
 

 

 

 

We will go through several examples of floating-point code which demonstrates some of 

the points made during the lectures 

 One of the openlab staff will describe which system you should use and in which directory you 

will find the exercises. Set your working directory to that location. 

 The code in the exercises can be compiled with gcc 4.8 and icc 13.0 update #2. 

 Source the setup script Setup-for-exercises and then verify that the correct compilers are 

available to you. You should see something like 

 
-bash-4.1$ . ./Setup-for-exercises 

-bash-4.1$ which gcc && gcc -v 

/oplashare/sw/linux/x86_64/gcc/slc6/gcc-4.8.0/bin/gcc 

Using built-in specs. 

COLLECT_GCC=gcc 

COLLECT_LTO_WRAPPER=/oplashare/sw/linux/x86_64/gcc/slc6/gcc-

4.8.0/libexec/gcc/x86_64-unknown-linux-gnu/4.8.0/lto-wrapper 

Target: x86_64-unknown-linux-gnu 

Configured with: ../gcc-4.8.0/configure --enable-languages=c,c++,fortran  

--prefix=/oplashare/sw/linux/x86_64/gcc/slc6/gcc-4.8.0 

Thread model: posix 

gcc version 4.8.0 (GCC) 

-bash-4.1$ which icc && icc -v 

/oplashare/sw/linux/x86_64/intel/xe2013/composer_xe_2013.2.146/bin/intel64/ic

c 

icc version 13.1.0 (gcc version 4.7.0 compatibility) 

 In those exercises which supply a makefile, define CXX=icc to use icc to build the project 

instead of the default compiler gcc. The default target is all:  build all the files required in the 

exercise. There is also a realclean target to delete all the files created.  NOTE:  you must build 

the realclean target before switching compilers. A typical sequence might be 

 
make # build with gcc 

# work on the exercise 

# save any files which you way want later; e.g., executables 

make realclean # clean before switching compilers 

make CXX=icc # build using icc 

# work on the exercise 

# save any files which you way want later 

make CXX=icc realclean # remove icc-created files 
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01_numeric_limits 

This program demonstrates use of the templated numeric_limits functions.  The 

program prints the values of various significant floating-point quantities relevant to 

float, double, long double and __float128 datatypes. Note that __float128 is 

not consider a fundamental datatype by the GNU compiler system.  Thus, the standard 

GNUJ C++ headers do not include instantiations specialized for __float128.  They are 

supplied in numeric_limits.hpp. They may not be entirely correct. 

Compare the outputs of the gcc and icc verisons. They should be the same except for a 

few long double exceptional values. The differences appear to be the result of how 

“ignored” bits in the 80-bit storage format are handled by the two compilers. Note that 

the long double routines are part of the standard C++ header limits. 

02_decode 

This sample program decodes the sign, exponent and significand fields of the single,  

double, long double and quad floating-point data types.  It demonstrates the use of 

C language system header files to map the various fields of the storage format of a 

floating-point number onto structures which can be used to examine (or modify) them. 

03_summation 

This directory contains the files to build a program which sums a collection of double 

precision values in a number of different ways.  The program also measures the 

execution time of each method. 

The summation techniques used include 

 simple summation, with and without sorting 

 summation using increased precision 

 summation using a high precision math library (mpfr) 

 an error free transformation (EFT) which implements a highly accurate summation 

scheme without use of increased precision 

 vectorization 

 unrolled loops 

 OpenMP 

 reduction methods from Intel® Threading Building Blocks (TBB) 

First make some observations: 

 Run the program several times after building it with both gcc and icc. 

 Are the results always the same?  Are they the same for both compilers? 

 Which techniques give the same result each time? 

 Which give results which vary? 

 Can you explain why? 



 

 

 

 Examine the manner in which the pseudo-random numbers are generated. They 

aren’t randomly distributed on [   ). 

 Look at the source files containing the various functions. Understand how the 

various techniques are implemented. 

 The main program demonstrates a method to measure elapsed time using 

OpenMP. Note that OpenMP is only used “computationally” in one of the 

summing routines. 

Which of the techniques do you think provides the “right” value for the sum.  What do you 

think “right” means in this case? 

Examine the way in which the pseudo-random numbers are generated. Can you correlate 

that with the different results?  E.g., compare the “unroll by 4” results with the “unroll by 

5” results. 

Identify the techniques which use multiple threads of execution or multiple partial sums.  

Why does this affect the results? 

04_dot_product 

This directory contains several prototype programs for calculating dot products.  

Examine each one and see how the various error free transformations discussed during 

the lecture are applied to the problem. 

If you wish to be creative, create a main program which incorporates one or more of 

these routines and use it to calculate a dot product.  Can you correlate your results with 

the condition number associated with the dot product? 

05_quadradic 

This directory contains a simple program which solves the equation 

 ( )           

for its real roots.  It does so in a very numerically naïve way. 

Compile the program and fill in this table (where    and    are the roots found) using 

results from the naïve version: 

 

             (  )  (  ) 

+1 +2000 -3     

+2 -4000 -1     

+5 +8000 +2     

 

You may wish to calculate the values of  (  ) and  (  ) by hand or with a calculator. 

Verify your results. 



 

 

 

 

Study the values of the roots as displayed by the program. You should notice that the 

two roots are very different in magnitude; the ratio of their magnitudes is     . This is 

usually an indication of an ill-conditioned problem. Notice also that the low-order hex 

digits of the smaller root are usually repeated digits, often  . This is caused by 

catastrophic cancellation in the calculation. 

Now try the “improved” version of the program. (It is created by compiling the same 

source file with –D_IMPROVED.) Notice that the smaller root is now calculated more 

accurately and that the value of  (        ) is closer to 0. 

Solving the quadratic equation more accurately provides a simple example of how 

catastrophic cancellation can be removed from a problem algebraically. 

The roots are given by 
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When        (i.e.,    ), the calculation of    involves the taking the difference of 

two nearly equal quantities, resulting in catastrophic cancellation. 

We can rationalize the expression for     by multiplying numerator and denominator by 

  √    giving 
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Now there is no catastrophic cancellation when    is computed if       . 

06_sollya 

Sollya is a tool environment for developing floating-point code. Complete 

documentation is available via the web site. 

http://sollya.gforge.inria.fr/


 

 

 

In this directory, you will find a simple sollya script which investigates the 0.1/0.01 

approximation situation.  Run the script and observe the output. Examine the script to 

see how sollya is used. 

See if you can modify the script to study another       type problem.  E.g., choose 0.2 

and 0.04.  Does the product 0.2*0.2 match 0.04 when everything is computed in 

double precision? 


