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•  Floating point calculations represent a significant portion of the 
runtime budget of HEP applications 

•  Sofisticated FORmulas TRANslated from literature into code 
(see Vincenzo’s talk) 
–  Mathematical functions appear often 
–  Their execution is expensive! 

Can the concept of target accuracy help us to improve the impact 
of mathematical functions’ evaluation? 
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Prices reported in percentage of the runtime of a full job 

•  LHCb: 
–  Reconstruction: ~8.7% 

•  CMS: 
–  Reconstruction: ~19.9% 

–  Simulation:  ~13.5%  

–  Simulation Initialisation: ~30%  

•  Alice (Pb-Pb, Geant4): 
–  Simulation: >25% (in event loop only)  

 
Pricetags assume the Libm implementation of these functions (the 
one used in production since years) 
 
Software stacks versions: beginning 2013 
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An example of typical HEP workflow 
Simulated Monte Carlo events are as important as “real” collision events 
•  Large statistics necessary to understand measured data 

–  Data analyses aim to isolate small corners of the overall phase-space 
–  Ultimately necessary for discoveries 

 

Amount of events simulated in 2012 (in Billions): 
•  ATLAS: 2.1* 
•  CMS: 4    
•  LHCb: 1.2   
•  ALICE:  1 

Ages in terms of total CPU time! 
 

 Simulation alone every year accounts for lots of computing resources 	
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One event: ~seconds up to more than a minute CPU time 
(For Alice, heavy ions collisions’ simulation, ~30 minutes) 

* +1.8 Billion Fast simulated 



With some exceptions, the default mathematical library used for 
HEP calculations is Libm: 
•  A rock-solid reference! 
•  Always focussed on accuracy rather than performance 
 
Are these two features going to change in the future? 
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Excellent: 	


Now results are consistent!	


(feraiseexcept function used to raise fp exception when result “unprecise”)	



	



27-8-2012: http://rhn.redhat.com/errata/RHSA-2012-1207.html 
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Wait: how much tax payers’ money 
does this cost? 
The modified routines cause a slow-
down of a factor >6 for Exp and 
important ones for Sin, Cos and Tan. 

Double Precision 

Nice to have such a solid reference, but can we afford that in our 
production software?	



Probably not… 
What are the alternatives? 
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A plethora of different products are available, for example:  

•  Intel’s SVML, IMF, MKL (commercial)  

•  AMD Libm (free) 

•  VDT (VectoriseD maTh: free and open source) 

 

 

 

 

 

 

Differences in the implementations but common underlying principle: 

 

 Trade off between accuracy and speed of execution	
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VDT 
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•  An open source math library library, LGPL3 licence 

•  Single and Double precision of (a)sin, (a)cos, sincos, (a)tan, atan(2), log, exp 
and 1/sqrt 

•  Fast, approximate, inline (see following slide for the details) 

•  Symbols names are different from traditional ones: vdt::fast_<name> 

–  Do not force drop-in replacement! 

•  Autovectorisable since gcc 4.7 

–  Array signatures available: calculate on multiple elements conveniently 

–  Can be inserted in autovectorised loops (inline!) 

•  Inspired by the good old Cephes (and Quake III videogame) 

•  Standard C code only is used (no intrinsics): portability guaranteed 
–  ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture> 

https://svnweb.cern.ch/trac/vdt 

 



Underlying principle behind VDT (and Cephes): Pade’ Approximants 

 

The “best” approximation of a function by a rational function of a given order 

à  Often better approximation than a truncated Taylor series 

 

Padé approximant of f(x) of order [m/n] is the function 

 

 

which agrees to the highest possible order to f(x) 
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Light effects (e.g. reflections): needed the calculation of several 
normalizations.  
Important piece of the implementation: “magic constant” 
which yields to a first rough value of the sqrt, then improved 
with Newton’s method iterations. 
 
 
 
 

!! 
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Function  Libm  VDT  VDT SSE  VDT AVX 
Exp 16.7 6.1 3.8 2.9 
Log 34.9 12.5 5.7 4.2 
Sin 33.7 16.2 6.0 5.7 
Cos 34.4 13.4 5.4 5.1 
Tan 46.6 12.5 6.3 5.6 
Asin 23.0 10.3 8.6 8.1 
Acos 23.7 11.0 8.2 8.1 
Atan 19.7 11.0 8.3 8.3 
Isqrt 9.3 6.7 3.0 2.1 

Time in ns per value calculated 

Testbed:  
SLC6-GCC47, Core i7-3930K CPU @ 3.20GHz  

Double 
Precision 

•  Operative input range: [-5000, 5000] 
•  VDT scalar functions: 

•  Speedups of ~4x achievable 
•  Speedup scalaràSSE more 

significant than SSEàAVX 

•  Some overhead is present 
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•  Accuracy was measured comparing the results of Libm and 
VDT bit by bit with the same input 

•  Differences quoted in terms of most significant different bit 
•  In the end they are just 32 (64) bits which are properly 

interpreted! 
 
 
 

A single precision floating point number 
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MAX	
  VDT	
  AVG	
  VDT	
  
Acos	
   8	
   0.39	
  
Asin	
   2	
   0.32	
  
Atan	
   1	
   0.33	
  
Cos	
   2	
   0.25	
  
Exp	
   2	
   0.14	
  
Isqrt	
   2	
   0.45	
  
Log	
   2	
   0.42	
  
Sin	
   2	
   0.25	
  
Tan	
   2	
   0.35	
  

Approximate results, but ok for a wide range of applications 

Double 
Precision 
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Well known behaviour of the 
“Quake III” inverse square root 

VDT VS 
Libm VDT VS 

Libm 
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Examples from the  
LHC Experiments 
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Methodology: 
•  Replace calls to Libm functions with the VDT ones: 

LD_PRELOAD 
•  No hotspots but an overall replacement 
 
Caveats: 
•  Not the best way to proceed: no case by case  control of 

accuracy... But the less intrusive! 
•  Code performance improvements cited: conservative – no 

inlining with preload! 
•  Physics performance: maximum variation obtainable (all 

calls replaced!) 
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S. Wenzel 

12695 s 

10756 s 
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S. Wenzel 

Output of simulation validated in terms of  number “simulation steps” 
•  Necessary to have a similar number of simulation steps in order to have 

compatible results! 
•  Number of steps for the AMD Libm, VDT and IMF cases compared to Libm: 

•  Nicely distributed around 1 

Some work would be 
needed for final sign-off, 
Results already very 
positive! 
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Function Runtime % 
50  ev.      1 ev. 

_ieee_754_log 3.77  13.30 

_ieee_754_exp 1.80 5.85 

_ieee_754_atan2 1.74 0.75 

sincos 0.60 0.37 

_ieee_754_pow 0.51 0.45 

__exp1 0.29 0.26 

_ieee_754_log10 0.16 0.08 

_ieee_754_atan2f 0.15 0.03 

TOTAL 9.02 21.9 

Performance profile of 2 jobs obtained: 
1)  50 events (~5k seconds) 
2)  1 event (310 seconds): estimator of 

the initialisation overhead  
Numbers for 1) are in black in the table, 
the ones for 2) red in the table 
 
Self costs shown, callees are not 
considered! 

T. Hauth 



27/5/2013 
3rd CERN openlab/Intel Workshop on 

Numerical Computing 
 

Isnan 
callers 

Runtime % 
  50 ev.    1 ev. 

log 0.11 0.38 

pow 0.04 0.05 

log10 0.02 0.02 

TOTAL 0.17 0.45 

Feraiseexcept 
Callers 

Runtime % 
  50 ev.       1 ev. 

__ieee_754_exp 3.67 10.5 

__ieee_754_pow 0.48 0.63 

cos 0.13 0.18 

sin 0.07 0.03 

TOTAL 4.36 11.33 

Total cumulative cost 
(self + callees) 

50 evts: ~13.5% 
1 evt: ~33.7% 

Libm: not only calculate function value, 
but also performs other operations: 
•  Is argument Nan? 
•  Raise floating point exceptions: e.g. 

fp_inexact 
 
Part of the callees of the math functions 
 
These checks do have a cost! 
•  Do we need them in production? 

T. Hauth 



VDT 
Libm 
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Result: 

•  9% speedup achieved (FullSim 50 Events) 

•  25% speedup achieved (FullSim1 Event – Initialisation cost) 

Validation: 

•  Good compatibility of results assessed 

–  Use standard CMS histograms 

•  Changes expected and found  

–  Different accuracy of the functions! 

–  Experts’ validation must sign-off! 

T. Hauth 
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•  Reconstruct simulated top-antitop events + ~25 pileup collisions 
•  15 % speedup in event loop (w/o initialisation) 

•  Symbol magfieldparam::TkBfield::Bcycl: 77.3s à 18.18s (extensive 
usage of exp) 

•  Very good agreement of Physics performance! 
•  120.000 plots compared, marginal differences  

Interesting opportunities 
for fast mathematical 
functions even with 
reduced accuracy! 

T. Hauth 
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•  Portion of total runtime due to math functions is relatively 
small: 8.7% of the total budget  

•  Interesting optimisations (like ad hoc polynomial expansions) 
already introduced in LHCb software 

•  Event loop: 3.5% speedup measured (in event loop, no 
initialisation) 

Example of different Physics performance 

LHCb reconstruction is robust 
against small changes in the 
math functions accuracies 
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Is This the End? 
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The ultimate mathematical library:  
•  A high performance “metalibm” 
•  Automatically obtain implementation of a function for a 

particular range and accuracy 
•  See Florent’s presentation! 
 
High quality polynomial approximations: 
•  Credible alternative to several of the FORmulas TRANslated 

from literature present in HEP code 
•  Replacing full formula: faster and gives better control than 

replacing just the math functions in it 
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•  High precision measurements involving likelihood ratios 
•  log(exp()-1) function involved 
•  Maxima used to find Pade’ approximants in 3 different 

ranges 

See: 
http://lhcb-release-area.web.cern.ch/LHCb-release-area/DOC/davinci/releases/latest/doxygen/d9/d33/
class_rich_1_1_rec_1_1_global_p_i_d_1_1_likelihood_tool.html#aa288748034a29a8caffcc2cabd01d2fb 
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Software version 

Optimisation 
Introduced: 
9% gain!!! 

Courtesy of  
B. Couturier 

Maxima is a useful tool to play with 
Pade approximants! 
http://maxima.sourceforge.net 



•  Mathematical functions account for a substantial portion of the 
overall runtime of HEP applications 

•  Traditional Libm may have become too expensive (although a 
perfect reference) 

•  Different alternatives to Libm available. Potential gains 
attractive: 10% – 20% speedups not unreasonable for typical 
reconstruction / simulation workflows of LHC experiments 

•  Replacing full formulas with high quality polynomials / Pade’ 
approximations 
–  Can be faster than replacing the single math functions 

–  Accuracy is better controlled 
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VDT provides “array” and “scalar” signatures 

Scalar signature: T(T)!

•  Example: double y = vdt::fast_exp(x);!

Array signature: void(const unsigned int,T*,T*)!

•  Example: vdt::fast_expv(11, input_array, output_array);!

Array signatures trivially autogenerated: script steered by CMake 

 

 

 

All the difficulties dropped on the compiler 

 

Similar generator script is in place to autogenerate signatures to allow library 
preload if requested. 

 

 

void fast_expv(const unsigned int n, float* in, float* out{!
!for (unsigned int i=0;i<n;++i)!
! !out[i] = fast_exp(in[i]);}!
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Function  VDT  VDT SSE  svml SSE  VDTAVX  svml AVX 
Expf 6.76 1.9 1.33 2.07 1.38 
Logf 13.1 2.48 1.70 1.90 1.62 
Sinf 12.2 2.69 1.60 2.00 1.44 
Cosf 10.1 2.45 1.89 1.71 1.82 
Tanf 12.4 3.31 1.99 2.58 1.86 
Asinf 8.93 2.00 2.37 0.71 2.19 
Acosf 9.42 2.16 2.74 0.72 2.55 
Atanf 6.01 1.92 2.00 0.70 1.79 
Isqrtf 2.99 0.58 0.1* 0.42 0.1* 

Time in nanoseconds per value calculated 
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Function  Libm  VDT  VDT SSE  VDT AVX 
Expf 180 6.76 2.50 2.07 
Logf 12.6 13.1 2.48 1.90 
Sinf 180* 12.2 2.69 2.00 
Cosf 180* 10.1 2.45 1.71 
Tanf 183* 12.4 3.31 2.58 
Asinf 12.1 8.93 2.00 0.71 
Acosf 14.6 9.42 2.16 0.72 
Atanf 10.8 6.01 1.92 0.70 
Isqrtf 5.02 2.99 0.58 0.42 

Func. libm 
Sinf 17.9 
Cosf 18.4 
Tanf 26.1 

*Reducing range  
to [-10,10] 

Time in nanoseconds per value calculated 
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  MAX	
  VDT	
   AVG	
  VDT	
  
Acosf	
   7	
   0.48	
  
Asinf	
   3	
   0.6	
  
Atanf	
   2	
   0.37	
  
Cosf	
   6	
   0.24	
  
Expf	
   6	
   3.36	
  
Isqr;	
   7	
   3.7	
  
Logf	
   2	
   0.26	
  
Sinf	
   6	
   0.24	
  
Tanf	
   6	
   0.52	
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Starting point: the well known Cephes library 
•  Developed by Stephen Moshier in the eighties 

in C 
•  Pade’ approximation 
•  Single, double and quad precision 
 
Tool: a modern compiler like GCC 4.7 
•  Autovectorisation capabilities of GCC are 

getting more and more mature 
•  Go the extra mile: make the functions not only 

fast, but autovectorisable! 
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