
M. Iştoan, M. Joldeş, C. Klein, D. Mastrandrea,
B. Paşca, B. Popa, X. Pujol, D. Thomas,
R. Tudoran, A. Vasquez.

e

x

√
x2 +y

2 +z
2

πx

sin
e x+

y

n∑
i=

0
x i

√
x logx

http://flopoco.gforge.inria.fr/

Introduction: FPGAs for computing?

The FloPoCo project

One example of operator fusion

One example of operator specialization

One example of open-ended operator

Conclusion

F. de Dinechin FPGA arithmetic 43

http://flopoco.gforge.inria.fr/

	Introduction: FPGAs for computing?
	The FloPoCo project
	One example of operator fusion
	One example of operator specialization
	One example of open-ended operator
	Conclusion

