Opportunities of Target Accuracy
in HEP Software:
Focus on Mathematical Libraries




Introduction

.two tjets + X, 60 1b’

 Floating point calculations represent a significant portion of the
runtime budget of HEP applications
Sofisticated FORmulas TRANSslated from literature into code

(see Vincenzo's talk)
— Mathematical functions appear often

— Their execution is expensive!

Can the concept of target accuracy help us to improve the impact
of mathematical functions’ evaluation?
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Pricetags of Mathematical Functions

., two T jets + X, 60 1b’’

Prices reported in percentage of the runtime of a full job

e LHCb:

— Reconstruction: ~8.7%

e CMS:

— Reconstruction: ~19.9%

— Simulation: ~13.5%

— Simulation Initialisation: ~30%
 Alice (Pb-Pb, Geantd):

— Simulation: >25% (in event loop only)

Pricetags assume the Libm implementation of these functions (the
one used in production since years)

Software stacks versions: beginning 2013
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Absolute Costs: Sim @ LHC in 2012

T —»two T jets + X, 60 1o

An example of typical HEP workflow
Simulated Monte Carlo events are as important as “real” collision events
 Large statistics necessary to understand measured data

— Data analyses aim to isolate small corners of the overall phase-space
— Ultimately necessary for discoveries

Amount of events simulated in 2012 (in Billions):

o« ATLAS: 2.1*

- CMS: 4 One event: ~seconds up to more than a minute CPU time
e LHCb: 1.2 (For Alice, heavy ions collisions’ simulation, ~30 minutes)
« ALICE: 1

Ages in terms of total CPU time!

Simulation alone every year accounts for lots of computing resources

* +1.8 Billion Fast simulated
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Libm: the default library

.two tjets + X, 60 1b’

With some exceptions, the default mathematical library used for
HEP calculations is Libm:

* A rock-solid reference!
 Always focussed on accuracy rather than performance

Are these two features going to change in the future?
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The Last.Episode of the Saga

27-8-2012: http://rhn.redhat.com/errata/RHSA-2012-1207.html

* Previously, logic errors in various mathematical functions, including

exp, exp2, expf, exp2f, pow, sin, tan, and rint, caused inconsistent
results when the functions were used with the non-default rounding mode.
This could also cause applications to crash in some cases. With this

update, the functions now give correct results across the four different
rounding modes. (BZ#839411)

Excellent:

Now results are consistent!

(feraiseexcept function used to raise fp exception when result “unprecise”)
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~Is Libm. Going to be Faster?

T —»two T jets + X, 60 1o

W Corrected Ratio

Wait: how much tax payers’ money
does this cost?

Double Precision

The modified routines cause a slow-
down of a factor >6 for Exp and
important ones for Sin, Cos and Tan.

Log Sin Cos Tan Asin  Acos Atan

Nice to have such a solid reference, but can we afford that in our
production software?

Probably not...
What are the alternatives?
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A Selection of Alternatives

\ > T*T —»two Tjets + X, 60 =%

A plethora of different products are available, for example:
* Intel's SVML, IMF, MKL (commercial)
« AMD Libm (free)

« VDT (VectoriseD maTh: free and open source)

(e AMpz1 Y-

Differences in the implementations but common underlying principle:

Trade off between accuracy and speed of execution
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VDT
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What is VDT?

. two Tjets + X, 60 1b’

* An open source math library library, LGPL3 licence
 Single and Double precision of (a)sin, (a)cos, sincos, (a)tan, atan(2), log, exp
and 1/sqrt
« Fast, approximate, inline (see following slide for the details)
* Symbols names are different from traditional ones: vdt::fast_<name>
— Do not force drop-in replacement!
« Autovectorisable since gcc 4.7

— Array signatures available: calculate on multiple elements conveniently

— Can be inserted in autovectorised loops (inlinel)
* Inspired by the good old Cephes (and Quake Ill videogame)

« Standard C code only is used (no intrinsics): portability guaranteed

— ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture>

LGPNZ
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\ > T*T —»two Tjets + X, 60 =%

Pade’ Approximants

Underlying principle behind VDT (and Cephes): Pade’ Approximants

The "best” approximation of a function by a rational function of a given order

> Often better approximation than a truncated Taylor series

Padé approximant of f(x) of order [m/n] is the function

R(:c) = 2?;0 a.ij _ Gp + @+ a2x2 + .-

+ a,,x™

14+ 30 bk 14 byx +bya2 4 -

which agrees to the highest possible order to f(x)

f(0) = R(0)
f'(0) = 1(0)
f7(0) = R"(0)

f(m+n) (0) : R(m+n) (0)
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Quake Ill Fast isqrt

»two T jets + X, 60 =%

Light effects (e.g. reflections): needed the calculation of several
normalizations.

Important piece of the implementation: “magic constant”

which yields to a first rough value of the sqgrt, then improved
with Newton’s method iterations.

/// Sgrt implmentation from Quake3
inline float fast_isqrtf_general(float x, const uint32_t ISQRT_ITERATIONS) {

const float threehalfs = 1.5f;
const float x2 = x * 0.5f;

floaty = x;
uint32_t i = details::sp2uint32(y);
= i =0x5f3759df - (i >>1); = ”

y = details::uint322sp(i);
for (uint32_t j=0;j<ISQRT_ITERATIONS; ++j)
y *= (threehalfs- (x2*y *y ) );

return y,
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Speed: VDT Vs Libm

A 5 T*T > tWoO tjets+x,601b'

EXp 16.7 6.1 3.8 2.9 Q

Log 349 125 5.7 4.2 Testbed:
Sin 33.7 16.2 6.0 5.7 SLC6-GCC47, Core i7T-3930K CPU @ 3.20GHz
Cos 34.4 13.4 5.4 51 Speed

Tan 46.6 12.5 6.3 5.6
Asin 23.0 10.3 8.6 8.1
Acos 23.7 11.0 8.2 8.1
Atan 19.7 11.0 8.3 8.3

Isqrt 9.3 6.7 3.0 2.1
Time in ns per value calculated

EXp  Timein ns per
value calculated

Atan Sin

* Operative input range: [-5000, 5000]
« VDT scalar functions:
* Speedups of ~4x achievable Libm

* Speedup scalar->SSE more VDT AcOS
significant than SSE>AVX

* Some overhead is present

Cos
= VDT SSE
~ VDT AVX Asin Tan
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’_Stgmew)/DVords about Accuracy

Accuracy was measured comparing the results of Libm and
VDT bit by bit with the same input

Differences quoted in terms of most significant different bit

In the end they are just 32 (64) bits which are properly
interpreted!

sign exponent (8 bits) fraction (23 bits)

A single precision floating point number
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Accuracy: VDT Vs Libm

two T jets

—
(®,

N NN DNDNNENO®

MAX VDT|AVG VDT

0.39
0.32
0.33
0.25
0.14
0.45
0.42
0.25
0.35

Double
Precision

Approximate results, but ok for a wide range of applications
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- Example of an Accuracy Test

two Tjets + X

| Tanv diffbit for test | Diffbit_Tanv | | Isqrtfv diffbit vs input for test DifVelnput fsqrity
Entries 50000 Entries 50000
E -3 = Mean  0.3478 — - Meanx 2507
i RMS  0.4876 g 30 Meany  3.696
a r RMSx 1441 ),
1 - RMSy 2219
251
- Libm 20 )
. - Libm
i B 301
B 15 —
5 . 201
10 101 0
i [ ]
i 5 J- |
I ] | 1 1 I 11 1 1 I | 1 1 1 I 1l 1 1 I | 1 1 1 I 1 1 | | I 1 1
0 10 20 30 40 50 60 lII[lIllIll llllllll

Diffbit 0 500 10001500200025003000350040004500 5000
Input

Well known behaviour of the
“Quake Ill” inverse square root

Exponent {

Mantissa
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Examples from the experiments

T —=»two tlets + X, 60 1b’’

Methodology:
* Replace calls to Libm functions with the VDT ones:

LD_PRELOAD
* No hotspots but an overall replacement

Caveats:
* Not the best way to proceed: no case by case control of

accuracy... But the less intrusive!

» Code performance improvements cited: conservative — no
inlining with preload!

* Physics performance: maximum variation obtainable (all
calls replaced!)
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The Alice Case

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46
Fill : 1482
Run : 137124
Event : 0x00000000D3BBE693
34 CERN openlab/Intel Workshop on
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Alice Simulation: Switching to VDT

two T jets + X, 60 1b

Alice Simulation (Geant4)

—_
H

1Math Library
—+— Libm

E 12695 s
:_' —4— VDT

Runtime [Ks]

-
N

AMD 10756 s

10
- Pb-Pb Collisions
— j VDT-lem Speedup 16 5%
2 [T R—— ‘?l‘ 3 t{.., ........................................................................................................................................................................
- A |
_ .-:,;‘fl'** |
0

Event number
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Alice Sim: Preliminary Validation

two T jets + X, 60 1b

Output of simulation validated in terms of number “simulation steps”
* Necessary to have a similar number of simulation steps in order to have
compatible results!
* Number of steps for the AMD Libm, VDT and IMF cases compared to Libm:
 Nicely distributed around 1
Alice Simulation (Geant4)

25 Math Library
- — VDT
Some work would be 20l
needed for final sign-off, S T A N Imf
Results already very w50 -': .............. AMD
positive! - [

10 J;:

% 5 é Pb-Pb Collisions

] | 1 1 1 7
af?Steps Lib
# Steps Libm

S. Wenzel
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The CMS Case

CMS Experiment at LHC, CERN
Data recorded: Thu Apr 5 05:47:32 2012 CEST
Run/Event: 190401 / 12545076

Lumi section: 75

Orbit/Crossing: 19495845 / 1347
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Full Sim: Costs of the Functions 1/2

two tjets + X 60 1o’

Function Runtime %
50 ew. N\

_ieee_754_log 3.77 | 13.30
_ieee_7H54_exp 1.80 | 5.85
_ieee_754_atan?2 1.74 | 0.75

Performance profile of 2 jobs obtained:
1) 50 events (~5k seconds)
2) 1 event (310 seconds): estimator of

sincos 0.60 | 0.37 S
: 222 o5l | 045 the initialisation overhead
_ieee_754_pow , . . .
Numbers for 1) are in black in the table,
_expl 0.29 | 0.26

: the ones for 2) red in the table
_ieee_754_log10 0.16 | 0.08

_ieee_754_ atan2f 0.15 | 0.03
TOTAL 9.02 21.9

Self costs shown, callees are not

considered!

T. Hauth
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Full Sim: Costs of the Functions 2/2

two Tjets + X, 60 1o

Libm: not only calculate function value,
but also performs other operations:

log 0.11 0.38
poOwW 0.04 0.05
logl0  0.02 0.02
TOTAL 0.17 0.45

Part of the callees of the math functions

Feraiseexcept Runtime %

Callers 50ev. 1levw
__ieee_754_exp @ 3.67 10.5
__ieee_754_pow | 0.48 0.63

These checks do have a cost!

* Do we need them in production?

Total cumulative cost cos 0.143 | 0.8
(self + callees) sin 0.07 | 0.03
50 evts: ~13.5% TOTAL 436 11.33
1evt: ~33.7% @
T. Hauth 314 CERN openlab/Intel Workshop on
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CMS Simulation: Switching to VDT

Tjets + X, 60 1b’

Result:

* 9% speedup achieved (FullSim 50 Events)

* 25% speedup achieved (FullSim1 Event — Initialisation cost)
Validation:

+  Good compatibility of results assessed

— Use standard CMS histograms

hGeantTrkPt
BinToBin: 0.28 Entries: 1.237750e+05  Entries: 1.22450Ue§88antTrkPt |
Entries 122450
Mean  -0.6374
RMS 0.6871

« Changes expected and found

e VDT

— Different accuracy of the functions! o
= LIOMm

— Experts’ validation must sign-offl s

1 3 4
Log10 pT of Track {GeV)

T. Hauth
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- CMS Reco: Switching to VDT

two T jets + X, 60 1o’

* Reconstruct simulated top-antitop events + ~25 pileup collisions
* 15 % speedup in event loop (w/o initialisation)
« Symbol magfieldparam::TkBfield::Bcycl: 77.3s 2 18.18s (extensive
usage of exp)
* Very good agreement of Physics performance!
« 120.000 plots compared, marginal differences
VDT-Libm Speedup: CMS Reconstruction

L’%’ 12|
[
10 pp — tt events
; __ B ~25 pileup events
Interesting opportunities o
for fast mathematical :
functions even with 6
reduced accuracy! L

1 I Il 1 1 1 l

0.75 08 085 0.9 095

Event Runtime VDT

Libm

T. Hauth
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The LHCb Case
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- LHCb Reco: 'switching to VDT

two T jets + X, 60 1o’

 Portion of total runtime due to math functions is relatively
small: 8.7% of the total budget

* Interesting optimisations (like ad hoc polynomial expansions)
already introduced in LHCb software

* Event loop: 3.5% speedup measured (in event loop, no
initialisation)
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s This the End?
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Beyond VDT

A\ 5 T*T —>1tWwo tjets+x.601b'

The ultimate mathematical library:

* A high performance “metalibm”

+ Automatically obtain implementation of a function for a
particular range and accuracy

* See Florent’s presentation!

High quality polynomial approximations:

* Credible alternative to several of the FORmulas TRANslated
from literature present in HEP code

* Replacing full formula: faster and gives better control than
replacing just the math functions in it
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Polynimials: an.example from LHCb

»two T jets + X, 60 o

* High precision measurements involving likelihood ratios

* log(exp()-1) function involved

« Maxima used to find Pade’ approximants in 3 different
ranges L(IC[\?

Platform: x86_64-slc5-gcc46-opt

1,780
Courtesy of

. * + B. Couturier
o
o 1.710
= + +
—
m *
o 1,640
L Maxima is a useful tool to play with
C'E’ Optimisation > + Pade approximants!
-— 1,570 . . . ;
= Introduced: http://maxima.sourceforge.net
9% gain!l!
1,500
va3r2p2(30)  v43r2p4(41)  va44r0(32) v44r2(31)
v43r2p3(32)  v43r2p6(30) v44r1(30) v44r3(60)

Software version
See:

http://lhcb-release-area.web.cern.ch/LHCb-release-area/D0OC/davinci/releases/latest/doxygen/d9/d33/
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Conclusions

A - TtT —»two Tjets + X, 60 1o

« Mathematical functions account for a substantial portion of the
overall runtime of HEP applications

 Traditional Libm may have become too expensive (although a
perfect reference)

 Different alternatives to Libm available. Potential gains
attractive: 10% — 20% speedups not unreasonable for typical
reconstruction / simulation workflows of LHC experiments

* Replacing full formulas with high quality polynomials / Pade’
approximations
— Can be faster than replacing the single math functions

— Accuracy is better controlled
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VDT Array and Scalar Signatures

two Tjets + X

VDT provides “array” and “scalar” signatures

Scalar signature: T(T)

« Example: doubley = vdt::fast_exp(x);

Array signature:

. Example: vdt::fast expv(1ll, input array, output array);
Array signatures trivially autogenerated: script steered by CMake

void fast expv(const unsigned int n, float* in, float* out({
for (unsigned int i=0;i<n;++1i)
out[1i] = fast exp(in[i]);}

All the difficulties dropped on the compiler

Similar generator script is in place to autogenerate signatures to allow library
preload if requested.
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Single Precision

» T —»two T jets + X, 60 =%

Function VDT VDT SSE svml SSE VDTAVX svml AVX
Expf 6.76 1.9 1.33 2.07 1.38
Logf 13.1 2.48 1.70 1.90 1.62
Sinf 12.2 2.69 1.60 2.00 1.44
Cosf 10.1 2.45 1.89 1.71 1.82
Tanf 12.4 3.31 1.99 2.58 1.86
Asinf 8.93 2.00 2.37 0.71 2.19
Acosf 9.42 2.16 2.74 0.72 2.55
Atanf 6.01 1.92 2.00 0.70 1.79
Isqrtf 2.99 0.58 0.1* 0.42 0.1*

Time in nanoseconds per value calculated

22/5/2013 LHCb Computing Workshop 35



Single Precision

A > T —»two T jets + X, 60 =%

Function VDT VDT SSE VDT AVX
Expf 6.76 2.50 2.07
Logf 12.6 13.1 2.48 1.90 *Reducing range
Sinf 12.2 2.69 2.00 to [-10,10]
Cosf 10.1 2.45 1.71
Tanf 12.4 3.31 2.58 Sinf | 179
Asinf 12.1 8.93 2.00 0.71 Cosf | 18.4
Acosf 14.6 9.42 2.16 0.72 Tanf @ 26.1
Atanf 10.8 6.01 1.92 0.70
Isqrtf 5.02 2.99 0.58 0.42

Time in nanoseconds per value calculated
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0 ; Single Precision

0.48
0.6
0.37
0.24
3.36
3.7
0.26
0.24
0.52

O ONNOODN W
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VDT Building Blocks

two Tjets + X, 60 1b’

Starting pomt the well known Cephes library

* Developed by Stephen Moshier in the eighties
in C

» Pade’ approximation
» Single, double and quad precisio

Tool: a modern compiler like GCC 4.7

» Autovectorisation capabilities of GCC are
getting more and more mature

* Go the extra mile: make the functions not only
fast, but autovectorisable!
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