Floating Point Issues in Data Analysis

Lorenzo Moneta CERN, PH-SFT

CERN/Intel workshop on Numerical Computing May 27-28, 2013, CERN

Outline

- Introduction
- ROOT Mathematical libraries
- Numerical Errors in Fitting and Minimization
 - numerical derivative error
 - summation error
- Error in Matrix computation (inversion)
- Summary

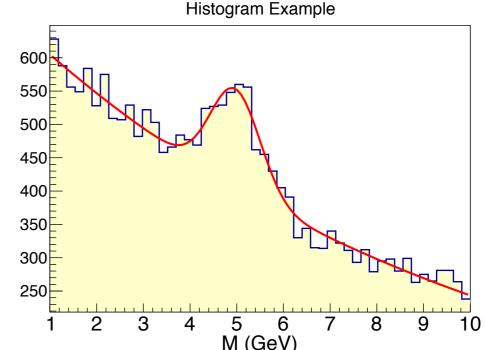
Introduction

- If $\beta = 2$, t = 3, $e_{\min} = -1$, and $e_{\max} = 3$: Floating Points • $fl(x) = x(1 + \varepsilon)$ 0 0.5 1.0 2.0 3.0 4.0 5.0 7.0 6.0 • fl(x op y) = (x op y) (1+ ϵ) op = +,-,/,* $\epsilon \le u = \frac{1}{2}\beta^{1-t}$ • single precision (32 bits), $u = 2^{-24} \approx 6 \times 10^{-8}$ **IEEE 754** • double precision (64 bits): $u = 2^{-53} \approx 1.1 \times 10^{-16}$ • relative error on result can be much larger
 - e.g. $fl(x-y) \leq \varepsilon (|x|+|y|)/(|x-y|)$ large for $x \sim y$
 - fl(fl(x+y) + z) \neq fl(fl(x+z) + y)
- 32 bits vs 64 bits architectures
 - in 32 bits arch. operations done in double extended precision (t = 64), but stored as double in memory

Scaling

- Importance to try to keep numbers around 1
- Better to apply a linear transformation to the data to have location and scale around 1
 - Non-sense using for observables units not close to 1 (e.g use GeV instead of eV)
 - scale is defined by physical quantities (e.g. detector resolution)
 - use reasonable ranges

do not use here a scale from 1.x10⁹ to 10x10⁹ (eV)



4

Standard Deviation

- Computing the sample variance is numerically difficult when $\mu >> \sigma$
 - \bullet Normally s^2 and μ computed with one pass

$$s^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \mu)^{2}}{N} = \sum_{i=1}^{N} \frac{x_{i}^{2}}{N} - \left(\sum_{i=0}^{N} \frac{x_{i}}{N}\right)^{2}$$

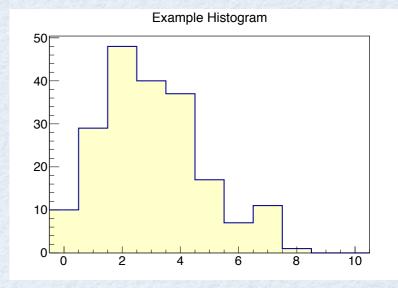
- numerical error when making difference of two positive numbers
- A possible solution is to accumulate

$$M_{1} = x_{1} \qquad M_{k} = M_{k-1} + \frac{x_{k} - M_{k-1}}{k} \longrightarrow \hat{\mu} = M_{N}$$
$$S_{1} = 0 \quad S_{k} = S_{k-1} + \frac{(k-1)(x_{k} - M_{k-1})^{2}}{k} \longrightarrow s^{2} = \frac{S_{N}}{N}$$

Example: Histograms

- Histogram classes in single (TH1F) and double precision (TH1D)
 - axis always represented in double precision
 - choose correct bin boundaries

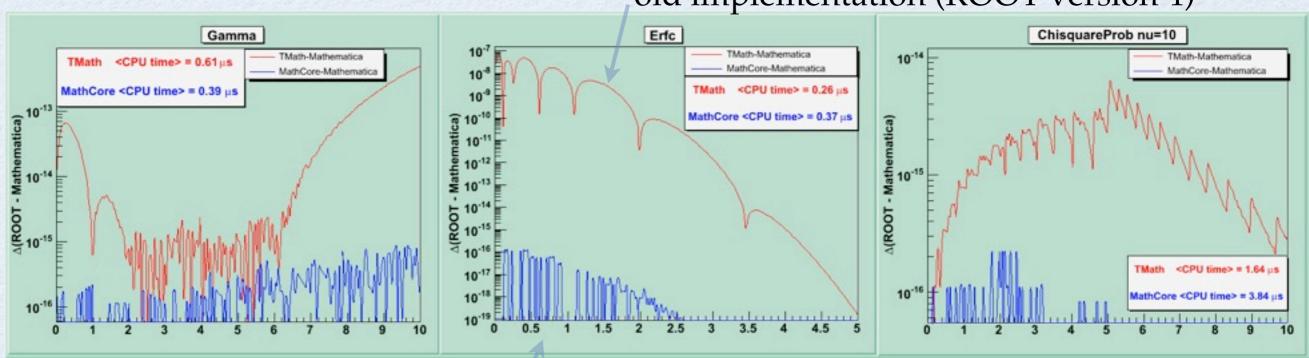
$$i_{bin} = \operatorname{int}\left(n_{bins}\frac{x - x_{MIN}}{x_{MAX} - x_{MIN}}\right)$$



- single precision often enough for bin content
 - save memory for large multi-dim histograms
- double precision often not really needed (apart from cases with large number of counts/bin)
 - provided also a **TH1I** (integer bin content)
 - if memory is not an issue, better always to use double precision

Mathematical Functions

- All Math functions (transcendental, special functions and statistical functions) in ROOT are provided in double precision
 - for some dedicated cases a faster single-precision function may be preferable
 - plan to introduce also vectorized versions

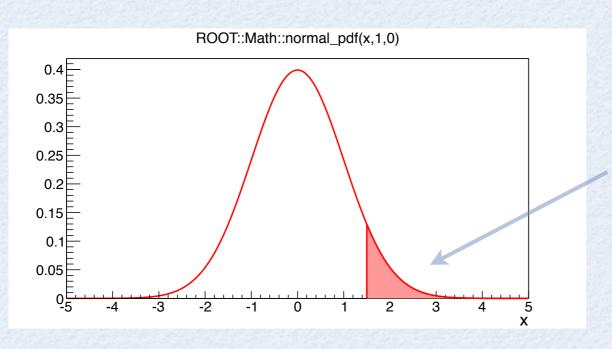


old implementation (ROOT version 4)

new implementation based on Cephes in ROOT 5

Statistical Functions

- Example: statistical functions:
 - provide cumulative and its complement (using a different implementation):



- normal_cdf(x,σ) (left tail)
- normal_cdf_c(x,σ) (right tail)
 instead of just using
 1.0 normal_cdf(x,σ)

- Same for the inverse of cumulative (quantile)
 - normal_quantile(p, σ) and normal_quantile_c(p, σ)
 - significance $n_{\sigma} = normal_quantile_c(p, \sigma)$

Matrix and Vector Libraries

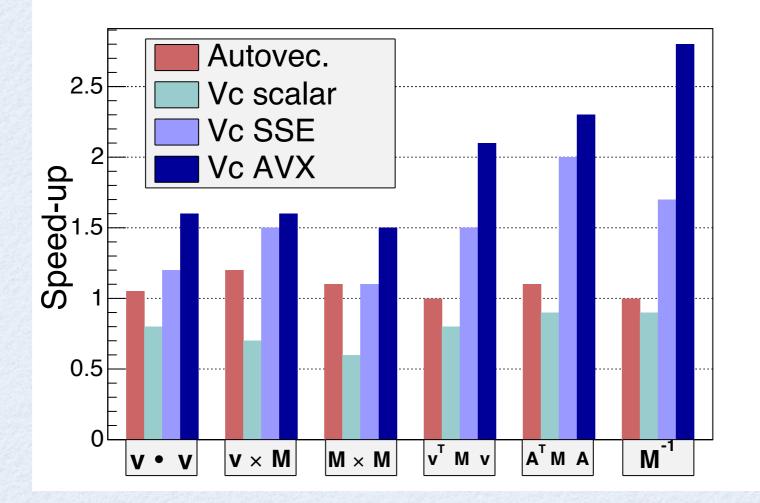
- ROOT Mathematical Libraries provide:
 - Template vector and matrix classes (in any dimension)
 - e.g. SMatrix< N, double>
 - Template classes for geometry and physics vectors
 - e.g. LorentzVector<PxPyPzE4D<double>>
 - classes can be used in single and double precision
- Often no need of double precision for measured quantities (observables)
- Simple mathematical computations could be done in single precision
 - faster if using vectorization
- Need double precision for transformation (e.g. rotation) or when performing large summation

Vectorization

- Replace the template parameter in SMatrix, SVector and LorentzVector with a vector type
 - allows vectorization on operations performed on list of matrices or physics vectors
- Investigated Vc library:
 - C++ vectors wrapping intrinsics for SIMD operations
 - Vc::float_v, Vc::double_v
 - same semantics as built-in types
 - one can use double_v as a double
 - http://code.compeng.uni-frankfurt.de/projects/vc/

Vectorization using Vc

- Perform operations in SMatrix using vc::double_v instead of double
 - speed-up obtained for processing operations on a list of 100 SMatrix<double,5,5> and SVector<double,5>

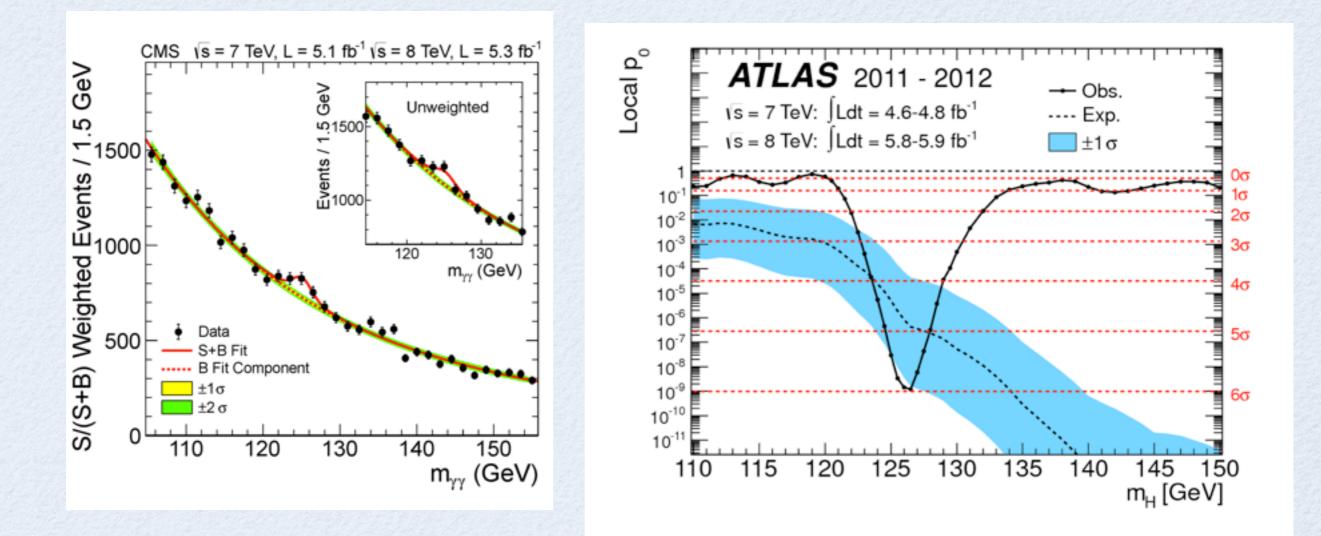


Function Minimization

- One of the most used algorithm in data analysis
- Function minimization is needed in statistical analysis
 - fitting data points (non-linear least square fits)
 - maximum likelihood fits (parameter estimation) and for error analysis (interval estimation)
 - likelihood $L(x|\theta) = \prod_{i} P(x_i|\theta)$ • minimum of $-\log L = \sum_{i} \log P(x_i|\theta)$

Example: Higgs Searches

 Higgs search results require numerous minimization of complex likelihood functions (~ 500 parameters)



MINUIT Algorithm

- Migrad based on Variable Metric algorithm (Davidon)
- Iterate to find function minimum:
 - start from initial estimate of gradient \mathbf{g}_0 and Hessian matrix, \mathbf{H}_0
 - find Newton direction: $d = H^{-1}g$
 - computing step by searching for minimum of **F(x)** along **d**
 - compute gradient **g** at the new point
 - update inverse Hessian matrix, H⁻¹ at the new point using an approximate formula (Davidon, Powell, Fletcher)
 - better updating inverse H⁻¹ than Hessian H
 - matrix is positive defined but numerical errors can make it not
 - repeat iteration until expected distance from minimum (edm) smaller than required tolerance (edm = g^TH⁻¹g)

Numerical Errors

- What is effect of numerical errors in MINUIT ?
 - Minimization will be less efficient,

 \Rightarrow more iterations \Rightarrow more CPU time

but minimizer will converge anyway

- Minimization could fail, not being able to converge to a minimum with the required tolerance
 interest in absolute tolerance: ΔL = 0.5 ⇒ 1 σ error in parameters
- Error in inverting the covariance matrix
- In same case could converge to a different minimum (e.g. a local one)

 \Rightarrow obtain a wrong result

Numerical Errors (2)

- What are the cause of numerical errors ?
 - error in objective function when computing the sum of n elements: $-\log L = \sum_{i} \log P(x_i|\theta)$
 - error : ~ nε double precision is needed
 - can have also errors from:
 - computation of log(P(x))
 - normalization of P(x) due to numerical integration
 - Error in computing derivatives of log-likelihood

Derivative Errors

- MINUIT provides algorithm for computation of derivatives via finite differences
- using analytical derivatives is often prohibitive in case of very complex models
 - numerical differentiation is very convenient for users
 - minimization is very sensitive to derivative errors
 - when closer to the function minimum gradient becomes closer to zero
 - difficulty in converging in case of error in derivatives
- Discontinuities in derivatives must also be avoided !

Computation of Derivatives

Compute derivatives by finite differences

$$\frac{\partial f}{\partial x_{i}} \approx \frac{f(x_{i} + \delta x_{i}) - f(x_{i} - \delta x_{i})}{2\delta x_{i}}$$

$$\epsilon_{TOT} = \frac{|f'''(\mu)|}{6}h^{2} + \epsilon_{R}\frac{|f|}{h}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

Essential to find the right scale or step size Algorithm in Minuit uses an iterative procedure starting from an initial user estimate

Numerical Integration

- Problematic to use Monte Carlo integration to normalize the PDF when minimizing the likelihood
 - error will be too large and random
 - makes discontinuities in minimization function
- Use adaptive numerical integration:

$$\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

- numerical error under control if sum is not too large
- important to define the right integration range
 - e.g. when integrating a very sharp peak

Error in Likelihood Evaluation

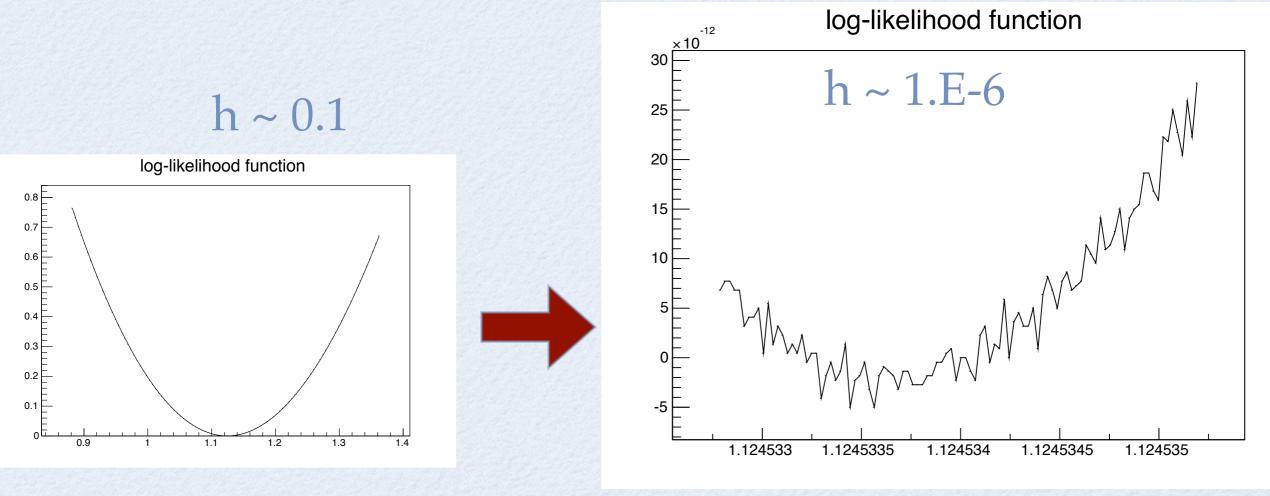
• In complex fits (e.g Higgs combination) log-likelihood is obtained by adding several channels.

$$-\log L(x|\mu,\theta) = \sum_{c \in channel} \sum_{i} \log P_c(x_{i_c}|\mu,\theta) + \sum_{\substack{\theta_k \\ \text{channel P.D.F (model)}}} \log P_k(\theta_k^0|\theta_k)$$

- Each channel can have different scale in log-likelihood and different numerical error
- Possible solution (available now in RooFit):
 - improve error by setting an offset for each loglikelihood component (each channel) so it is equal to 0 for nominal values
 - fits are converging much better after this re-scaling

Numerical Error Estimation

- Rude estimate of numerical error in function evaluation
 - scan the function around x with decreasing stepsizes



Error in Summation

- Summing can be problematic also when computing the likelihood sum in parallel
 - different order of computation will result in different result for numerical error
 - can happen when using multi-threads or multi-processes with some dynamic scheduling
 - one must be careful also with vectorization
 - e.g. using *-fast-math* option in gcc
- Summing errors can be mitigated using compensated summation (Kahan)
 - added in latest Roofit version

Matrix Computation

- Computing inverse of a matrix is very sensitive to numerical errors
 - Linear system: better to solve directly without computing inverse
 - inverse needed for statistical analysis: covariance matrix (parameter errors), unfolding, etc..
- ROOT provides various matrix decomposition algorithms for solving linear systems and finding the inverse
 - LU, Bunch-Kaufmann, Choleski, QR and SVD
 - error depends on condition number
 - $k = ||A|| ||A^{-1}||$
 - accuracy in solution ~ $\varepsilon 10^k$ ~ $10^{-(16-k)}$ for double precision

Example: Small Matrix Inversion

- ROOT provides also fast inversion for small matrices (up to size 5) using Cramer (TMatrix::InvertFast, SMatrix::InvertFast)
 - factor of 2 faster, since code can be written explicitly
 - suffer from numerical problems:

 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ based on } \det(A) = a * d - b * c$

- Example if A is 5x5 matrix one can get results as
 - AA⁻¹ using fast Cramer inv.: error ~ 10⁻⁶
 - AA⁻¹ with LU decomposition: error ~ 10⁻¹²

Summary

- Importance of being aware of floating point traps in performing numerical calculations
 - must not ignore floating point errors, although observables measured at a much less precision
 - learn how numerical errors arise in most used algorithms of data analysis
 - hope you will learn later how you can control better these numerical errors

• Wikipedia:

- <u>http://en.wikipedia.org/wiki/Floating_point</u>
- W. Kahan home page (with code examples)
 - http://www.cs.berkeley.edu/~wkahan/
- N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM book, 2002
- D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM Computing Surveys 23, 5–48
- D. Monniaux, *The pitfall of verifying floating-point computations*, ACM Transactions on Programming Languages and Systems 30, 3 (2008) 12