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Motivation 

 Why is floating-point arithmetic important? 

 Reasoning about floating-point arithmetic 

 Why do standards matter? 

 Techniques which improve floating-point 
• Accuracy 

• Versatility 

• Performance 
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Why is Floating-Point Arithmetic 

Important? 

 It is ubiquitous in scientific computing 
• Most research in HEP can’t be done without it 

 Need to implement algorithms which 
• Get the best answers 

• Get the best answers quickly 

• Get the best answers all the time 

 A rigorous approach to floating-point is 

seldom taught in programming courses 
• Too many think floating-point arithmetic is 

– Approximate in a random ill-defined sense 

– Mysterious 

– Often wrong 

 Workshop on Numerical Computing — Floating-Point Arithmetic 4 



Reasoning about Floating-Point 

Arithmetic 

It’s important because 

 One can prove algorithms are correct 
• One can even prove they are portable 

 One can estimate the round-off and 

approximate errors in calculations 

 This knowledge increases confidence in 

floating-point calculations and results 
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Some Properties of 

Floating-Point Numbers 

 They aren’t the same as the real numbers 

encountered in mathematics 
• They do not form a field 

• Some common rules of arithmetic are not always 

obeyed 

• There are only a finite number of them 

• They are all rational numbers 

– but they are only a subset of the rationals 

– thus none of them are irrational 
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Notation 

 Floating-point operations are written: 
• ⊕ addition 
• ⊖ subtraction 
• ⊗ multiplication 
• ⊘ division 

 𝑎 ⊕ 𝑏 represents the floating-point addition 

of 𝑎 and 𝑏 
•  𝑎 and 𝑏 are floating-point numbers 

• the result is a floating-point number 

 A generic floating-point operation on 𝑥 is 

written ∘ (𝑥) 
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Properties of Floating-Point 

Numbers and Operations 

 If 𝑎 and 𝑏 are floating-point numbers, in 

general, 𝑎 + 𝑏 will not be a floating-point 

number 
• Similarly for −, × and ∕ 

 Operations may not associate: 
• (𝑎⨁𝑏)⨁𝑐 ≠ 𝑎⨁(𝑏⨁𝑐) 
• Similarly for ⊖ and ⊗ 

 Operations may not distribute: 
• 𝑎⨂(𝑏⨁𝑐) ≠ (𝑎 ⊗ 𝑏)⨁(𝑎⨂𝑐) 
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The Order of Operations Matters! 

 If 𝑎 = 1030, 𝑏 = −𝑎 and 𝑐 = 1.0, then 
• 𝑎⨁𝑏 ⨁𝑐 = 1.0 

 but 
• 𝑎⨁ 𝑏⨁𝑐 = 0.0 

 The order of operations matters! 

 Use parentheses and make sure your 

compiler respects them 
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Standards 

There have been three major standards 

affecting floating-point arithmetic: 

 IEEE 754-1985 Standard for Binary Floating-

Point Arithmetic 

 IEEE 854-1987 Standard for Radix 

Independent Floating-Point Arithmetic 

 IEEE 754-2008 Standard for Floating-Point 

Arithmetic 
• We will concentrate on this one since it is current 
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IEEE 754-1985 

Standardized/specified 

 Formats 

 Rounding modes 

 Operations 

 Special values 

 Exceptions 
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IEEE 754-1985 

 Only described binary floating-point 

arithmetic 

 Two basic formats specified: 
• single precision (mandatory) 

• double precision 

 An extended format was associated with 

each basic format 
• Double extended:  the IA32 “80-bit” format 
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IEEE 854-1987 

 “Radix-independent” 
• But essentially only radix 2 or 10 considered 

 Established constraints on the relationships 

between 
• Number of bits of precision 

• Minimum and maximum exponent 

 Established constraints between various 

formats 
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The Need for a Revision 

 Standardize common practices 
• Quadruple precision 

 Standardize effects of new/improved 

algorithms 
• Radix conversion 

• Correctly rounded elementary functions 

 Remove ambiguities 

 Improve portability 
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IEEE 754-2008 

 Merged 754-1985 and 854-1987 
• But tried not to invalidate hardware which 

conformed to 754-1985 

 Standardized 
• Quadruple precision 

• Fused multiply-add (FMA) 

 Resolve ambiguities 
• Aids portability between implementations 
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IEEE 754-2008 

Formats 

 Interchange 
• Used to exchange floating-point data between 

implementations/platforms 
• Fully specified as bit strings 

– Does not address endianness 

 Extended and Extendable formats 
• Encodings not specified 
• May match interchange formats 

 Arithmetic formats 
• A format which represents operands and results 

for all operations required by the standard 
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Format of a Binary Floating-point 

Number 

  

s expo significand 

1 w p-1 

IEEE 

Name 
Format 

Storage 

Size 
w p 𝒆𝒎𝒊𝒏 𝒆𝒎𝒂𝒙 

Binary32 Single 32 8 24 -126 +127 

Binary64 Double 64 11 53 -1022 +1023 

Binary128 Quad 128 15 113 -16382 +16383 
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IEEE 754-2008 

Formats 

 Basic formats: 
• Binary with lengths of 32, 64 and 128 bits 

• Decimal with lengths of 64 and 128 bits 

 Other formats: 
• Binary with a length of 16 bits 

– 𝑝 = 11 

– 𝑒𝑚𝑖𝑛 = −14, 𝑒𝑚𝑎𝑥 = +15 

• Decimal with a length of 32 bits 
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IEEE 754-2008 

Larger Formats 

 Parameterized based on size 𝑘: 
• 𝑘 ≥ 128 and must be a multiple of 32 

• 𝑝 = 𝑘 − 𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡(4 × 𝑙𝑜𝑔2 𝑘 ) + 13 
• 𝑤 = 𝑘 − 𝑝 
• 𝑒𝑚𝑎𝑥 = 2

𝑤−1 − 1 

 For example, on all conforming platforms, 
Binary1024 will have: 
• 𝑘 = 1024 
• 𝑝 = 1024 − 40 + 13 = 997 
• 𝑤 = 27 
• 𝑒𝑚𝑎𝑥 = +67108863 
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IEEE 754-2008 

 Radix 
• Either 2 or 10 

 Representation specified by 
• Radix 

• Sign 

• Exponent 

– Biased exponent 

– 𝑒𝑚𝑖𝑛 must be equal to 1 − 𝑒𝑚𝑎𝑥 

• Significand 

– “hidden bit” format used for normal values 
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We’re not going to consider 

every possible format 

For this workshop, we will limit our discussion 

to 

 Radix 2 

 Binary32, Binary64 and Binary128 formats 
• Covers SSE and AVX 

– I.e., modern processors 

• Not considering “double extended” format 

– “IA32 x87” format 

• Not considering decimal formats 

 Round to nearest even 
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Value of a Floating-Point Number 

The value of a floating-point number is 

determined by 4 quantities: 

 sign 𝑠 ∈ 0,1  

 radix β 
• Sometimes called the “base” 

 precision 𝑝 
• the digits are 𝑥𝑖, 0 ≤ 𝑖 < 𝑝, where 0 ≤ 𝑥𝑖 < β 

 exponent 𝑒 is an integer 
• 𝑒𝑚𝑖𝑛 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥 
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Value of a Floating-Point Number 

The value of a floating-point number can be 

expressed as 

𝑥 = (−)𝑠𝛽𝑒 𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

 

where the significand is 

𝑚 =  𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

 

with 

0 ≤ 𝑚 < β 
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Value of a Floating-Point Number 

The value can also be written 

𝑥 = (−)𝑠𝛽𝑒−𝑝+1 𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

 

where the integral significand is 

𝑀 =  𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

 

with 
0 ≤ 𝑀 < β𝑝 
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Operations specified by IEEE 754-2008 

 Addition, subtraction 

 Multiplication 

 Division 

 Remainder 

 Square root 

 All with correct rounding 
• correct rounding:  return the correct finite result 

using the current rounding mode 
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Operations 

 Conversion to/from integer 
• Value must be representable in both formats 

– exception raised otherwise 

– e.g., infinities, NaNs 

• Conversion to integer must be correctly rounded 

 Conversion to/from decimal strings 
• Conversions must be monotonic 

• Under some conditions, binary→decimal→binary 

(“round trip”) conversions must be exact 

– sufficient significant digits in decimal string required 

– must preserve signs of zeros and infinities 

– NaNs must be preserved 
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Special Values 

 Zero 
• signed 

 Infinity 
• signed 

 NaN 
• Quiet NaN 

• Signaling NaN 

• NaNs do not have a sign:  they aren’t a number 

– the sign bit is ignored 

• NaNs can “carry” information 
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Exceptions Specified by IEEE 754-2008 

 Underflow 
• Absolute value of a non-zero result is less than β𝑒𝑚𝑖𝑛 

(i.e., it is subnormal) 
• Some ambiguity:  before or after rounding? 

 Overflow 
• Absolute value of a result greater than the largest 

finite value Ω = 2𝑒𝑚𝑎𝑥 × (2 − 21−𝑝) 
• Result is ±∞ 

 Division by zero 
• 𝑥/𝑦 where 𝑥 is finite and non-zero and 𝑦 = 0 

 Inexact 
• Result, after rounding, is not equal to the infinitely 

precise result 

 Invalid 
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Exceptions Specified by IEEE 754-2008 

 Invalid 
• An operand is a sNaN 

• 𝑥 where 𝑥 < 0 

– however −0 = −0 

• −∞ + +∞ , +∞ + (−∞) 
• −∞ − −∞ , +∞ − (+∞) 
• (±0) × (±∞) 
• (±0)/(±0) or (±∞)/(±∞) 
•  some floating-point →integer or decimal 

conversions 
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Rounding Modes in IEEE 754-2008 

 round to nearest 
• round to nearest even 

– in the case of ties, select the result whose significand is 

even 

– required for binary and decimal 

– the default rounding mode for binary 

• round to nearest away 

– required only for decimal 

 round toward +∞ 

 round toward −∞ 

 round toward 0 
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Rounding modes 

 Many math libraries and other software 

make assumptions about the current 

rounding mode of a process 
• you need to tell the environment if rounding 

modes are changing 

 Don’t change the default unless you really 

know what you’re doing 

 And if you know what you’re doing, you 

probably won’t change it 
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Transcendental and Algebraic Functions 

The standard recommends the following 

functions be correctly rounded: 

 𝑒𝑥, 𝑒𝑥 − 1, 2𝑥, 2𝑥 − 1, 10𝑥, 10𝑥 − 1 

 𝑙𝑜𝑔α(Φ) for α = 𝑒, 2, 10 and Φ = 𝑥, 1 + 𝑥 

 𝑥2 + 𝑦2, 1/ 𝑥, (1 + 𝑥)𝑛, 𝑥𝑛, 𝑥1/𝑛 

 sin(𝑥), cos(𝑥), tan(𝑥), sinh(𝑥), cosh(𝑥), 
tanh(𝑥) and the inverse functions 

 sin(π𝑥), cos(π𝑥) 

 And more... 
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Transcendental Functions 

Why this may be difficult to do... 

Consider 21.e4596526bf94dp−31 

 The correct answer is 

1.0052𝑓𝑐2𝑒𝑐2𝑏537𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓4… 

 You need to know the result to 115 bits to 

determine the correct rounding. 

 “The Table-Makers Dilemma” 
• Rounding ≈ 𝑓(𝑥) gives same result as rounding 

𝑓(𝑥) 

 See publications from ENS group 
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Table-Makers Dilemma 

“No general way exists to predict how many 

extra digits will have to be carried to compute a 

transcendental expression and round it 

correctly to some preassigned number of 

digits.” 

W. Kahan 
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Convenient Properties 

Exact operations 

 If 
𝑦

2
≤ 𝑥 ≤ 2𝑦 and subnormals are available, 

then 𝑥 − 𝑦 is exact 
• Sterbenz’s lemma 

 But what about catastrophic cancellation? 
• Subtracting nearly equal numbers loses accuracy 

 The subtraction itself does not introduce any 

error 
• it may amplify a pre-existing error 
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Convenient Properties 

Exact operations 

 Multiplication/division by 2𝑛 is exact 
• In the absence of under/overflow 

 Multiplication of numbers with significands 

having sufficient low-order 0 digits 
• Precise splitting and Dekker’s multiplication 
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Walking Through Floating-point 

Numbers 

 0x0000000000000000 

 0x0000000000000001 

 ... 

 0x000fffffffffffff 

 0x0010000000000000 

 ... 

 0x001fffffffffffff 

 0x0020000000000000 
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+zero 

smallest 

subnormal 

largest subnormal 

smallest normal 

2 X smallest 

normal 



Walking Through Floating-point 

Numbers 

 0x0020000000000000 

 ... 

 0x7fefffffffffffff 

 0x7ff0000000000000 

 0x7ff0000000000001 

 ... 

 0x7fffffffffffffff 

 0x8000000000000000 
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2 X smallest 

normal 

+infinity 

NaN 

largest normal 

NaN 

-zero 



Walking Through Floating-point 

Numbers 

 0x8000000000000000 

 0x8000000000000001 

 ... 

 0x800fffffffffffff 

 0x8010000000000000 

 ... 

 0xfff0000000000000 

 0xfff0000000000001 

 ... 

 0xffffffffffffffff 
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NaN 

“largest” negative 

subnormal 

NaN 

-zero 

“smallest” negative 

subnormal 

“smallest” negative 

normal 

-infinity 



How many FP numbers are there? 

 ~2𝑝+1𝑒𝑚𝑎𝑥 

 For single-precision: ≈ 4.3 × 109 

 For double-precision: ≈ 1.8 × 1019 

 Number of protons circulating in the LHC: 

~2 × 1014 (pre-shutdown) 
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End of Part I 

Time for a break... 
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Q & A 
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Part II -- Techniques 

 Error-Free Transformations 

 Summation 

 Dot Products 

 Polynomial Evaluation 

 Data Interchange 
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Error-Free Transformations 

An error-free transformation (EFT) is an 

algorithm which determines the rounding error 

associated with a floating-point operation. 

 Addition/subtraction 

 𝑎 + 𝑏 = (𝑎⨁𝑏) + 𝑡 

 Multiplication 

 𝑎 × 𝑏 = 𝑎⨂𝑏 + 𝑡 

 There are others 
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Error-Free Transformations 

 Under most conditions, the rounding error is 

itself a floating-point number 
• 𝑎 + 𝑏 = 𝑠 + 𝑡 where 𝑠 = 𝑎⨁𝑏 
• all values are floating-point numbers 

• This is still a powerful analytical tool even when 𝑡 
is not a floating-point number 

 An EFT can be implemented using only 

floating-point computations in the working 

precision 

 Rounding error is often called the 

approximation error 
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EFT for Addition:  FastTwoSum 

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where 

 𝑎 ≥ 𝑏  

 𝑠 = 𝑎 ⊕ 𝑏 

void 
FastTwoSum( const double a, const double b, 
      double* s, double* t ) { 
    //  Requires that 𝒂 ≥ 𝒃  
    //  No unsafe optimizations! 
    *s = a + b; 
    *t = b - ( *s - a ); 
    return; 
} 
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EFT for Addition:  TwoSum 

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where 

 𝑠 = 𝑎 ⊕ 𝑏 

void 
TwoSum( const double a, const double b, 
        double* s, double* t ) { 
    //  No unsafe optimizations! 
    *s = a + b; 
    double z = *s – b; 
    *t = ( a - z ) + ( b - ( *s - z ) ); 
    return; 
} 
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EFTs for Addition 

 A realistic implementation of FastTwoSum 

requires 3 floating-point operations and a 

branch 

 TwoSum takes 6 floating-point operations but 

requires no branches 

 TwoSum is usually faster on modern 

processors 

 Recall that this discussion is restricted to 

radix 2 and round to nearest even 
• this is required to prove TwoSum 
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Accurate multiplication 

 Veltkamp splitting 
• split 𝑥 = 𝑥ℎ + 𝑥𝑙 where the number of non-zero 

digits in each significand is ≈ 𝑝/2 

 Dekker’s multiplication scheme 
• 𝑥 × 𝑦 = 𝑥ℎ × 𝑦ℎ + 𝑥ℎ × 𝑦𝑙 + 𝑥𝑙 × 𝑦ℎ + 𝑥𝑙 × 𝑦𝑙 

 Combine with extended-precision addition 

algorithm to get (𝑥 × 𝑦)ℎ and (𝑥 × 𝑦)𝑙 
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Precise Splitting Algorithm 

 Known as Veltkamp’s algorithm 

 Calculates 𝑥ℎ and 𝑥𝑙 such that 𝑥 = 𝑥ℎ + 𝑥𝑙 
exactly 

 For δ < 𝑝, where δ is a parameter, 
• The significand of 𝑥ℎ fits in p − δ digits 

• The significand of 𝑥𝑙 fits in δ digits 

 No information is lost in the transformation 
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Precise Splitting 

 Code fragment 

void 
Split( const double x, const int delta, 
       double* x_h, double* x_l ) { 
    //  No unsafe optimizations! 
    unsigned long c = (1UL << delta) + 1; 
    *x_h = ( c * x ) + ( x - ( c * x ) ); 
    *x_l = x - x_h; 
    return; 
} 
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Precise Multiplication 

 Dekker’s algorithm 

 Computes 𝑠 and t such that 𝑎 × 𝑏 = 𝑠 + 𝑡 
where s= 𝑎⨂𝑏 
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Precise Multiplication Algorithm 

  

#define SHIFT_POW 27 /* 𝑝/2  for Binary64 */ 
void 
Mult( const double a, const double b, 
      double* s, double* t ) { 
    double a_high, a_low, b_high, b_low; 
    //  No unsafe optimizations! 
    Split( a, SHIFT_POW, &a_high, &a_low ); 
    Split( b, SHIFT_POW, &b_high, &b_low ); 
    *s = x * y; 
    *t = -*s + a_high * b_high ; 
    *t += a_high * b_low + a_low * b_high; 
    *t += a_low * b_low; 
    return; 
} 
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Summation Techniques 

 Traditional 

 Sorting and Insertion 

 Compensated 

 Distillation 

 Multiple accumulators 

 

 Reference:  Higham 
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Summation Techniques 

Condition number 

𝐶𝑠𝑢𝑚 =
 𝑎𝑖
 𝑎𝑖

 

 If 𝐶𝑠𝑢𝑚 is “not too large,” the problem is not 

ill-conditioned and traditional methods may 

suffice 

 But if 𝐶𝑠𝑢𝑚 is “too large,” we want results 

appropriate to higher precision without 

actually using a higher precision 

 But if higher precision is available, use it!  
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Traditional Summation 

 𝑠 =  𝑥𝑖
𝑛
𝑖=0  

 Code fragment 
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double 
Sum( const double* x, const int n ) { 
    int i; 
    double sum = 0.0; 
    for ( i = 0; i < n; i++ ) { 
        sum += x[ i ]; 
    } 
    return sum; 
} 
 



Traditional Summation 

What can go wrong? 

 Catastrophic cancellation 
• loss of significance 

• magnitude of operands nearly equal but signs 

differ:  𝑥 ≈ −𝑦 

 Small terms encountered when running sum 

is large 
• the smaller terms don’t affect the result 

• but later large magnitude terms may reduce the 

running sum 
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Sorting and Insertion 

 Reorder the operands 
• Increasing magnitude 

• Decreasing magnitude 

 Insertion 
• First sort by magnitude 

• Remove 𝑥1 and 𝑥2 and compute their sum 

• Insert that sum on the list keeping it sorted 

• Repeat until only 1 element is left on the list 

 Many variations 
• If lots of cancellation, sorting by decreasing 

magnitude can be better 

• Sterbenz’s lemma 
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Compensated Summation 

 Based on FastTwoSum and TwoSum 

techniques 

 Knowledge of the exact rounding error in a 

floating-point addition is used to correct the 

summation 
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Compensated Summation 

 Code fragment 
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double 
Kahan( const double* x, const int n ) { 
    double sum = x[ 0 ]; 
    double c = 0.0; 
    double y; 
    int i; 
    for ( i = 1; i < n; i++ ) { 
        y = x[ i ] + c; 
        FastTwoSum( sum, y, &sum, &c ); 
    } 
    return sum; 
} 
 



Compensated Summation 

 Many variations known 

 Consult the extensive literature: 
• Kahan 

• Knuth 

• Priest 

• Pichat and Neumaier 

• Rump, Ogita and Oishi 

• Shewchuk 

• Arénaire Project (ENS) 
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Other Summation Techniques 

 Distillation 
• Separate accumulators based on exponents of 

operands 

• Additions are always exact until the accumulators 

are finally added 

 Long accumulators 
• Emulate greater precision 

• double-double 
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Choice of Summation Technique 

 Performance 

 Error  bound 
• independent of n? 

 Condition number 
• Is it known? 
• Difficult to determine? 
• Some algorithms allow it to be determined 

simultaneously with the sum 
• It can be used to evaluate the suitability of the 

result 

 No one technique fits all situations all the 
time 
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Dot Product  

 Use of EFTs 

 Recast to summation 

 Compensated dot product 
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Dot Product  

 Condition number: 

𝐶𝑑𝑜𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =
2 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 

 If 𝐶 is not too large, a traditional algorithm 

can be used 
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Dot Product  

 The dot product of 2 vectors of dimension 𝑛 
can be reduced to computing the sum of 2𝑛 
floating-point numbers 
• Split each element 

• Form products 

• Sum accurately 

 Algorithms can be constructed such that the 

result computed in precision 𝑝 is as accurate 

as though the dot product was computed in 

precision 2𝑝 and then rounding back 

 Consult the work of Ogita, Rump and Oishi 
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Polynomial Evaluation 

 Horner’s method 

 Use of EFTs 

 Compensated 
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Polynomial Evaluation 

Horner’s method 

𝑝 𝑥 = 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

 

where 𝑥 and all 𝑎𝑖 are all floating-point 

numbers 
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Polynomial Evaluation 

 Code fragment 
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double 
Horner( const double* a, const int n, 
  double x ) { 
    int i; 
    double p = 0.0; 
    for ( i = n; i >= 0; i-- ) { 
        p = p * x + a[ i ]; 
    } 
    return p; 
} 
 



Polynomial Evaluation 

Compensated Horner’s method: 

 Let 𝑝0 =Horner(a,n,x) 

 Determine π(𝑥) and σ(𝑥) where 
•  π(𝑥) and σ(𝑥) are polynomials of degree 𝑛 − 1 

with coefficients π𝑖 and σ𝑖 
• such that 

𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥) 
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Polynomial Evaluation 

Compensated Horner’s method: 

 𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥) 

 Error analysis shows that under certain 

conditions, 𝑝(𝑥) is as accurate as evaluating 

𝑝0 in twice the working precision 

 Even if those conditions are not met, one 

can apply the method recursively to π(𝑥) 
and σ(𝑥) 
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Approximation Errors 

 Consider 0.1 and 0.01 

 Neither can be represented exactly as a 

floating-point number 

 0.1   = 0x1.999999999999ap-4 
• ≈ 0.1 + 5.55…× 10−18 

 0.01 = 0x1.47ae147ae147bp-4 
• ≈ 0.01 + 2.08…× 10−19 

 0.1⨂0.1 = x1.47a3147a3147cp-4 
• ≈ 0.01 + 1.94…× 10−18 
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Approximation Errors 

 Testing floating-point numbers for equality 

can be problematic 
• particularly if the values are computed 

• always use ≤ ≥ etc 

• beware of never-ending loops 
while ( a != b ) {...} 
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Data Interchange 

Moving floating-point data between platforms 

without loss of information? 

 Exchange binary data 

 Use of %a and %A 
• Encodes the internal bit patterns via hex digits 

 Formatted decimal strings 
• Requires sufficient decimal digits to guarantee 

“round-trip” reproducibility 

• Depends on accuracy of run-time 

binary↔decimal conversion routines on all 

platforms 
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Q & A 
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