Floating Point in Experimental HEP

Data Processing
(aka Reconstruction)

Vincenzo Innocente
CERN
PH/SFT & CMS

Collisions at the LHC: summary

7x10'2 eV Beam Energy
10% cm2s' Luminosity

2835 Bunches/Beam
10" Protons/Bunch
&:Eﬁé" 3‘_ —
B 7.5m (25 ns)

\
A

| ; -
o = =

‘%ﬁ\ 17 TeV Proton Proton

b Bunch Crossing 4 107 Hz colliding beams

%
@

Proton Collisions 10°Hz

Parton Collisions u
o T
& - - . p ?
New Particle Production 10 Hz Lol L2y fet
(Higgs, SUSY,) V’z
by

26/5113 Selection of 1 event in, 10,000,000,000,000

- Detector “onion” structure

Key; Muon
Electron

Charged Hadron (e.g.Pion)
)“" -~ = = - Neutral Hadron (e.g. Neutron)

Transverse slice
through CMS

N
< U””/U_:

i 7

Electromagnetic
Calorimeter

Silicon
Tracker

Superconducting
Solenoid
Iron return yoke interspersed
with Muon chambers
om im 2m 3m 4m Sm 6m 7m
L 1 1 1 1 1 1 1

26/5/13 VI FP in EHEP 3

COIL

Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla

By /2 v f.‘_'{{; — =0 <
K =

‘//

.. U
~| MUON BARREL

An experiment: CMS

SUPERCONDUCTING eSESR al\tlllnEg-Il;E\ﬁ§4 HCALPlastic scintillator

Crystals|y

S

copper
sandwich

79 o
%, L

IRON YOKE

EEENE
g
2

1’2.\ /
S

’ S)

Silicon Microstrips
Pixels

26/5/13

:
SusssEEEEEENERENE
5

m v,

. strips
Drift Tube Resistive Plate Cathode Strip Chambers (CSC)
Chambers (DT) Chambers (RPC) Resistive Plate Chambers (RPC)

VI FP in EHEP 4

Data and Algorithms

HEP main data are organized in Events (particle collisions)

Simulation, Reconstruction and Analysis programs process
“one Event at the time”

— Events are fairly independent of each other

— Trivial parallel processing

Event processing programs are composed of a number of

Algorithms selecting and transforming “raw” Event data
into “processed” (reconstructed) Event data and statistics

— Algorithms are mainly developed by “Physicists”

— Algorithms may require additional “detector conditions” data
(e.g. calibrations, geometry, environmental parameters, etc.)

— Statistical data (histograms, distributions, etc.) are typically the
final data processing results

High Energy Analysis Model

MonteCarlo
Simulation follows
the evolution of
physics processes
from collision to
digital signals

MC Data Comparison Real Data o
Reconstruction “goes

Particles back in time” from
digital signals to the
original particles

ProtoParticles produced in the

collision

A

GenParticles

MCParticles

Tracks

Information

Clusters

MCDigits Digits
(Raw data)

Processing

Analysis compares (at statistical level) reconstructed
events from real data with those from simulation

Analogies with Industry

Signal/image processing

— DAC (including calibrations)

— Pattern recognition, “clustering”

Topological problems

— Closest neighbor, minimum path, space partitioning
Gamin g (our main source of inspiration!)

— “walk-through” complex 3D geometries
— Detection of “collisions”

Navigation/Avionics (Kalman filtering)
— Tracking in a force field in presence of “noise”
— Trajectory identification and prediction

Accuracy, Precision

Measurement themselves require a modest
precision (16,24 bits)

Geometry/Materials often known at per-cent level

Dynamic range, when converted in natural units,
often requires a high precision FP representation
— Enengy range >10°

— Position: micron over 20m

Many conversions back and forth various
coordinate/measurement systems

Error manipulation (including correlations)

— Squared quantities: each transformation requires two
matrix multiplications

FP operations in reconstruction

* Signal calibration

— |deal for vectorization
* (if was not that calib requires lookup!)
e Calib-params may depend on “reconstructed quantities”

* “Geometry” transformation
— Trigonometry (also log/exp!)
— Small matrices (max 5x5, 6x6)

 Many logs, exp coming from parameterizations

Vectorization?

* Current code design and implementation often hinder
vectorization
— High granularity “naive” object model
* Innermost loop often not the longest!

— Fragmentation in several libraries (plugin model)
* Ito will not help

— “Linear thinking” conditional code

* Only a massive redesign of data-structures and algorithms
will make vectorization effective

— Not alone: see

* http://research.scee.net/files/presentations/gcapaustralia09/
Pitfalls of Object Oriented Programming GCAP 09.pdf

e http://www.slideshare.net/DICEStudio/introduction-to-data-oriented-
design

26/5/13 VI FP in EHEP 10

Typical Profile (today)

CPI (cycle per instruction): 0.964

load instructions %: 30.58% % of SIMD in all uops: 19.22%
store instructions %: 13.74% % of comp. SIMD in all uops: 10.17%
load and store instructions %: 44.31%

resource sta.IIs % (of cycles): 30.63% breakdown: %of all uops % of all SIMD
branch instructions % (approx): 17.06% ppckep_DOUBLE: ~ 0.663% 3.449%
% of branch instr. mispredicted: 2.25% PACKED_SINGLE: 0.613% 3.190%
%of L3 loads missed: 2.09% gca|AR_DOUBLE: ~ 13.485% 70.159%
computational x87 instr. %: 0.038% SCALAR_SINGLE: 4.038% 21.010%

Div.Busy: 5.30% VECTOR_INTEGER: 0.421% 2.192%
More details (see next page):
Function where time is spent most
* No hot-spot: top 30 each between 2.5% and 0.5% of total

e Trig/trans functions

» div/sqgrt latency

9.5e+07 5.30 % 8.1le+09 41.41 % 2e+09 10.07 % __ieee754_exp
3.5e+08 13.71 % 8.1e+09 45.49 % 0 0.00 % arena_malloc_small
6.7e+06 0.23 % 7.5e+09 47.55 % 3.8e+09 24.31 % __ieee754_atan2
6.6e+07 46.92 % 9.9e+09 63.11 % 4.2e+09 26.82 % void TkGluedMeasurementDet::doubleMatch< ...
1.9e+08 15.15 & 4.9e+09 33.67 % 0 0.00 % arena_dalloc_bin
1.4e+08 7.66 % 9.6e+09 68.94 % 5.9e+09 42.28 % ThirdHitPredictionFromCircle: :phi(double ...
3.4e+07 1.05 % 6e+09 43.11 % 3.6e+09 25.47 % atanf
3.9e+08 17.85 % 7.8e+09 58.89 % 0 0.00 % free
4.4e+07 2.68 % 8.5e+09 65.22 % 2.4e+09 18.60 ¥ _ ieee754_acos
2.5e+07 2.56 % 4.3e+09 34.11 % 1.1e+08 0.90 % ROOT: :Math: :SMatrix<double, (unsigned in ...
1.1e+07 11.71 % 4.4e+09 41.21 % 0 0.00 & cms: : TrackListMerger: :produce(edm: :Event ...
8.5e+07 204.00 % 8.6e+09 81.25 % 4.2e+09 39.96 ¥ magfieldparam::TkBfield::Bcyl(double, do ...
6.2e+06 0.59 % 4.6e+09 46.46 % 5.6e+08 5.70 ¥ _ ieee754_log
1.7e+06 0.99 % 4.9e+09 53.99 % 5.6e+07 0.61 % <unknown(s)>
1.8e+08 7.49 % 5.1e+09 59.85 % 2.8e+07 0.33 % strcmp
2.6e+08 20.20 % 5.5e+09 67.64 % 2.6e+09 32.26 % PixelTripletLargeTipGenerator::hitTriple ...
0 0.00 % 4.3e+09 57.80 % 1.1le+08 1.51 & do_lookup_ x
9.3e+07 11.99 % 4.9e+09 66.54 % 3.9e+09 53.23 % DAClusterizerInZ::update(double, std::ve ...
3.4e+07 11.88 % 3.5e+09 48.00 % 3.1e+08 4.22 % sincos
1.3e+08 24.73 % 2.5e+09 41.40 % 4.2e+08 6.82 % PixelTripletHLTGenerator::hitTriplets(Tr ...
4.8e+07 19.87 % 4.7e+09 77.57 % 4.5e+08 7.34 % tan
0 0.00 % 2.5e+09 45.01 % 0 0.00 % <unknown(s)>
7.3e+07 8.77 % 2.1e+09 37.74 % 5.9e+08 10.71 § _ ieee754_atan2f
9.8e+06 5.74 % 3.9e+09 71.26 % 2e+09 37.42 % AnalyticalCurvilinearJacobian: :computeFu ...
8.4e+06 9.26 % 3.4e+09 64.46 % 1.5e+09 28.77 % JacobianCurvilinearToLocal: :JacobianCurv ...
7.3e+06 9.85 % 1.7e+09 32.66 % 0 0.00 % SistripRecHit2D::sharesInput(TrackingRec ...
6.7e+07 24.80 % 3.1e+09 62.12 % 1.2e+09 23.72 % StripCPEfromTrackAngle: :localParameters(...
2.4e+07 17.47 % 2.9e+09 62.58 % 7e+08 15.34 % std::pair<bool, double> Chi2MeasurementE ...
1.6e+08 13.06 % 1.7e+09 36.84 % 0 0.00 & arena_malloc
0 0.09 % 5.3e+08 12.62 % 0 0.00 % PixelHitMatcher::compatibleSeeds(std::ve ...
6.6e+07 23.53 % 2.9e+09 69.80 % 2e+09 47.86 % ThirdHitPredictionFromCircle::angle(doub ...
2.8e+05 5.50 % 1.8e+09 43.09 % 1.7e+09 41.04 % RectangularPlaneBounds: :inside(Point3DBa ...
2.8e+05 0.04 % 1.1e+09 28.79 % 0 0.00 % inflate fast
0 0.00 % 2.3e+09 59.12 % 0 0.00 % fesetenv

Cost of operations (1in cpu cvycles)
op |instruction |sses |ssed [aws Jawd
3 3 3

+,- ADD,SUB 3

COMISS CMP.. 2,3 2,3 2,3 2,3

CVT.. 3 3 4 4

|, &7 AND,OR 1 1 1 1
MUL 5 5 5 5
DIV, SQRT 10-14 10-22 21-29 21-45

1.f/, RCP, RSQRT 5 7
1.f/sqrt

MOV 1,3,.. 1,3,. 1,4,.... 1,4,..

26/5/13 VI FP in EHEP

Cost of functions (in cpu cycles 17sb)

Cephes | Cephes Cephes Approx

scalar autovect | handvect | (16bits)

S d S d S
sin,cos 55 390 30 50 11 30 20 12 30 25 45
large x >500
sincos 80 40 15 22 50
atan2 54 120 30 13 17 52 67 87
exp 47 370 42 55 10 23 27 12 26 16 36
log 57 120 42 \ 11 28 24 12 12 30 27 59

feraiseexcept

26/5/13 VI FP in EHEP 14

Where/how can we improve?
1) std math lib

* Cost of a sin/cos/exp close to div/sqrt and to
the overhead of an indirect function call

— Inline math functions
* Help autovectorization too
* math-funs spend not negligible time in range
reductions and limit/exceptions checking/
setting
— Our angles are ALL in [-pi,pi] range (sometime less)

— Arguments of log/exp often in a limited range
e Special version for reduced ranges

26/5/13 VI FP in EHEP 15

Where/how can we improve?

2) Precision, accuracy

* Double precision often required to keep under
control coordinate system transformations (in
particular for the error matrices)

— Develop more robust algorithms
— avoid back&forth
— Choose (dynamically?) units (metrics) to avoid too large
dynamic-ranges
* Tune precision to the required accuracy in
parameterization
— Use a math-lib allowing control of precision

* rsgrt/rcp (+ “tunable” Newton-Raphson)
— C-implementation in double precision faster than sse!

Example: multiple scattering

double ms(double radLen, double m2, double p2) { Already an
constexpr double amscon = 1.8496e-4; // (13.6MeV)**2 approximation
double e2 =p2 + m2;
double beta2 = p2/e2; Material density,
double fact = 1.f + 0.038f*log(radéten);—fact-"=fact; thickness, track angle
double a = fact/(beta2*p2); Known at percent?
return amscon*radLen*a;

}

2"d order polynomial by

FdD
float msf(float radLen, float m2, float p2) {

constexpr float amscon = 1.8496e-4; // (13:6MeV)**2
floate2 =p2+ m2;

float fact = 1.f + 0.038f*dirtylogf<2>(radLen); fact /= p2;
fact *=fact;

float a = e2*fact;

return amscon*radlLen*a;

Verity accuracy of approximation
float ref = ms(rl,m2,p2);

float rp = ms(rl*1.001,m2,p2); // 0.1% positive m ref P
float rm = ms(r1*0.999,m2,p2); // 0.1% negative KN _- -y
float apx = msf(rl,m2,p2); // fast approximation apxX

diff is in “bits”

// ook if approximation inside uncertainty-intervai

int dd = std::min(abs(diff(rm,ref)),abs(giif(rp,ref)));

dd -= abs(diff(apx,ref)); // negative if apx-ref is larger than the uncer-interval
dm = std::min(dm,dd);

da = std::max(da,abs(diff(apx,ref))); // maximum “error” by approx
di = std::max(di,abs(diff(rp,ref)));

di = std::max(di,abs(diff(rm,ref))); // maximum uncertantly

/ ditto for minimum

* 0.1% accuracy corresponds to a difference of 13-14 bits
« Maximum error of the approximation is ~12 bits
« “dm” always positive

26/5/13 VI FP in EHEP 18

Cash-Karp Runge-Kutta Step

3. A STRATEGY FOR DEALING WITH NONSMOOTH BEHAVIOR

The Runge-Kutta formula derived in the previous section has the special property
that it contains imbedded solutions of all orders less than five. In addition, the
formula has been designed so that the first five ¢; values span the range [0, 1]
with reasonable uniformity, so that we have a very good chance of spotting bad
behavior in f if it occurs. Our aim is to derive an automatic strategy that allows
us to quit early, i.e., before all six function evaluations have been computed on
the current step, if we suspect trouble, and to accept a lower order solution if
appropriate.

We assume that we have computed a numerical solution y,-; at the step point
x,-, and that for the current step, from x,_; to x, = x,-; + h, all six function
evaluations are computed so that solutions of all orders from 1 to 5 are available.
(We guarantee this situation for the first step with n = 1). We denote the
imbedded solution of order i at x, by y©, 1 =i < 5, and define

ERR(n, i) = |y&" — y@ /=0 for i€1, 2, 4. (6)

We exclude the case i = 3 for two reasons. First, following the approach of
Shampine et al. [15], we allow only a few different orders to be used, and we have
chosen to allow orders 2, 3, or 5. Second, ERR(n, 3) is of no use in predicting
when to quit early since all six ks are required before v can be computed.

Suppose now that we were to accept the solution of order 5 at x,. We wish to
compute a suitable step length, h,, to be used in integrating from x, to x,,; using
a 5(4) formula. A typical step-choosing strategy would compute h, as

— | SF X h ERR(n, 4
= Bn, 0)° where E(n, 4) = —% ¥))

Here ¢ is the local accuracy required (as specified by the user) and SF is a safety
factor often taken to be 0.9. Similarly, if we were to accept either the second- or
third-order solution at x,, the steplengths hi, h, respectively, that would be
selected at the next step by our step-control algorithm would be

— F [
SEX R Ghere Bn, i) = ommD gy 8)
€

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

0.9*step/pow(err/eps,0.2)

// From http://martin.ankerl.com/2012/01/25/optimized-
approximative-pow-in-c-and-cpp/

// good at 10%
inline double fastPow(double a, double b) {
union { double d; int x[2]; Ju={a};
u.x[1] = (int)(b * (u.x[1] - 1072632447)
+1072632447);

u.x[0] =
return u.d;

One More example

* Vavilov distribution is used for precise modeling of energy loss

 InCMS itis used to compute the probability of a cluster in a Silicon
Detector to come from a minimum ionizing particle

£(8,8) da=F 0,00 x, 2 dry

where
w

@, (A, x, ﬂz) = % exu+827) J‘exflcos(ykv+uf2)dy
 |tisthen encoded in an 8-bit 0

quality word Ay = E - w(14g%-y)

* Precision tuned-down while y = 0.577218 - - - (Euler's constant)
verl.fyllng that the final result (the t: () = 83iog 3 + City)] - con y-y Sily)
8-b|tS.) do not Change fo(y) =y [log y + Ci(y)] + sin y + g2si(y)

* Speed up of a factor 3...

. . Si(y) = Iy 8in U g4, (sine integral)
 More is surely possible o

Ci(y) = J.YWQQ%—H du (cosine integral) .

26/5/13 VI FP in EHEP 20

Modernization!

 Many algorithms coded in
the ‘80 (even 70)

* Programmer’s heuristics
still based on x87 math
and sequential processing

* Advent of “extreme”
architectures (GPUs etc) is
an opportunity to
modernize algorithms for
ALL architectures!

26/5/13

Title of program: VAVILOV

Catalogue number: AAUJ

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Computer: CDC 6600; Installation: CERN, Geneva
Operating system: CDC Scope

Programming language used: FORTRAN IV

High speed storage required: 3246 words

No. of bits in a word: 60

Overlay structure: None

No. of magnetic tapes required: None

Other peripherals used: Card reader, pine printer

No. of cards in combined program and test deck: 636
Card punching cade: BCD

Keywords: Nuclear, Vavilov distribution, energy loss, thin
absorber, random number generation.

VI FP in EHEP 21

Summary

* FP accounts for ~20% of HEP reconstruction
— Mostly double (for no good reason?)
— Not easy to vectorize as it stands
— Large use of std math-function

* glibm: excellent full-precision reference
— An overkill for any practical application

* Opportunities for improvements
— Move to Data-oriented-Design
— Reduce branches and indirect-calls
— Use polynomial Parameterization also for non-elementary functions
— Use fast (less precise, limited-range) math-fun
— Use metrics that will allow the use of floats
— Systematically verify required accuracy

26/5/13 VI FP in EHEP 22

