
From CRLibm to Metalibm :
assisting the production of high-performance

proven floating-point code

Florent de Dinechin
AriC project

My research group

The AriC project @ École Normale Supérieure de Lyon :
Computer Arithmetic at large

Hardware and software

From addition to linear algebra

Fixed point, floating-point, multiple-precision,
finite fields,

Pervasive concern of performance, numerical
quality and validation

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 2

Outline

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 3

Introduction :
performance versus accuracy

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 4

Bottom line of this talk

Common wisdom

The more accurate you compute, the more expensive it gets

In practice

We (hopefully) notice it when our computation is
not accurate enough.

But do we notice it when it is too accurate for our needs ?

Reconciling performance and accuracy ?

Or, regain performance by computing just right ?

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 5

Double precision spoils us

The standard binary64 format (formerly known as double-precision)
provides roughly 16 decimal digits.

Why should anybody need such accuracy ?

Count the digits in the following

Definition of the second : the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

Definition of the metre : the distance travelled by light in vacuum
in 1/299,792,458 of a second.

Most accurate measurement ever (another atomic frequency)
to 14 decimal places

Most accurate measurement of the Planck constant to date :
to 7 decimal places

The gravitation constant G is known to 3 decimal places only

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 6

Parenthesis : then why binary64 ?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong ?

We would use these 16 digits just to accumulate garbage in them ?

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 7

Back to the point

... which was :

Mastering accuracy for performance

When implementing a “computing core”

A goal : never compute more accurately than needed

Two sub-goals

Know what accuracy you need
Know how accurate you compute

“Computing cores” considered so far : elementary functions, sums of
products, linear algebra, Euclidean lattices algorithms.

By the way

“computing just right” implies “computing right”...

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 8

A general technique for computing just right

I’ve seen it for orientation predicates, area of a triangle, elementary
functions...

Fast in average, always accurate

1. use a quick and dirty routine

2. runtime-test if it was accurate enough

3. launch an expensive, accurate routine only when needed

If done well, average time is close to that of the quick routine

Only works if you know how to implement step 2

... requires to understand/master/engineer the accuracy of your code.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 9

Elementary function evaluation

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 10

How does your PC compute elementary functions ?

Rule of the game : use the hardware, i.e. +, −, ×
(and maybe / and

√
but they are expensive).

Polynomial approximation works on a small interval

Argument reduction : using mathematical identities, transform
large arguments in small ones

Simplistic example : an exponential

identity : ea+b = ea × eb

split x = a + b

a : k leading bits of x
b : lower bits of x b << 1

tabulate all the ea (2k entries)

use a Taylor polynomial for eb

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 11

Know how accurate you compute

Approximation errors

example : approximate a function f with a polynomial p :
||p − f ||∞ ?
(see next slide)
in general : approximate an object by another one

Rounding errors

for data, often called quantization errors ;
for operations, each individual error well specified by IEEE-754
but their accumulation difficult to manage

In physics : time discretization errors, etc

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 12

Approximation of a function by a polynomial

-5e-18

-4e-18

-3e-18

-2e-18

-1e-18

 0

 1e-18

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

||p − f ||∞ for Taylor and Remez approximation (exp on [−2−8, 2−8])

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 13

What is an error ? What is accuracy ?

The most important sentence of this talk

An error is a difference (absolute or relative) between two values,
one being a reference for the other.

Examples :

error of the FP addition is with reference of the real sum (easy)

error of the polynomial is with reference to the function (easy)

error of one FP addition within the polynomial evaluation ?
(difficult because we have no direct reference in the function)

yesterday : accuracy of the summation algorithms ?

Never say “the error of this term is ...” :
it doesn’t mean anything without the reference.

If you are not able to define the reference value,
you will not be able to know how accurate you compute

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 14

Parenthesis : reproductibility and predictability

As soon as we are able to define the reference value,

Who cares about exact reproductibility ?

What matters is to be able to reproduce enough significant digits.

Martyn’s compiler will not help you there :
his compiler has no access to the reference !

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 15

Let us take a simple example

This is part of the code of sin,
after y has been reduced to [−π/256, π/256] :

1 s3 = -0.16666666666666665741480812812369549646973609924;
2 s5 = 8.33333333262892793358300735917509882710874081e-3;
3 s7 = -1.98400103113668426196153360407947729981970042e-4;
4

5 y2 = y * y;
6 ts = y2 * (s3 + y2*(s5 + y2*s7));
7 r = y + y*ts

evaluation of sine as an odd polynomial
p(y) = y + s3y 3 + s5y 5 + s7y 7

(think Taylor for now)

reparenthesized as p(y) = y + yt(y 2) to save operations

y + y*ts is more accurate than y*(1+ts) in floating-point,
do you see why ?

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 16

Rounding errors piled over approximations

1 s3 = -0.16666666666666665741480812812369549646973609924;
2 s5 = 8.33333333262892793358300735917509882710874081e-3;
3 s7 = -1.98400103113668426196153360407947729981970042e-4;
4

5 y2 = y * y;
6 ts = y2 * (s3 + y2*(s5 + y2*s7));
7 r = y + y*ts

This polynomial is an approximation to sin(y)

Oops, I wrote its coefficients in decimal !

if x was not in [−π/256, π/256], y is not the ideal reduced
argument Y (such that x = Y + k π

256)

We have a rounding error in computing y 2

y2 already stacks two errors. We evaluate ts out of it

There is a rounding error hidden in each operation.

How many correct bits at the end ?

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 17

What this code doesn’t tell

The context

y ∈ [−π/256, π/256]

What it is supposed to compute

a sine accurate to 2−60

My programmer expertise

y*(1+ts) is a bit less accurate than y + y*ts in floating-point
... because |t| < 2−14 because |y | < 2−7

1

+ t

= 1+t

y

+ y*t

= y+y*t

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 18

On the positive side : combining errors is easy

Since an error is a difference :

F (x)− f (x) = F (x)− p(x) + p(x)− f (x)
(rounding error + polynomial approximation error)

|F (x)− f (x)| ≤ |F (x)− p(x)| + |p(x)− f (x)|

... then recurse on F (x)− p(x)

Difficulties

define “intermediate reference values”

do not forget anything

relative errors :

a− c

c
=

a− b

b
+

b − c

c
+

a− b

b
× b − c

c

Later in this talk : Gappa, a tool that helps you with all this

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 19

Correctly rounded functions
computing just right

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 20

Know what accuracy you need ?

Correctly rounded elementary functions

IEEE-754 floating-point single or double-precision

Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (libm)

Correctly rounded : As perfect as can be, considering the finite
nature of floating-point arithmetic

same standard of quality as +,×, /,√

Now recommended by the IEEE754-2008 standard,
but long considered too expensive

because of the Table Maker’s Dilemma

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 21

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute : y such that f (x) ∈ [y − ε, y + ε]

?

y ± ε y ± ε

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 22

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 23

Solving the table maker’s dilemma

y ± ε1 y ± ε2

Ziv’s onion peeling algorithm

1. Initialisation : ε = ε1

2. Compute y such that f (x) = y ± ε
3. Does y ± ε contain the middle point between two FP numbers ?

If no, return RN(y)
If yes,dilemma ! Reduce ε, and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 24

Accuracy versus performance

CRLibm : 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we need a tight bound on the error of the code :

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2 ! (common wisdom)
Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 25

First function development in Arénaire

First correctly rounded elementary function in CRLibm

exp by David Defour

worst-case time T2 ≈ 10,000 cycles

complex, hand-written proof

duration : a Ph.D. thesis (2002)

Conclusion was :

performance and memory consumption of CR elem function is OK

problem now is : performance and coffee consumption of the programmer
(and that is because of the need for tight error bounds)

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 26

Latest CR function developments in Arénaire

C. Lauter at the end of his PhD,

development time for sinpi, cospi, tanpi : 2 days

worst-case time T2 ≈ 1,000 cycles

(but as a result of three more PhDs)

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 27

Open-source tools for FP coders

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 28

The GMP family

GMP (GNU Multiple Precision) and its beautiful C++ wrapper

integer arithmetic
best asymptotic algorithms + lower layers in hand-crafted assembly
code

MPFR : Multiple Precision Floating-point correctly Rounded

a floating-point layer on top of GMP
IEEE 754-like specification
Now a dependency of GCC, so you probably have it installed

MPFI : interval arithmetic on top of MPFR

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 29

Sollya (1)

Open-source, LGPL, http://sollya.gforge.inria.fr/
The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

Killer feature 1

apologizes each time it rounds something

1 fdedinec@krupnik: sollya
2 > 1+1;
3 2
4 > 1/3;
5 Warning: rounding has happened. The value displayed is a

faithful rounding of the true result.
6 0.33

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 30

http://sollya.gforge.inria.fr/

The Patriot bug

In 1991, a Patriot missile failed to intercept a Scud, and 28 people were
killed.

The code worked with time increments of 0.1 s.

But 0.1 is not representable in binary.

In the 24-bit format used, the number stored was
0.099999904632568359375

The error was 0.0000000953.

After 100 hours = 360,000 seconds, time is wrong by 0.34s.

In 0.34s, a Scud moves 500m

In single, we don’t have that many bits to accumulate garbage in them !

Test : which of the following increments should you use ?

10 5 3 1 0.5 0.25 0.2 0.125 0.1

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 31

Sollya (2)

Killer feature 2

multiple-precision, last-bit accurate evaluation of arbitrary expressions

1 fdedinec@krupnik: sollya
2 > e=exp(x) - (1+x+x^2/2+x^3/6);
3 > e(0.125);
4 Warning: rounding has happened. The value displayed is a

faithful rounding of the true result.
5 1.04322334929834956738944784605392321697984118482926e-5
6 >

All these digits are meaningful ! This is better than Maple.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 32

Sollya (3)

Killer feature 3

guaranteed infinite norm ||f (x)||∞ even in degenerate cases

||f (x)− P(x)||∞ is a degenerate case...

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 33

Sollya (4)

Killer feature 4

Machine-efficient polynomial approximation

Remez’ minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients

float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

this saves a few bits of accuracy
especially relevant for small precisions (FPGAs)
that’s how we get our polynomials

Nice number theory behind. And needs all the previous.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 34

6 guaranteed log polynomials on one slide

A sollya script that computes appproximations to the log of various qualities

f= log(1+y);

I=[-0.25;.5];

filename="/tmp/polynomials";

print("") > filename;

for deg from 2 to 8 do begin

p = fpminimax(f, deg,[|0,23...|],I, floating, absolute);

display=decimal;

acc=floor(-log2(sup(supnorm(p, f, I, absolute, 2^(-40)))));

print(" // degree = ", deg,

" => absolute accuracy is ", acc, "bits") >> filename;

print("#if (DEGREE ==", deg, ")") >> filename;

display=hexadecimal;

print(" float p = ", horner(p) , ";") >> filename;

print("#endif") >> filename;

end;

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 35

Formal proof
of floating-point code

for the masses

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 36

crlibm.pdf 5 years ago : 124 pages of this

1 yh2 = yh∗yh ; \
2 t s = yh2 ∗ (s3 . d + yh2∗(s5 . d + yh2∗s7 . d)) ; \
3 Add12 (∗psh ,∗ p s l , yh , y l+t s∗yh) ; \

Upon entering DoSinZero, we have in yh + yl an approximation to the ideal reduced value ŷ = x − k π
256

with a relative
accuracy εargred :

yh + yl = (x − k
π

256
)(1 + εargred) = ŷ(1 + εargred) (1)

with, depending on the quadrant, sin(ŷ) = ± sin(x) or sin(ŷ) = ± cos(x) and similarly for cos(ŷ). This just means that ŷ
is the ideal, errorless reduced value.
In the following we will assume we are in the case sin(ŷ) = sin(x), (the proof is identical in the other cases), therefore the
relative error that we need to compute is

εsinkzero =
(∗psh + ∗psl)

sin(x)
− 1 =

(∗psh + ∗psl)

sin(ŷ)
− 1 (2)

One may remark that we almost have the same code as we have for computing the sine of a small argument (without range
reduction). The difference is that we have as input a double-double yh + yl, which is itself an inexact term.

At Line 4, the error of neglecting yl and the rounding error in the multiplication each amount to half an ulp :

yh2 = yh2(1 + ε−53), with yh = (yh + yl)(1 + ε−53) = ŷ(1 + εargred)(1 + ε−53)

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 37

Therefore
yh2 = ŷ2(1 + εyh2) (3)

with
εyh2 = (1 + εargred)2(1 + ε−53)3 − 1 (4)

Line 5 is a standard Horner evaluation. Its approximation error is defined by :

Pts(ŷ) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)

This error is computed in Maple as previously, only the interval changes :

εapproxts =

∥∥∥∥∥ xPts(x)

sin(x)− x
− 1

∥∥∥∥∥
∞

We also compute εhornerts, the bound on the relative error due to rounding in the Horner evaluation thanks to the
compute horner rounding error procedure. This time, this procedure takes into account the relative error carried by yh2,
which is εyh2 computed above. We thus get the total relative error on ts :

ts = Pts(ŷ)(1 + εhornerts) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)(1 + εhornerts) (5)

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 38

The final Add12 is exact. Therefore the overall relative error is :

εsinkzero =
((yh⊗ ts)⊕ yl) + yh

sin(ŷ)
− 1

=
(yh⊗ ts + yl)(1 + ε−53) + yh

sin(ŷ)
− 1

=
yh⊗ ts + yl + yh + (yh⊗ ts + yl).ε−53

sin(ŷ)
− 1

Let us define for now
δaddsin = (yh⊗ ts + yl).ε−53 (6)

Then we have

εsinkzero =
(yh + yl)ts(1 + ε−53)2 + yl + yh + δaddsin

sin(ŷ)
− 1

Using (1) and (5) we get :

εsinkzero =
ŷ(1 + εargred)× sin(ŷ)−ŷ

ŷ
(1 + εapproxts)(1 + εhornerts)(1 + ε−53)2 + yl + yh + δaddsin

sin(ŷ)
− 1

To lighten notations, let us define

εsin1 = (1 + εapproxts)(1 + εhornerts)(1 + ε−53)2 − 1 (7)

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 39

We get

εsinkzero =
(sin(ŷ)− ŷ)(1 + εsin1) + ŷ(1 + εargred) + δaddsin − sin(ŷ)

sin(ŷ)

=
(sin(ŷ)− ŷ).εsin1 + ŷ.εargred + δaddsin

sin(ŷ)

Using the following bound :

|δaddsin| = |(yh⊗ ts + yl).ε−53| < 2−53 × |y|3/3 (8)

we may compute the value of εsinkzero as an infinite norm under Maple. We get an error smaller than 2−67.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 40

4 pages for 3 lines of code...

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that

takes a set of C files,

parses them,

and outputs “The overall error of the computation is ...”.

It’s hopeless, of course :

Where, in your code, can you read what it is supposed to compute ?

Most of the knowledge used to build the code is not in the code

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 41

Trusted error computation means : formal proof

but... automatic proof assistants are not there yet

Research on formal proofs for arithmetic

John Harrison at Intel (HOL light)
Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
And many others...

Proving Sterbenz Lemma (one operation) is worth a full paper.

Here is the typical crlibm code for which I want the relative error :

1 yh2 = yh*yh ;
2 ts = yh2 * (s3 + yh2*(s5 + yh2*s7));
3 tc = yh2 * (c2 + yh2*(c4 + yh2*c6));
4 Mul12 (&cahyh_h ,&cahyh_l , cah , yh);
5 Add12(thi , tlo , sah ,cahyh_h);
6 tlo = tc*sah+(ts*cahyh_h +(sal+(tlo+(cahyh_l +(cal*yh +

cah*yl))))) ;
7 Add12 (*psh ,*psl , thi , tlo);

... and it changes all the time as we optimize it.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 42

Gappa

Written by Guillaume Melquiond, Gappa is a tool that

takes an input that closely matches your C file,

forces you to express what this code is supposed to compute

... and some numerical property to prove (expressed in terms of
intervals)

and eventually outputs a proof of this property suitable for
checking by Coq or HOL Light

Try it, it’s free software
gappa.gforge.inria.fr/

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 43

gappa.gforge.inria.fr/

Should I present interval arithmetic ?

Using a machine’s finite precision, manipulate reals safely

represent a real x in a machine as an interval [xl , xr]
guaranteed to enclose it

xl and xr are finitely representable numbers (e.g. floating-point)
Example : π represented by [3.14, 3.15]

Operation ⊕ on the reals → its interval counterpart

Guarantees based on the inclusion property

Ix ⊕ Iy must be an interval Iz such that

∀x ∈ Ix , ∀y ∈ Iy , x ⊕ y ∈ Iz

Example : interval addition using floating-point arithmetic

[a, b] + [c , d] is [RoundDown(a + c), RoundUp(b + d)]

(multiplication, division similar but more complex)

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 44

A Gappa tutorial

1 # Con ven t ion : u n c a p i t a l i z e d v a r i a b l e s match t h e v a r i a b l e s i n t h e C code .
2
3 y = float <ieee_64 ,ne >(dummy); # y i s a d o u b l e
4
5 #−−−−−−−−−−−−−−− T r a n s c r i p t i o n o f t h e C code −−−−−−−−−−−−−−−−−−−−−−−−−−
6
7 s3 float <ieee_64 ,ne >= -1.6666666666666665741480812812369549646974e-01;
8 s5 float <ieee_64 ,ne >= 8.3333333333333332176851016015461937058717e-03;
9 s7 float <ieee_64 ,ne >= -1.9841269841269841252631711547849135968136e-04;

10
11 y2 float <ieee_64 ,ne >= y * y;
12 ts float <ieee_64 ,ne >= y2 * (s3 + y2*(s5 + y2*s7));
13 r float <ieee_64 ,ne >= y + y*ts;
14
15 #−−−−−−−− Mathemat ica l d e f i n i t i o n o f what we a r e a p p r o x i m a t i n g −−−−−−−−
16 # (The same e x p r e s s i o n as i n t h e code , but w i t h o u t r o u n d i n g e r r o r s)
17
18 Y2 = Y * Y;
19 Ts = Y2 * (s3 + Y2*(s5 + Y2*s7));
20 R = Y + Y*Ts;
21
22 #−−−−−−−−−−−−−−−−−−−−−− The theorem to p r o v e −−−−−−−−−−−−−−−−−−−−−−−−−−
23 {
24 # Hypotheses (n u m e r i c a l v a l u e s computed by S o l l y a)
25 Y in [1b-1000, 6.15e-3] # Pi /512 , rounded up
26 /\ y - Y in [-2.53e-23, 2.53e-23] # max abs . r a n g e r e d u c t i o n e r r o r
27 /\ R-SinY in [-3.55e-23, 3.55e-23] # a p p r o x i m a t i o n e r r o r (t h i s d e f i n e s SinY)
28 ->
29 r-SinY in ? # A g o a l : a b s o l u t e e r r o r
30 /\
31 (r-SinY)/SinY in ? # Another g o a l : r e l a t i v e e r r o r
32 /\ SinY in ?
33 }

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 45

tutorial1.gappa

$ gappa < tutorial1.gappa

Results for Y in [-0.00615, 0.00615] and y - Y in [-2.53e-23, 2.53e-23] and PolyY - SinY in [-3.55e-23, 3.55e-23]:

r - SinY in [-2^(-60.9998), 2^(-60.9998)]

Warning: some enclosures were not satisfied.

Missing (r - SinY) / SinY

$

A tight bound on the absolute error

No bound for the relative error

of course ! I have to prove that SinY cannot come close to zero...
that’s formal proof for you

We should now try gappa -Bcoq

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 46

How does Gappa work ?

Gappa tries to associate an interval with each expression.

Interval arithmetic is used to combine these intervals, until the goal
is reached.
Naively, it would lead to interval bloat. Here for instance

r ≈ SinY ∈ [−2−7, 2−7]
so r− SinY ∈ [−2−6, 2−6] using naive IA.

Gappa uses rewriting of expressions
As r = float64ne(E);

try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;

(hopefully now the sum of two smaller intervals)
When Gappa is stuck, add user-defined rewriting rules

That’s how you explain your floating-point tricks to the tool

Internally, construction of a proof graph

Branches are cut when a shorter path or a better bound are found.
The final graph will be used to generate the formal proof.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 47

Gappa’s theorem library

Predefined set of rewriting rules :

float64ne(a)- b ->(float64ne(a)- a)+ (a - b);

...

Support library of theorems (with their Coq proofs) :
Theorems giving the errors when rounding

I a in [...] ->(float64ne(a)-a)/a in [...]

Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)

Classical theorems like Sterbenz Lemma
...

To obtain a good relative error, Gappa will demand to prove that y may
not be subnormal...

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 48

y + y*ts is a bit more accurate than y*(1+ts)

14 r1 float <ieee_64 ,ne >= y*(1+ts);
15 r2 float <ieee_64 ,ne >= y+y*ts;
16
17 yts float <ieee_64 ,ne >= y*ts; # f o r l i g h t e r h i n t s
18
19 #−−−−−−−− Mathemat ica l d e f i n i t i o n o f what we a r e a p p r o x i m a t i n g −−−−−−−−
20 # (The same e x p r e s s i o n as i n t h e code , but w i t h o u t r o u n d i n g e r r o r s)
21 Y2 = y*y;
22 Ts = Y2 * (s3 + Y2*(s5 + Y2*s7));
23 Poly = y*(1+Ts);
24 #−−−−−−−−−−−−−−−−−−−−−− The theorem to p r o v e −−−−−−−−−−−−−−−−−−−−−−−−−−
25 {
26 # Hypotheses (n u m e r i c a l v a l u e s computed by S o l l y a)
27 y in [1b-200, 6.15e-3] # l e f t : Kahan/ Douglas a l g o r i t h m . R i g h t : Pi /512 , rounded up
28 ->
29 r1 -/Poly in ? # r e l a t i v e e r r o r
30 /\
31 r2 -/Poly in ? # r e l a t i v e e r r o r
32 }
33
34 #−−−−−−−−−−−−−−−−−−Loads o f r e w r i t i n g h i n t s needed f o r r 2 −−−−−−−−−−−−−−−−−−−−
35 y+yts -> y* ((1+ts) + ts*((yts -y*ts) / (y*ts))) {y*ts <> 0};
36
37 (r2 -Poly)/Poly -> ((r2 - (y+yts))/(y+yts) + 1) * (((y+yts)/y) / (1+Ts)) -1 {1+Ts

<>0};
38
39 (y+yts)/y ->
40 # (y+y∗ t s−y∗ t s+y t s) / y ;
41 # 1+ t s + (yt s−y∗ t s) / y ;
42 1+ts + ts*((yts -y*ts)/(y*ts)) {y*ts <> 0};
43
44 ((y+yts)/y) / (1+Ts) -> (1+ts)/(1+Ts) + ts*((yts -y*ts)/(y*ts))/(1+Ts) {1+Ts <>0};
45
46 (1+ts)/(1+Ts) -> 1 + (Ts*((ts-Ts)/Ts))/(1+Ts) {1+Ts <>0};

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 49

tutorial2.gappa

$ gappa < tutorial2.gappa

Results for y in [7.88861e-31, 0.00615]:

(r1 - Poly) / Poly in [-2^(-52.415), 2^(-52.415)]

(r2 - Poly) / Poly in [-2^(-52.9777), 2^(-52.9339)]

$

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 50

Conclusion on Gappa

I probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn’t understand my Gappa proof, you just don’t
understand my C code)

if you don’t know where it is stuck, ask it (by adding goals)
then add rewriting rules to help it

It is built upon very solid theoretical fundations

MetaLibm is a generator of code + Gappa proof
The same RR work for large classes of generated codes.

Also support for arbitrary-precision fixed-point.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 51

Two metalibm prototypes

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 52

Christoph Lauter’s metalibm

Example : log(1 + x)

Two parameters

k from 1 to 13, defines table size
target accuracy, between 20 and 120 bits

1203 implementations, all formally checked

z axis : timings in arbitrary units

-14
-12

-10
-8

-6
-4

-2

 20
 40

 60
 80

 100
 120

 0

 0.5

 1

 1.5

 2

 2.5

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 53

MetalibmC11 : an ad-hoc approach

How to develop/retarget functions in lower time ?

Gappa

MPFR

SollyaRewriting steps library
Core

library
exponential_first_rr_fp(...) {....}

cody_waite_2(...) {...}

poly_horner_fp(...) {...}

Logarithm code generator

...

...

Exponential code generator

exponential_first_rr_fp(...);
if(...)

poly_horner_fp(...) {...}

else
...

...

exp logvariants variants

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 54

Metalibm framework

All this is work in progress

A Processor class and its subclasses

encapsulates processor-specific code generation and tricks
still tinkering a lot there

A Format class and its subclasses

A Polynomial class

A CFunction class for libm functions

automatically generates test programs

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 55

Metaexp in one slide

inputs :

fp_format, processor, verbose=True,

manage_subnormals=True, eval_Estrin=False,

Already 8 useful implementations
(float/double, subnormals or not, Estrin or Horner)

Trivial to add a precision input

A case study for structuration as a metaskeleton

No Gappa generation yet

Current code doesn’t autovectorize with GCC

experimental generator of fixed-point code

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 56

Perfs for exp

My laptop : Intel(R) Core(TM)2 Duo CPU U9600 @ 1.60GHz

My desktop : Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz

Both running XUbuntu 12.10 with gcc 4.7.2

Core2 U9600 Xeon E5-1620

stock expf 193 45

expf Horner 87 24

expf Estrin 77 27

stock exp 108 60

exp Horner 130 28

exp Estrin 89 36
Last-bit accuracy verified by exhaustive test for the expf’s

Disclaimers :

timings using rdtsc(), usual caveats apply.

inlining switched on for our code, not for the stock function.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 57

Metalog in one slide

experiment with optimized for latency / optimized for throughput

using autovectorisation with gcc 4.7
works for single but not for double
(no %ymmi in the generated assembly ? ! ?)
Either AVX doesn’t replicate all SSE2 functions, or GCC is not ready

I’m not sure I understand how a degree-20 Horner polynomial is
evaluated in 37 cycles

Estrin evaluation would be useful here

but current implementation not modular enough
short-term TODO

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 58

Perfs for log (see metalibm/tests/perftests.cc)

Core2 U9600 Xeon E5-1620

stock logf 99 36

logf horner(opt. for latency) 88 30
the same, autovectorized for SSE2 35 30

logf horner v (opt. for throughput) 107 33
the same, autovectorized for SSE2 11 11

stock log 132 86

log horner (opt. for latency) 171 37
Last-bit accuracy verified by exhaustive test for the logf’s

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 59

A glance at generated code

/* Exceptional case filtering, vectorizable */

minfty.ui = 0xff800000; /* minus infinity */

nan.ui = 0x7fc00000; /* nan */

ret_minfty = ((xx.ui & 0x7fffffff) == 0) ? minfty.f : 0.0f; /* x == +/-0 ?*/

ret_nan = (xx.ui > 0x80000000) ? nan.f : 0.0f; /* x<O ?*/

x_is_inf_or_nan = ((xx.ui & 0x7fffffff) >= 0x7f800000) ? xx.f : 0.0f; /* x inf or NaN ?*/

exn = ret_minfty + ret_nan + x_is_inf_or_nan; /* 0.0 if normal or subnormal, exception to return otherwise */

/* Now remains to add exn somewhere where it will propagate to the result */

x_subnormal = (xx.ui < 0x00800000) && (xx.ui > 0);

subnormal_scale = x_subnormal ? 0x1.p48f : 1.0f; /* scale mantissa*/

e_x = x_subnormal ? -127-48 : -127; /* ... and initialize exponent*/

xx.f *= subnormal_scale;

/* Now decompose x into fraction and exponent */

e_x += ((xx.i) >> 23) & ((1<<8)-1); /* extract exponent*/

fraction.i = (xx.i & 0x007fffff); /* extract fraction bits*/

adjust = (fraction.i>>22); /* first non-implicit bit of the fraction, tells us if 1.m > 1.5 */

fraction.i = fraction.i |0x3f800000; /* add the exponent of one */

fraction.i -= adjust << 23; /* if m>1.5, divide fraction by 2 (exact operation) */

e_x += adjust; /* and update exponent so we still have x = 2^e_x * fraction */

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 60

/* Now back to floating-point */

y = fraction.f - 1.0f; /* Sterbenz-exact; may cancel but we don’t care */

y += exn; /* exn is either 0.0, or an inf or NaN that will propagate to the output */

/* Now y in [-0.25, 0.5], and we must evaluate log(1+y) */

/* Horner evaluation */

y2 = y*y;

p9 = c9;

p8 = c8 + y*p9;

p7 = c7 + y*p8;

p6 = c6 + y*p7;

p5 = c5 + y*p6;

p4 = c4 + y*p5;

p3 = c3 + y*p4;

p2 = c2 + y*p3;

p = y + y2*p2;

r = e_x*log_2 + p;

return r;

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 61

Horner autovectorized to SSE2

thanks to gcc -O3 -msse2 -finline-limit=1000 -S

Without

mulss %xmm2, %xmm1

subss %xmm10, %xmm0

mulss %xmm2, %xmm0

addss %xmm9, %xmm0

mulss %xmm2, %xmm0

subss %xmm8, %xmm0

mulss %xmm2, %xmm0

addss %xmm7, %xmm0

mulss %xmm2, %xmm0

subss %xmm6, %xmm0

mulss %xmm2, %xmm0

addss %xmm5, %xmm0

mulss %xmm2, %xmm0

subss %xmm4, %xmm0

With

mulps %xmm1, %xmm2

subps .LC50(%rip), %xmm0

mulps %xmm1, %xmm0

addps .LC51(%rip), %xmm0

mulps %xmm1, %xmm0

subps .LC52(%rip), %xmm0

mulps %xmm1, %xmm0

addps .LC53(%rip), %xmm0

mulps %xmm1, %xmm0

subps .LC54(%rip), %xmm0

mulps %xmm1, %xmm0

addps .LC55(%rip), %xmm0

mulps %xmm1, %xmm0

subps .LC56(%rip), %xmm0

Room for improvement by interleaving two iterations ?

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 62

This is evaluated in 37 cycles ?

mulsd %xmm2, %xmm1

movapd %xmm2, %xmm3

mulsd .LC19(%rip), %xmm0

mulsd %xmm2, %xmm3

addsd .LC21(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC22(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC23(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC24(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC25(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC26(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC27(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC28(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC29(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC30(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC31(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC32(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC33(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC34(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC35(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC36(%rip), %xmm1

mulsd %xmm2, %xmm1

addsd .LC37(%rip), %xmm1

mulsd %xmm2, %xmm1

subsd .LC38(%rip), %xmm1

mulsd %xmm1, %xmm3

addsd %xmm2, %xmm3

addsd %xmm3, %xmm0

ret

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 63

Metatrigpi in one slide

sin(πx) and cos(πx) recommended by IEEE 754-2008

No costly range reduction
Correct rounding proven feasible

sincospif(float x, float *s, float *c)

computes both in one function

sincospio2f(float x, float *s, float *c)

computes sin(π2 x) and cos(π2 x) even faster

Developed in one day.

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 64

Conclusion

Introduction : performance versus accuracy

Elementary function evaluation

Correctly rounded functions computing just right

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Two metalibm prototypes

Conclusion

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 65

Main messages

If you’re computing accurately enough, you’re probably computing
too accurately.

Are you able to express what your code is supposed to compute ?
If yes,

we can help you sort out the gory floating-point issues
we can provide functions computing just right for you

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 66

The MetaLibm open-ended vision

We needed to automate the development of code+proof for the
elementary functions

Now that this is (almost) done, we may open up the set of
functions/precisions/performance constraints

An ANR funding proposal under review

metalibm/OpenEnded

genericity in input

metalibm/C11

focus on performance (match hand-coded libraries)
genericity in target processor
hand-code what we are unable (yet) to automate : range reductions,
floating-point trickery, ...

FPGAs, DSP filters for good measure

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 67

Open-ended input

As an arbitrary expression + interval + range

As a differential equation (see Dynamic Dictionary of
Mathematical Functions)

http://ddmf.msr-inria.inria.fr/

...

Beyond the horizon

Functions of several variables

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 68

http://ddmf.msr-inria.inria.fr/

My other research project

Computing just right for FPGAs

... but I was given another advertising slot for this.

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i

√
x logx

http://flopoco.gforge.inria.fr/

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 69

http://flopoco.gforge.inria.fr/

Thank you for your attention

Florent de Dinechin, projet AriC From CRLibm to MetaLibm 70

	Introduction: performance versus accuracy
	Elementary function evaluation
	Correctly rounded functions computing just right
	Open-source tools for FP coders
	Formal proof of floating-point code for the masses
	Two metalibm prototypes
	Conclusion

