
Workshop on

Numerical Computing

Floating-Point

Arithmetic

Jeff Arnold, Intel Corporation

27 May 2013

Agenda

 Part I – Fundamentals
• Motivation

• Some properties of floating-point numbers

• Standards

• More about floating-point numbers

• A trip through the floating-point numbers

 Part II – Techniques
• Error-free transformations

• Summation

• Dot product

• Polynomial evaluation

Workshop on Numerical Computing — Floating-Point Arithmetic 2

Motivation

 Why is floating-point arithmetic important?

 Reasoning about floating-point arithmetic

 Why do standards matter?

 Techniques which improve floating-point
• Accuracy

• Versatility

• Performance

Workshop on Numerical Computing — Floating-Point Arithmetic 3

Why is Floating-Point Arithmetic

Important?

 It is ubiquitous in scientific computing
• Most research in HEP can’t be done without it

 Need to implement algorithms which
• Get the best answers

• Get the best answers quickly

• Get the best answers all the time

 A rigorous approach to floating-point is

seldom taught in programming courses
• Too many think floating-point arithmetic is

– Approximate in a random ill-defined sense

– Mysterious

– Often wrong

 Workshop on Numerical Computing — Floating-Point Arithmetic 4

Reasoning about Floating-Point

Arithmetic

It’s important because

 One can prove algorithms are correct
• One can even prove they are portable

 One can estimate the round-off and

approximate errors in calculations

 This knowledge increases confidence in

floating-point calculations and results

Workshop on Numerical Computing — Floating-Point Arithmetic 5

Some Properties of

Floating-Point Numbers

 They aren’t the same as the real numbers

encountered in mathematics
• They do not form a field

• Some common rules of arithmetic are not always

obeyed

• There are only a finite number of them

• They are all rational numbers

– but they are only a subset of the rationals

– thus none of them are irrational

Workshop on Numerical Computing — Floating-Point Arithmetic 6

Notation

 Floating-point operations are written:
• ⊕ addition
• ⊖ subtraction
• ⊗ multiplication
• ⊘ division

 𝑎 ⊕ 𝑏 represents the floating-point addition

of 𝑎 and 𝑏
• 𝑎 and 𝑏 are floating-point numbers

• the result is a floating-point number

 A generic floating-point operation on 𝑥 is

written ∘ (𝑥)

Workshop on Numerical Computing — Floating-Point Arithmetic 7

Properties of Floating-Point

Numbers and Operations

 If 𝑎 and 𝑏 are floating-point numbers, in

general, 𝑎 + 𝑏 will not be a floating-point

number
• Similarly for −, × and ∕

 Operations may not associate:
• (𝑎⨁𝑏)⨁𝑐 ≠ 𝑎⨁(𝑏⨁𝑐)
• Similarly for ⊖ and ⊗

 Operations may not distribute:
• 𝑎⨂(𝑏⨁𝑐) ≠ (𝑎 ⊗ 𝑏)⨁(𝑎⨂𝑐)

Workshop on Numerical Computing — Floating-Point Arithmetic 8

The Order of Operations Matters!

 If 𝑎 = 1030, 𝑏 = −𝑎 and 𝑐 = 1.0, then
• 𝑎⨁𝑏 ⨁𝑐 = 1.0

 but
• 𝑎⨁ 𝑏⨁𝑐 = 0.0

 The order of operations matters!

 Use parentheses and make sure your

compiler respects them

9 Workshop on Numerical Computing — Floating-Point Arithmetic

Standards

There have been three major standards

affecting floating-point arithmetic:

 IEEE 754-1985 Standard for Binary Floating-

Point Arithmetic

 IEEE 854-1987 Standard for Radix

Independent Floating-Point Arithmetic

 IEEE 754-2008 Standard for Floating-Point

Arithmetic
• We will concentrate on this one since it is current

Workshop on Numerical Computing — Floating-Point Arithmetic 10

IEEE 754-1985

Standardized/specified

 Formats

 Rounding modes

 Operations

 Special values

 Exceptions

Workshop on Numerical Computing — Floating-Point Arithmetic 11

IEEE 754-1985

 Only described binary floating-point

arithmetic

 Two basic formats specified:
• single precision (mandatory)

• double precision

 An extended format was associated with

each basic format
• Double extended: the IA32 “80-bit” format

Workshop on Numerical Computing — Floating-Point Arithmetic 12

IEEE 854-1987

 “Radix-independent”
• But essentially only radix 2 or 10 considered

 Established constraints on the relationships

between
• Number of bits of precision

• Minimum and maximum exponent

 Established constraints between various

formats

Workshop on Numerical Computing — Floating-Point Arithmetic 13

The Need for a Revision

 Standardize common practices
• Quadruple precision

 Standardize effects of new/improved

algorithms
• Radix conversion

• Correctly rounded elementary functions

 Remove ambiguities

 Improve portability

Workshop on Numerical Computing — Floating-Point Arithmetic 14

IEEE 754-2008

 Merged 754-1985 and 854-1987
• But tried not to invalidate hardware which

conformed to 754-1985

 Standardized
• Quadruple precision

• Fused multiply-add (FMA)

 Resolve ambiguities
• Aids portability between implementations

Workshop on Numerical Computing — Floating-Point Arithmetic 15

IEEE 754-2008

Formats

 Interchange
• Used to exchange floating-point data between

implementations/platforms
• Fully specified as bit strings

– Does not address endianness

 Extended and Extendable formats
• Encodings not specified
• May match interchange formats

 Arithmetic formats
• A format which represents operands and results

for all operations required by the standard

Workshop on Numerical Computing — Floating-Point Arithmetic 16

Format of a Binary Floating-point

Number

s expo significand

1 w p-1

IEEE

Name
Format

Storage

Size
w p 𝒆𝒎𝒊𝒏 𝒆𝒎𝒂𝒙

Binary32 Single 32 8 24 -126 +127

Binary64 Double 64 11 53 -1022 +1023

Binary128 Quad 128 15 113 -16382 +16383

Workshop on Numerical Computing — Floating-Point Arithmetic 17

IEEE 754-2008

Formats

 Basic formats:
• Binary with lengths of 32, 64 and 128 bits

• Decimal with lengths of 64 and 128 bits

 Other formats:
• Binary with a length of 16 bits

– 𝑝 = 11

– 𝑒𝑚𝑖𝑛 = −14, 𝑒𝑚𝑎𝑥 = +15

• Decimal with a length of 32 bits

Workshop on Numerical Computing — Floating-Point Arithmetic 18

IEEE 754-2008

Larger Formats

 Parameterized based on size 𝑘:
• 𝑘 ≥ 128 and must be a multiple of 32

• 𝑝 = 𝑘 − 𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡(4 × 𝑙𝑜𝑔2 𝑘) + 13
• 𝑤 = 𝑘 − 𝑝
• 𝑒𝑚𝑎𝑥 = 2

𝑤−1 − 1

 For example, on all conforming platforms,
Binary1024 will have:
• 𝑘 = 1024
• 𝑝 = 1024 − 40 + 13 = 997
• 𝑤 = 27
• 𝑒𝑚𝑎𝑥 = +67108863

Workshop on Numerical Computing — Floating-Point Arithmetic 19

IEEE 754-2008

 Radix
• Either 2 or 10

 Representation specified by
• Radix

• Sign

• Exponent

– Biased exponent

– 𝑒𝑚𝑖𝑛 must be equal to 1 − 𝑒𝑚𝑎𝑥

• Significand

– “hidden bit” format used for normal values

Workshop on Numerical Computing — Floating-Point Arithmetic 20

We’re not going to consider

every possible format

For this workshop, we will limit our discussion

to

 Radix 2

 Binary32, Binary64 and Binary128 formats
• Covers SSE and AVX

– I.e., modern processors

• Not considering “double extended” format

– “IA32 x87” format

• Not considering decimal formats

 Round to nearest even

Workshop on Numerical Computing — Floating-Point Arithmetic 21

Value of a Floating-Point Number

The value of a floating-point number is

determined by 4 quantities:

 sign 𝑠 ∈ 0,1

 radix β
• Sometimes called the “base”

 precision 𝑝
• the digits are 𝑥𝑖, 0 ≤ 𝑖 < 𝑝, where 0 ≤ 𝑥𝑖 < β

 exponent 𝑒 is an integer
• 𝑒𝑚𝑖𝑛 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥

Workshop on Numerical Computing — Floating-Point Arithmetic 22

Value of a Floating-Point Number

The value of a floating-point number can be

expressed as

𝑥 = (−)𝑠𝛽𝑒 𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

where the significand is

𝑚 = 𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

with

0 ≤ 𝑚 < β

Workshop on Numerical Computing — Floating-Point Arithmetic 23

Value of a Floating-Point Number

The value can also be written

𝑥 = (−)𝑠𝛽𝑒−𝑝+1 𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

where the integral significand is

𝑀 = 𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

with
0 ≤ 𝑀 < β𝑝

Workshop on Numerical Computing — Floating-Point Arithmetic 24

Operations specified by IEEE 754-2008

 Addition, subtraction

 Multiplication

 Division

 Remainder

 Square root

 All with correct rounding
• correct rounding: return the correct finite result

using the current rounding mode

Workshop on Numerical Computing — Floating-Point Arithmetic 25

Operations

 Conversion to/from integer
• Value must be representable in both formats

– exception raised otherwise

– e.g., infinities, NaNs

• Conversion to integer must be correctly rounded

 Conversion to/from decimal strings
• Conversions must be monotonic

• Under some conditions, binary→decimal→binary

(“round trip”) conversions must be exact

– sufficient significant digits in decimal string required

– must preserve signs of zeros and infinities

– NaNs must be preserved

Workshop on Numerical Computing — Floating-Point Arithmetic 26

Special Values

 Zero
• signed

 Infinity
• signed

 NaN
• Quiet NaN

• Signaling NaN

• NaNs do not have a sign: they aren’t a number

– the sign bit is ignored

• NaNs can “carry” information

Workshop on Numerical Computing — Floating-Point Arithmetic 27

Exceptions Specified by IEEE 754-2008

 Underflow
• Absolute value of a non-zero result is less than β𝑒𝑚𝑖𝑛

(i.e., it is subnormal)
• Some ambiguity: before or after rounding?

 Overflow
• Absolute value of a result greater than the largest

finite value Ω = 2𝑒𝑚𝑎𝑥 × (2 − 21−𝑝)
• Result is ±∞

 Division by zero
• 𝑥/𝑦 where 𝑥 is finite and non-zero and 𝑦 = 0

 Inexact
• Result, after rounding, is not equal to the infinitely

precise result

 Invalid

Workshop on Numerical Computing — Floating-Point Arithmetic 28

Exceptions Specified by IEEE 754-2008

 Invalid
• An operand is a sNaN

• 𝑥 where 𝑥 < 0

– however −0 = −0

• −∞ + +∞ , +∞ + (−∞)
• −∞ − −∞ , +∞ − (+∞)
• (±0) × (±∞)
• (±0)/(±0) or (±∞)/(±∞)
• some floating-point →integer or decimal

conversions

Workshop on Numerical Computing — Floating-Point Arithmetic 29

Rounding Modes in IEEE 754-2008

 round to nearest
• round to nearest even

– in the case of ties, select the result whose significand is

even

– required for binary and decimal

– the default rounding mode for binary

• round to nearest away

– required only for decimal

 round toward +∞

 round toward −∞

 round toward 0

Workshop on Numerical Computing — Floating-Point Arithmetic 30

Rounding modes

 Many math libraries and other software

make assumptions about the current

rounding mode of a process
• you need to tell the environment if rounding

modes are changing

 Don’t change the default unless you really

know what you’re doing

 And if you know what you’re doing, you

probably won’t change it

31 Workshop on Numerical Computing — Floating-Point Arithmetic

Transcendental and Algebraic Functions

The standard recommends the following

functions be correctly rounded:

 𝑒𝑥, 𝑒𝑥 − 1, 2𝑥, 2𝑥 − 1, 10𝑥, 10𝑥 − 1

 𝑙𝑜𝑔α(Φ) for α = 𝑒, 2, 10 and Φ = 𝑥, 1 + 𝑥

 𝑥2 + 𝑦2, 1/ 𝑥, (1 + 𝑥)𝑛, 𝑥𝑛, 𝑥1/𝑛

 sin(𝑥), cos(𝑥), tan(𝑥), sinh(𝑥), cosh(𝑥),
tanh(𝑥) and the inverse functions

 sin(π𝑥), cos(π𝑥)

 And more...
Workshop on Numerical Computing — Floating-Point Arithmetic 32

Transcendental Functions

Why this may be difficult to do...

Consider 21.e4596526bf94dp−31

 The correct answer is

1.0052𝑓𝑐2𝑒𝑐2𝑏537𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓4…

 You need to know the result to 115 bits to

determine the correct rounding.

 “The Table-Makers Dilemma”
• Rounding ≈ 𝑓(𝑥) gives same result as rounding

𝑓(𝑥)

 See publications from ENS group
Workshop on Numerical Computing — Floating-Point Arithmetic 33

Table-Makers Dilemma

“No general way exists to predict how many

extra digits will have to be carried to compute a

transcendental expression and round it

correctly to some preassigned number of

digits.”

W. Kahan

Workshop on Numerical Computing — Floating-Point Arithmetic 34

Convenient Properties

Exact operations

 If
𝑦

2
≤ 𝑥 ≤ 2𝑦 and subnormals are available,

then 𝑥 − 𝑦 is exact
• Sterbenz’s lemma

 But what about catastrophic cancellation?
• Subtracting nearly equal numbers loses accuracy

 The subtraction itself does not introduce any

error
• it may amplify a pre-existing error

Workshop on Numerical Computing — Floating-Point Arithmetic 35

Convenient Properties

Exact operations

 Multiplication/division by 2𝑛 is exact
• In the absence of under/overflow

 Multiplication of numbers with significands

having sufficient low-order 0 digits
• Precise splitting and Dekker’s multiplication

Workshop on Numerical Computing — Floating-Point Arithmetic 36

Walking Through Floating-point

Numbers

 0x0000000000000000

 0x0000000000000001

 ...

 0x000fffffffffffff

 0x0010000000000000

 ...

 0x001fffffffffffff

 0x0020000000000000

Workshop on Numerical Computing — Floating-Point Arithmetic 37

+zero

smallest

subnormal

largest subnormal

smallest normal

2 X smallest

normal

Walking Through Floating-point

Numbers

 0x0020000000000000

 ...

 0x7fefffffffffffff

 0x7ff0000000000000

 0x7ff0000000000001

 ...

 0x7fffffffffffffff

 0x8000000000000000

Workshop on Numerical Computing — Floating-Point Arithmetic 38

2 X smallest

normal

+infinity

NaN

largest normal

NaN

-zero

Walking Through Floating-point

Numbers

 0x8000000000000000

 0x8000000000000001

 ...

 0x800fffffffffffff

 0x8010000000000000

 ...

 0xfff0000000000000

 0xfff0000000000001

 ...

 0xffffffffffffffff

Workshop on Numerical Computing — Floating-Point Arithmetic 39

NaN

“largest” negative

subnormal

NaN

-zero

“smallest” negative

subnormal

“smallest” negative

normal

-infinity

How many FP numbers are there?

 ~2𝑝+1𝑒𝑚𝑎𝑥

 For single-precision: ≈ 4.3 × 109

 For double-precision: ≈ 1.8 × 1019

 Number of protons circulating in the LHC:

~2 × 1014 (pre-shutdown)

40 Workshop on Numerical Computing — Floating-Point Arithmetic

End of Part I

Time for a break...

Workshop on Numerical Computing — Floating-Point Arithmetic 41

Q & A

Workshop on Numerical Computing — Floating-Point Arithmetic 42

Part II -- Techniques

 Error-Free Transformations

 Summation

 Dot Products

 Polynomial Evaluation

 Data Interchange

Workshop on Numerical Computing — Floating-Point Arithmetic 43

Error-Free Transformations

An error-free transformation (EFT) is an

algorithm which determines the rounding error

associated with a floating-point operation.

 Addition/subtraction

 𝑎 + 𝑏 = (𝑎⨁𝑏) + 𝑡

 Multiplication

 𝑎 × 𝑏 = 𝑎⨂𝑏 + 𝑡

 There are others

Workshop on Numerical Computing — Floating-Point Arithmetic 44

Error-Free Transformations

 Under most conditions, the rounding error is

itself a floating-point number
• 𝑎 + 𝑏 = 𝑠 + 𝑡 where 𝑠 = 𝑎⨁𝑏
• all values are floating-point numbers

• This is still a powerful analytical tool even when 𝑡
is not a floating-point number

 An EFT can be implemented using only

floating-point computations in the working

precision

 Rounding error is often called the

approximation error

 Workshop on Numerical Computing — Floating-Point Arithmetic 45

EFT for Addition: FastTwoSum

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where

 𝑎 ≥ 𝑏

 𝑠 = 𝑎 ⊕ 𝑏

void
FastTwoSum(const double a, const double b,
 double* s, double* t) {
 // Requires that 𝒂 ≥ 𝒃
 // No unsafe optimizations!
 *s = a + b;
 *t = b - (*s - a);
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 46

EFT for Addition: TwoSum

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where

 𝑠 = 𝑎 ⊕ 𝑏

void
TwoSum(const double a, const double b,
 double* s, double* t) {
 // No unsafe optimizations!
 *s = a + b;
 double z = *s – b;
 *t = (a - z) + (b - (*s - z));
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 47

EFTs for Addition

 A realistic implementation of FastTwoSum

requires 3 floating-point operations and a

branch

 TwoSum takes 6 floating-point operations but

requires no branches

 TwoSum is usually faster on modern

processors

 Recall that this discussion is restricted to

radix 2 and round to nearest even
• this is required to prove TwoSum

Workshop on Numerical Computing — Floating-Point Arithmetic 48

Accurate multiplication

 Veltkamp splitting
• split 𝑥 = 𝑥ℎ + 𝑥𝑙 where the number of non-zero

digits in each significand is ≈ 𝑝/2

 Dekker’s multiplication scheme
• 𝑥 × 𝑦 = 𝑥ℎ × 𝑦ℎ + 𝑥ℎ × 𝑦𝑙 + 𝑥𝑙 × 𝑦ℎ + 𝑥𝑙 × 𝑦𝑙

 Combine with extended-precision addition

algorithm to get (𝑥 × 𝑦)ℎ and (𝑥 × 𝑦)𝑙

49 Workshop on Numerical Computing — Floating-Point Arithmetic

Precise Splitting Algorithm

 Known as Veltkamp’s algorithm

 Calculates 𝑥ℎ and 𝑥𝑙 such that 𝑥 = 𝑥ℎ + 𝑥𝑙
exactly

 For δ < 𝑝, where δ is a parameter,
• The significand of 𝑥ℎ fits in p − δ digits

• The significand of 𝑥𝑙 fits in δ digits

 No information is lost in the transformation

Workshop on Numerical Computing — Floating-Point Arithmetic 50

Precise Splitting

 Code fragment

void
Split(const double x, const int delta,
 double* x_h, double* x_l) {
 // No unsafe optimizations!
 unsigned long c = (1UL << delta) + 1;
 *x_h = (c * x) + (x - (c * x));
 *x_l = x - x_h;
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 51

Precise Multiplication

 Dekker’s algorithm

 Computes 𝑠 and t such that 𝑎 × 𝑏 = 𝑠 + 𝑡
where s= 𝑎⨂𝑏

Workshop on Numerical Computing — Floating-Point Arithmetic 52

Precise Multiplication Algorithm

#define SHIFT_POW 27 /* 𝑝/2 for Binary64 */
void
Mult(const double a, const double b,
 double* s, double* t) {
 double a_high, a_low, b_high, b_low;
 // No unsafe optimizations!
 Split(a, SHIFT_POW, &a_high, &a_low);
 Split(b, SHIFT_POW, &b_high, &b_low);
 *s = x * y;
 *t = -*s + a_high * b_high ;
 *t += a_high * b_low + a_low * b_high;
 *t += a_low * b_low;
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 53

Summation Techniques

 Traditional

 Sorting and Insertion

 Compensated

 Distillation

 Multiple accumulators

 Reference: Higham

Workshop on Numerical Computing — Floating-Point Arithmetic 54

Summation Techniques

Condition number

𝐶𝑠𝑢𝑚 =
 𝑎𝑖
 𝑎𝑖

 If 𝐶𝑠𝑢𝑚 is “not too large,” the problem is not

ill-conditioned and traditional methods may

suffice

 But if 𝐶𝑠𝑢𝑚 is “too large,” we want results

appropriate to higher precision without

actually using a higher precision

 But if higher precision is available, use it!

Workshop on Numerical Computing — Floating-Point Arithmetic 55

Traditional Summation

 𝑠 = 𝑥𝑖
𝑛
𝑖=0

 Code fragment

Workshop on Numerical Computing — Floating-Point Arithmetic 56

double
Sum(const double* x, const int n) {
 int i;
 double sum = 0.0;
 for (i = 0; i < n; i++) {
 sum += x[i];
 }
 return sum;
}

Traditional Summation

What can go wrong?

 Catastrophic cancellation
• loss of significance

• magnitude of operands nearly equal but signs

differ: 𝑥 ≈ −𝑦

 Small terms encountered when running sum

is large
• the smaller terms don’t affect the result

• but later large magnitude terms may reduce the

running sum

Workshop on Numerical Computing — Floating-Point Arithmetic 57

Sorting and Insertion

 Reorder the operands
• Increasing magnitude

• Decreasing magnitude

 Insertion
• First sort by magnitude

• Remove 𝑥1 and 𝑥2 and compute their sum

• Insert that sum on the list keeping it sorted

• Repeat until only 1 element is left on the list

 Many variations
• If lots of cancellation, sorting by decreasing

magnitude can be better

• Sterbenz’s lemma

Workshop on Numerical Computing — Floating-Point Arithmetic 58

Compensated Summation

 Based on FastTwoSum and TwoSum

techniques

 Knowledge of the exact rounding error in a

floating-point addition is used to correct the

summation

Workshop on Numerical Computing — Floating-Point Arithmetic 59

Compensated Summation

 Code fragment

Workshop on Numerical Computing — Floating-Point Arithmetic 60

double
Kahan(const double* x, const int n) {
 double sum = x[0];
 double c = 0.0;
 double y;
 int i;
 for (i = 1; i < n; i++) {
 y = x[i] + c;
 FastTwoSum(sum, y, &sum, &c);
 }
 return sum;
}

Compensated Summation

 Many variations known

 Consult the extensive literature:
• Kahan

• Knuth

• Priest

• Pichat and Neumaier

• Rump, Ogita and Oishi

• Shewchuk

• Arénaire Project (ENS)

Workshop on Numerical Computing — Floating-Point Arithmetic 61

Other Summation Techniques

 Distillation
• Separate accumulators based on exponents of

operands

• Additions are always exact until the accumulators

are finally added

 Long accumulators
• Emulate greater precision

• double-double

Workshop on Numerical Computing — Floating-Point Arithmetic 62

Choice of Summation Technique

 Performance

 Error bound
• independent of n?

 Condition number
• Is it known?
• Difficult to determine?
• Some algorithms allow it to be determined

simultaneously with the sum
• It can be used to evaluate the suitability of the

result

 No one technique fits all situations all the
time

Workshop on Numerical Computing — Floating-Point Arithmetic 63

Dot Product

 Use of EFTs

 Recast to summation

 Compensated dot product

Workshop on Numerical Computing — Floating-Point Arithmetic 64

Dot Product

 Condition number:

𝐶𝑑𝑜𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =
2 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 If 𝐶 is not too large, a traditional algorithm

can be used

Workshop on Numerical Computing — Floating-Point Arithmetic 65

Dot Product

 The dot product of 2 vectors of dimension 𝑛
can be reduced to computing the sum of 2𝑛
floating-point numbers
• Split each element

• Form products

• Sum accurately

 Algorithms can be constructed such that the

result computed in precision 𝑝 is as accurate

as though the dot product was computed in

precision 2𝑝 and then rounding back

 Consult the work of Ogita, Rump and Oishi

Workshop on Numerical Computing — Floating-Point Arithmetic 66

Polynomial Evaluation

 Horner’s method

 Use of EFTs

 Compensated

Workshop on Numerical Computing — Floating-Point Arithmetic 67

Polynomial Evaluation

Horner’s method

𝑝 𝑥 = 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

where 𝑥 and all 𝑎𝑖 are all floating-point

numbers

Workshop on Numerical Computing — Floating-Point Arithmetic 68

Polynomial Evaluation

 Code fragment

Workshop on Numerical Computing — Floating-Point Arithmetic 69

double
Horner(const double* a, const int n,
 double x) {
 int i;
 double p = 0.0;
 for (i = n; i >= 0; i--) {
 p = p * x + a[i];
 }
 return p;
}

Polynomial Evaluation

Compensated Horner’s method:

 Let 𝑝0 =Horner(a,n,x)

 Determine π(𝑥) and σ(𝑥) where
• π(𝑥) and σ(𝑥) are polynomials of degree 𝑛 − 1

with coefficients π𝑖 and σ𝑖
• such that

𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥)

Workshop on Numerical Computing — Floating-Point Arithmetic 70

Polynomial Evaluation

Compensated Horner’s method:

 𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥)

 Error analysis shows that under certain

conditions, 𝑝(𝑥) is as accurate as evaluating

𝑝0 in twice the working precision

 Even if those conditions are not met, one

can apply the method recursively to π(𝑥)
and σ(𝑥)

Workshop on Numerical Computing — Floating-Point Arithmetic 71

Approximation Errors

 Consider 0.1 and 0.01

 Neither can be represented exactly as a

floating-point number

 0.1 = 0x1.999999999999ap-4
• ≈ 0.1 + 5.55…× 10−18

 0.01 = 0x1.47ae147ae147bp-4
• ≈ 0.01 + 2.08…× 10−19

 0.1⨂0.1 = x1.47a3147a3147cp-4
• ≈ 0.01 + 1.94…× 10−18

72 Workshop on Numerical Computing — Floating-Point Arithmetic

Approximation Errors

 Testing floating-point numbers for equality

can be problematic
• particularly if the values are computed

• always use ≤ ≥ etc

• beware of never-ending loops
while (a != b) {...}

73 Workshop on Numerical Computing — Floating-Point Arithmetic

Data Interchange

Moving floating-point data between platforms

without loss of information?

 Exchange binary data

 Use of %a and %A
• Encodes the internal bit patterns via hex digits

 Formatted decimal strings
• Requires sufficient decimal digits to guarantee

“round-trip” reproducibility

• Depends on accuracy of run-time

binary↔decimal conversion routines on all

platforms

Workshop on Numerical Computing — Floating-Point Arithmetic 74

Bibliography

 D. Goldberg, What every computer
scientist should know about floating-point
arithmetic, ACM Computing Surveys,

23(1):5–47, March 1991.

 J.-M. Muller et al, Handbook of Floating-
Point Arithmetic, Birkäuser, Boston, 2010.

 N. J. Higham, Accuracy and Stability of
Numerical Algorithms (2nd edition), SIAM,

2002.

Workshop on Numerical Computing — Floating-Point Arithmetic 75

Bibliography

 Publications from CNRS/ENS

Lyon/INRIA/Arénaire project (J.-M. Muller

et al)

 Publications from Institute for Reliable

Computing (Institut für Zuverlässiges

Rechnen), Technische Universität

Hamburg-Harburg (Siegfried Rump)

Workshop on Numerical Computing — Floating-Point Arithmetic 76

Q & A

Workshop on Numerical Computing — Floating-Point Arithmetic 77

