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Introduction 
 The Large Hadron Collider (LHC) at CERN 

 The Large Hadron Collider is today‘s largest particle accelerator colliding protons 
at an energy of up to 14 TeV and ions at more than 1 PeV in ist 27km tunnel. 



Introduction 
 The ALICE detector 

 ALICE is one of the major four experiments of the Large Hadron Collider at CERN. 
It was specifically designed to study heavy ion collisions. 
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Introduction 
Tracking 

Clusters Tracks 



Introduction 
 Proton event in TPC 



Introduction 
 TPC clusters of heavy-ion event. 



Introduction 
 Tracks reconstructed from the clusters. 



Introduction 
 ALICE HLT tracker divides the TPC in slices 

and processes the slices individually. 
 Track segments from all slices are merged 

later. 



Introduction 

Tracking algorithm 

Category of task Name of task Description on task 

(Initialization) 

Combinatorial part 
(Cellular automation) 

I: Neighbors finding  

Construct seeds 
(Track candidates) II: Evolution 

 
Kalman filter part 

III: Tracklet 
construction 

Fit seed, 
extrapolate tracklet, 
find new clusters 

IV: Tracklet selection Select good tracklets, 
sssign clusters to 
tracks 

(Tracklet output) 
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Illustration of neighbors finding 
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Illustration of evolution step 



Introduction 

Illustration of tracklet construction 
 
 
 
 
 
 
 
 
 
 

Green: Seed            Red: Extrapolation 
Clusters close to the extraplation point are 
searched 
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Illustration of evolution step 
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Illustration of tracklet construction 
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Illustration of tracklet selection 
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NVIDIA CUDA GPU 



Introduction 

Parallel Tracklet Construction 

Current Row 

Tracklets are independent and can be processed simultaneously 
Because of Data Locality the Tracklets are processed for a common Row 



Introduction 
Screenshot of ALICE Online-Event-Display 

during first physics-fill with active GPU Tracker 





Integration 
 GPU and CPU tracker share a common source 

files. 
 Specialist wrappers for CPU and GPU exist, 

that include these common files. 
common.cpp: 
__DECL FitTrack(int n) { 
…. 
} 

cpu_wrapper.cpp: 
#define __DECL void 
#include ``common.cpp`` 
 
void FitTracks() { 
  for (int i = 0;i < nTr;i++) { 
    FitTrack(n); 
  } 
} 

gpu_wrapper.cpp: 
#define __DECL __device void 
#include ``common.cpp`` 
 
__kernel void FitTracksGPU() { 
  FitTrack(threadIdx.x); 
} 
 
void FitTracks() { 
  FitTracksGPU<<<nTr>>>(); 
} 



Integration 
 The GPU Tracker is accessed via a virtual 

interface. The actual implementation is 
contained in a dedicated library (cagpu), which 
links against the CUDA runtime. 

 AliRoot opens cagpu with dlopen, this creates a 
clear separation between AliRoot and CUDA. 

 The same AliRoot binaries can be used on 
compute nodes with GPU and without GPU. 

 This scheme is easily adoptable to other 
programming APIs, such as OpenCL. 





GPU Tracker Performance 
 For good performance the GPU tracker 

pipelines the slices such that initialization on 
CPU, GPU tracking, and DMA transfer can 
overlap. 

 A multithreaded pipeline ensures the CPU 
can keep step. 



GPU Tracker Performance 
 Tracking time depends linearly on input data 

size. 
 GPU tracking time independent from CPU 

performance (if initialization is fast enough). 



GPU Tracker Performance 
 Speedup of HLT GPU tracker v.s.offline and 

CPU Tracker (four CPU cores used each) 





CPU / GPU  Tracker Comparison 

 Comparison of GPU and CPU Tracker during 
2010 run 
 No significant variations in physically observables. 
 Only the number of clusters per track statistics 

shows a variation. 



CPU / GPU  Tracker Consistency 
 Inconsistencies during November 2010 run 
 Cluster to track assignment 
 Track Merger 
 Non-associative floating point arithmetics 



CPU / GPU  Tracker Consistency 
 Cluster to track assignment 
 Problem: Cluster to track assignment was depending 

on the order of the tracks. 
 Each cluster was assigned to the longest possible track. 

Out of two tracks of the same length, the first one was 
chosen. 

 Concurrent GPU tracking processes the tracks in an 
undefined order. 

 
 Solution: Both the chi² and the track lenth are used as 

criteria. It is extremely unlikely that two tracks 
coincide in both values. 
 



CPU / GPU  Tracker Consistency 

 How to combine chi² and track length? 
 Regarding the deviation between the track and 

the cluster for each cluster individually leads to 
many clones. 

 Hence, the total deviation of the track is used. 
 Small tracks have a higher probability for having a 

small chi², the right weight for both parameters 
must be determined. 

 Therefore, a chi² suppression factor is introduced, 
that weigths chi² less than the tracklet length. 



CPU / GPU  Tracker Consistency 

 Determinining best suppression factor 
 A factor of infinite equals the old method were 

only the track length is decisive. 
 Incorporating chi² improves efficiency and 

resolution. 
 At low suppression factor only the chi² is decisve 

and the tracking becomes unstable. 
 Currently, a factor of 6 is used. 



CPU / GPU  Tracker Consistency 

 Determinining best suppression factor 



CPU / GPU  Tracker Consistency 
 Track merger 
 Problem: Result of the track merger depended on 

the order of input tracks. 
 

 Solution: Merger input is sorted. 
 Sorting is performed during a reformatting step. 
 No additional data copy. 
 No performance penalty. 



CPU / GPU  Tracker Consistency 
 Non associative floating point arithmetics 
 Problem: Different compilers perform the 

arithmetics in different order (also on the CPU). 
 

 Solution: Cannot be fixed, but... 
 Slight variations during the extrapolations do not 

matter as long as the clusters stay the same. 
 Inconsistent clusters: 0,00024% 



CPU / GPU  Tracker Consistency 
 Cluster per track statistic with improvements 



CPU / GPU  Tracker Consistency 
 Resolution Comparison 



Summary ALICE GPU Tracker 
 Threefold performance increase of GPU tracker 

compared to all CPUs of a node, tenfold increase in a 
reasonable HLT scenario. 

 GPU tracker performance is independent from CPU and 
depends linearly on data size. 

 Results of GPU and CPU tracker match almost 
completely. Only 0.00024% of the clusters differ due to 
non-associative floating-point arithmetic. 

 Common source code ensures great maintainability, 
separation from libAliHLTTPC makes a common binary 
work on all nodes – with and without GPU. 

 With global tracking the tracker can track across slice 
boundaries but still explot data locality 

 



Lattice QCD on GPUs 
 We use GPU-enabled lattice code based on OpenCL. 

 Simulation of strong force. 

 Lattice-QCD is essentially a Monte-Carlo simulation. 

 Computes statistics for various trajectory in the phase 
space under certain constraints (energy coservation). 

 Entirely memory-throughput-bound problem. 



Lattice QCD on GPUs 
 Two sources for inconsistent results between CPU and 

GPU 
 Fast Random Number Generator used, parallel execution 

processes other paths in the phase-space. 
 This is no problem since at the end only the average counts, the exact 

path is not so relevant. Naturally, it should not be biased. 

 Also inconsistent results in deterministic steps like conjugate-
gradient inversion algorithm. 
 Again, since the exact path in phase-space does not matter, this is no 

problem. 
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