
ALICE HLT TPC Tracking on GPUs

David Rohr for the ALICE Collaboration
CERN – 28.5.2013

I: Introduction
II: Integration
III: GPU Tracker Performance
IV: CPU / GPU Tracker Comparison

Introduction
 The Large Hadron Collider (LHC) at CERN

 The Large Hadron Collider is today‘s largest particle accelerator colliding protons
at an energy of up to 14 TeV and ions at more than 1 PeV in ist 27km tunnel.

Introduction
 The ALICE detector

 ALICE is one of the major four experiments of the Large Hadron Collider at CERN.
It was specifically designed to study heavy ion collisions.

Introduction
 The ALICE detector

 ALICE is one of the major four experiments of the Large Hadron Collider at CERN.
It was specifically designed to study heavy ion collisions.

Introduction
Tracking

Clusters Tracks

Introduction
 Proton event in TPC

Introduction
 TPC clusters of heavy-ion event.

Introduction
 Tracks reconstructed from the clusters.

Introduction
 ALICE HLT tracker divides the TPC in slices

and processes the slices individually.
 Track segments from all slices are merged

later.

Introduction

Tracking algorithm

Category of task Name of task Description on task

(Initialization)

Combinatorial part
(Cellular automation)

I: Neighbors finding

Construct seeds
(Track candidates) II: Evolution

Kalman filter part

III: Tracklet
construction

Fit seed,
extrapolate tracklet,
find new clusters

IV: Tracklet selection Select good tracklets,
sssign clusters to
tracks

(Tracklet output)

Introduction

Illustration of neighbors finding

Introduction

Illustration of evolution step

Introduction

Illustration of tracklet construction

Green: Seed Red: Extrapolation
Clusters close to the extraplation point are
searched

Introduction

Illustration of evolution step

Introduction

Illustration of tracklet construction

Introduction

Illustration of tracklet selection

Introduction

NVIDIA CUDA GPU

Introduction

Parallel Tracklet Construction

Current Row

Tracklets are independent and can be processed simultaneously
Because of Data Locality the Tracklets are processed for a common Row

Introduction
Screenshot of ALICE Online-Event-Display

during first physics-fill with active GPU Tracker

Integration
 GPU and CPU tracker share a common source

files.
 Specialist wrappers for CPU and GPU exist,

that include these common files.
common.cpp:
__DECL FitTrack(int n) {
….
}

cpu_wrapper.cpp:
#define __DECL void
#include ``common.cpp``

void FitTracks() {
 for (int i = 0;i < nTr;i++) {
 FitTrack(n);
 }
}

gpu_wrapper.cpp:
#define __DECL __device void
#include ``common.cpp``

__kernel void FitTracksGPU() {
 FitTrack(threadIdx.x);
}

void FitTracks() {
 FitTracksGPU<<<nTr>>>();
}

Integration
 The GPU Tracker is accessed via a virtual

interface. The actual implementation is
contained in a dedicated library (cagpu), which
links against the CUDA runtime.

 AliRoot opens cagpu with dlopen, this creates a
clear separation between AliRoot and CUDA.

 The same AliRoot binaries can be used on
compute nodes with GPU and without GPU.

 This scheme is easily adoptable to other
programming APIs, such as OpenCL.

GPU Tracker Performance
 For good performance the GPU tracker

pipelines the slices such that initialization on
CPU, GPU tracking, and DMA transfer can
overlap.

 A multithreaded pipeline ensures the CPU
can keep step.

GPU Tracker Performance
 Tracking time depends linearly on input data

size.
 GPU tracking time independent from CPU

performance (if initialization is fast enough).

GPU Tracker Performance
 Speedup of HLT GPU tracker v.s.offline and

CPU Tracker (four CPU cores used each)

CPU / GPU Tracker Comparison

 Comparison of GPU and CPU Tracker during
2010 run
 No significant variations in physically observables.
 Only the number of clusters per track statistics

shows a variation.

CPU / GPU Tracker Consistency
 Inconsistencies during November 2010 run
 Cluster to track assignment
 Track Merger
 Non-associative floating point arithmetics

CPU / GPU Tracker Consistency
 Cluster to track assignment
 Problem: Cluster to track assignment was depending

on the order of the tracks.
 Each cluster was assigned to the longest possible track.

Out of two tracks of the same length, the first one was
chosen.

 Concurrent GPU tracking processes the tracks in an
undefined order.

 Solution: Both the chi² and the track lenth are used as

criteria. It is extremely unlikely that two tracks
coincide in both values.

CPU / GPU Tracker Consistency

 How to combine chi² and track length?
 Regarding the deviation between the track and

the cluster for each cluster individually leads to
many clones.

 Hence, the total deviation of the track is used.
 Small tracks have a higher probability for having a

small chi², the right weight for both parameters
must be determined.

 Therefore, a chi² suppression factor is introduced,
that weigths chi² less than the tracklet length.

CPU / GPU Tracker Consistency

 Determinining best suppression factor
 A factor of infinite equals the old method were

only the track length is decisive.
 Incorporating chi² improves efficiency and

resolution.
 At low suppression factor only the chi² is decisve

and the tracking becomes unstable.
 Currently, a factor of 6 is used.

CPU / GPU Tracker Consistency

 Determinining best suppression factor

CPU / GPU Tracker Consistency
 Track merger
 Problem: Result of the track merger depended on

the order of input tracks.

 Solution: Merger input is sorted.
 Sorting is performed during a reformatting step.
 No additional data copy.
 No performance penalty.

CPU / GPU Tracker Consistency
 Non associative floating point arithmetics
 Problem: Different compilers perform the

arithmetics in different order (also on the CPU).

 Solution: Cannot be fixed, but...
 Slight variations during the extrapolations do not

matter as long as the clusters stay the same.
 Inconsistent clusters: 0,00024%

CPU / GPU Tracker Consistency
 Cluster per track statistic with improvements

CPU / GPU Tracker Consistency
 Resolution Comparison

Summary ALICE GPU Tracker
 Threefold performance increase of GPU tracker

compared to all CPUs of a node, tenfold increase in a
reasonable HLT scenario.

 GPU tracker performance is independent from CPU and
depends linearly on data size.

 Results of GPU and CPU tracker match almost
completely. Only 0.00024% of the clusters differ due to
non-associative floating-point arithmetic.

 Common source code ensures great maintainability,
separation from libAliHLTTPC makes a common binary
work on all nodes – with and without GPU.

 With global tracking the tracker can track across slice
boundaries but still explot data locality

Lattice QCD on GPUs
 We use GPU-enabled lattice code based on OpenCL.

 Simulation of strong force.

 Lattice-QCD is essentially a Monte-Carlo simulation.

 Computes statistics for various trajectory in the phase
space under certain constraints (energy coservation).

 Entirely memory-throughput-bound problem.

Lattice QCD on GPUs
 Two sources for inconsistent results between CPU and

GPU
 Fast Random Number Generator used, parallel execution

processes other paths in the phase-space.
 This is no problem since at the end only the average counts, the exact

path is not so relevant. Naturally, it should not be biased.

 Also inconsistent results in deterministic steps like conjugate-
gradient inversion algorithm.
 Again, since the exact path in phase-space does not matter, this is no

problem.

	ALICE HLT TPC Tracking on GPUs
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Integration
	Integration
	Integration
	CPU / GPU Performance
	GPU Tracker Performance
	GPU Tracker Performance
	GPU Tracker Performance
	CPU / GPU Tracker Comparison
	CPU / GPU Tracker Comparison
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	Summary ALICE GPU Tracker
	Lattice QCD on GPUs
	Lattice QCD on GPUs

