
Opportunities of Target Accuracy 	

in HEP Software:	

Focus on Mathematical Libraries	

D. Piparo – PH-SFT

3rd CERN Openlab – Intel
Workshop on Numerical Computing

•  Floating point calculations represent a significant portion of the
runtime budget of HEP applications

•  Sofisticated FORmulas TRANslated from literature into code
(see Vincenzo’s talk)
–  Mathematical functions appear often
–  Their execution is expensive!

Can the concept of target accuracy help us to improve the impact
of mathematical functions’ evaluation?

27/5/2013 2
3rd CERN openlab/Intel Workshop on

Numerical Computing

Prices reported in percentage of the runtime of a full job

•  LHCb:
–  Reconstruction: ~8.7%

•  CMS:
–  Reconstruction: ~19.9%

–  Simulation: ~13.5%

–  Simulation Initialisation: ~30%

•  Alice (Pb-Pb, Geant4):
–  Simulation: >25% (in event loop only)

Pricetags assume the Libm implementation of these functions (the
one used in production since years)

Software stacks versions: beginning 2013

27/5/2013 3
3rd CERN openlab/Intel Workshop on

Numerical Computing

27/5/2013 4

An example of typical HEP workflow
Simulated Monte Carlo events are as important as “real” collision events
•  Large statistics necessary to understand measured data

–  Data analyses aim to isolate small corners of the overall phase-space
–  Ultimately necessary for discoveries

Amount of events simulated in 2012 (in Billions):
•  ATLAS: 2.1*
•  CMS: 4
•  LHCb: 1.2
•  ALICE: 1

Ages in terms of total CPU time!

 Simulation alone every year accounts for lots of computing resources 	

3rd CERN openlab/Intel Workshop on
Numerical Computing

One event: ~seconds up to more than a minute CPU time
(For Alice, heavy ions collisions’ simulation, ~30 minutes)

* +1.8 Billion Fast simulated

With some exceptions, the default mathematical library used for
HEP calculations is Libm:
•  A rock-solid reference!
•  Always focussed on accuracy rather than performance

Are these two features going to change in the future?

27/5/2013 5
3rd CERN openlab/Intel Workshop on

Numerical Computing

27/5/2013 6

Excellent: 	

Now results are consistent!	

(feraiseexcept function used to raise fp exception when result “unprecise”)	

	

27-8-2012: http://rhn.redhat.com/errata/RHSA-2012-1207.html

3rd CERN openlab/Intel Workshop on
Numerical Computing

27/5/2013 7

Wait: how much tax payers’ money
does this cost?
The modified routines cause a slow-
down of a factor >6 for Exp and
important ones for Sin, Cos and Tan.

Double Precision

Nice to have such a solid reference, but can we afford that in our
production software?	

Probably not…
What are the alternatives?
 3rd CERN openlab/Intel Workshop on

Numerical Computing

27/5/2013 8

A plethora of different products are available, for example:

•  Intel’s SVML, IMF, MKL (commercial)

•  AMD Libm (free)

•  VDT (VectoriseD maTh: free and open source)

Differences in the implementations but common underlying principle:

 Trade off between accuracy and speed of execution	

3rd CERN openlab/Intel Workshop on
Numerical Computing

22/5/2013 LHCb Computing Workshop 9

VDT

22/5/2013 LHCb Computing Workshop 10

•  An open source math library library, LGPL3 licence

•  Single and Double precision of (a)sin, (a)cos, sincos, (a)tan, atan(2), log, exp
and 1/sqrt

•  Fast, approximate, inline (see following slide for the details)

•  Symbols names are different from traditional ones: vdt::fast_<name>

–  Do not force drop-in replacement!

•  Autovectorisable since gcc 4.7

–  Array signatures available: calculate on multiple elements conveniently

–  Can be inserted in autovectorised loops (inline!)

•  Inspired by the good old Cephes (and Quake III videogame)

•  Standard C code only is used (no intrinsics): portability guaranteed
–  ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture>

https://svnweb.cern.ch/trac/vdt

Underlying principle behind VDT (and Cephes): Pade’ Approximants

The “best” approximation of a function by a rational function of a given order

à  Often better approximation than a truncated Taylor series

Padé approximant of f(x) of order [m/n] is the function

which agrees to the highest possible order to f(x)

27/5/2013 11

3rd CERN openlab/Intel Workshop on
Numerical Computing

22/5/2013 LHCb Computing Workshop 12

Light effects (e.g. reflections): needed the calculation of several
normalizations.
Important piece of the implementation: “magic constant”
which yields to a first rough value of the sqrt, then improved
with Newton’s method iterations.

!!

27/5/2013 13

0
10
20
30
40
50

Exp

Log

Sin

Cos

Tan Asin

Acos

Atan

Isqrt

 Libm

 VDT

 VDT SSE

 VDT AVX

Time in ns per
value calculated

Speed

3rd CERN openlab/Intel Workshop on
Numerical Computing

Function Libm VDT VDT SSE VDT AVX
Exp 16.7 6.1 3.8 2.9
Log 34.9 12.5 5.7 4.2
Sin 33.7 16.2 6.0 5.7
Cos 34.4 13.4 5.4 5.1
Tan 46.6 12.5 6.3 5.6
Asin 23.0 10.3 8.6 8.1
Acos 23.7 11.0 8.2 8.1
Atan 19.7 11.0 8.3 8.3
Isqrt 9.3 6.7 3.0 2.1

Time in ns per value calculated

Testbed:
SLC6-GCC47, Core i7-3930K CPU @ 3.20GHz

Double
Precision

•  Operative input range: [-5000, 5000]
•  VDT scalar functions:

•  Speedups of ~4x achievable
•  Speedup scalaràSSE more

significant than SSEàAVX

•  Some overhead is present

22/5/2013 LHCb Computing Workshop 14

•  Accuracy was measured comparing the results of Libm and
VDT bit by bit with the same input

•  Differences quoted in terms of most significant different bit
•  In the end they are just 32 (64) bits which are properly

interpreted!

A single precision floating point number

22/5/2013 LHCb Computing Workshop 15

MAX	
 VDT	
 AVG	
 VDT	

Acos	
 8	
 0.39	

Asin	
 2	
 0.32	

Atan	
 1	
 0.33	

Cos	
 2	
 0.25	

Exp	
 2	
 0.14	

Isqrt	
 2	
 0.45	

Log	
 2	
 0.42	

Sin	
 2	
 0.25	

Tan	
 2	
 0.35	

Approximate results, but ok for a wide range of applications

Double
Precision

27/5/2013 16

Well known behaviour of the
“Quake III” inverse square root

VDT VS
Libm VDT VS

Libm

3rd CERN openlab/Intel Workshop on
Numerical Computing

Si
gn

M
an

tis
sa

Ex
po

ne
nt

22/5/2013 LHCb Computing Workshop 17

Examples from the
LHC Experiments

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

18

Methodology:
•  Replace calls to Libm functions with the VDT ones:

LD_PRELOAD
•  No hotspots but an overall replacement

Caveats:
•  Not the best way to proceed: no case by case control of

accuracy... But the less intrusive!
•  Code performance improvements cited: conservative – no

inlining with preload!
•  Physics performance: maximum variation obtainable (all

calls replaced!)

3rd CERN openlab/Intel Workshop on
Numerical Computing

19

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

20
S. Wenzel

12695 s

10756 s

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

21

S. Wenzel

Output of simulation validated in terms of number “simulation steps”
•  Necessary to have a similar number of simulation steps in order to have

compatible results!
•  Number of steps for the AMD Libm, VDT and IMF cases compared to Libm:

•  Nicely distributed around 1

Some work would be
needed for final sign-off,
Results already very
positive!

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

22

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

Function Runtime %
50 ev. 1 ev.

_ieee_754_log 3.77 13.30

_ieee_754_exp 1.80 5.85

_ieee_754_atan2 1.74 0.75

sincos 0.60 0.37

_ieee_754_pow 0.51 0.45

__exp1 0.29 0.26

_ieee_754_log10 0.16 0.08

_ieee_754_atan2f 0.15 0.03

TOTAL 9.02 21.9

Performance profile of 2 jobs obtained:
1)  50 events (~5k seconds)
2)  1 event (310 seconds): estimator of

the initialisation overhead
Numbers for 1) are in black in the table,
the ones for 2) red in the table

Self costs shown, callees are not
considered!

T. Hauth

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

Isnan
callers

Runtime %
 50 ev. 1 ev.

log 0.11 0.38

pow 0.04 0.05

log10 0.02 0.02

TOTAL 0.17 0.45

Feraiseexcept
Callers

Runtime %
 50 ev. 1 ev.

__ieee_754_exp 3.67 10.5

__ieee_754_pow 0.48 0.63

cos 0.13 0.18

sin 0.07 0.03

TOTAL 4.36 11.33

Total cumulative cost
(self + callees)

50 evts: ~13.5%
1 evt: ~33.7%

Libm: not only calculate function value,
but also performs other operations:
•  Is argument Nan?
•  Raise floating point exceptions: e.g.

fp_inexact

Part of the callees of the math functions

These checks do have a cost!
•  Do we need them in production?

T. Hauth

VDT
Libm

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

25

Result:

•  9% speedup achieved (FullSim 50 Events)

•  25% speedup achieved (FullSim1 Event – Initialisation cost)

Validation:

•  Good compatibility of results assessed

–  Use standard CMS histograms

•  Changes expected and found

–  Different accuracy of the functions!

–  Experts’ validation must sign-off!

T. Hauth

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

26

•  Reconstruct simulated top-antitop events + ~25 pileup collisions
•  15 % speedup in event loop (w/o initialisation)

•  Symbol magfieldparam::TkBfield::Bcycl: 77.3s à 18.18s (extensive
usage of exp)

•  Very good agreement of Physics performance!
•  120.000 plots compared, marginal differences

Interesting opportunities
for fast mathematical
functions even with
reduced accuracy!

T. Hauth

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

27

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

28

•  Portion of total runtime due to math functions is relatively
small: 8.7% of the total budget

•  Interesting optimisations (like ad hoc polynomial expansions)
already introduced in LHCb software

•  Event loop: 3.5% speedup measured (in event loop, no
initialisation)

Example of different Physics performance

LHCb reconstruction is robust
against small changes in the
math functions accuracies

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

29

Is This the End?

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

30

The ultimate mathematical library:
•  A high performance “metalibm”
•  Automatically obtain implementation of a function for a

particular range and accuracy
•  See Florent’s presentation!

High quality polynomial approximations:
•  Credible alternative to several of the FORmulas TRANslated

from literature present in HEP code
•  Replacing full formula: faster and gives better control than

replacing just the math functions in it

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

31

•  High precision measurements involving likelihood ratios
•  log(exp()-1) function involved
•  Maxima used to find Pade’ approximants in 3 different

ranges

See:
http://lhcb-release-area.web.cern.ch/LHCb-release-area/DOC/davinci/releases/latest/doxygen/d9/d33/
class_rich_1_1_rec_1_1_global_p_i_d_1_1_likelihood_tool.html#aa288748034a29a8caffcc2cabd01d2fb

Ti
m

e
fo

r e
vt

. L
oo

p

Software version

Optimisation
Introduced:
9% gain!!!

Courtesy of
B. Couturier

Maxima is a useful tool to play with
Pade approximants!
http://maxima.sourceforge.net

•  Mathematical functions account for a substantial portion of the
overall runtime of HEP applications

•  Traditional Libm may have become too expensive (although a
perfect reference)

•  Different alternatives to Libm available. Potential gains
attractive: 10% – 20% speedups not unreasonable for typical
reconstruction / simulation workflows of LHC experiments

•  Replacing full formulas with high quality polynomials / Pade’
approximations
–  Can be faster than replacing the single math functions

–  Accuracy is better controlled

27/5/2013
3rd CERN openlab/Intel Workshop on

Numerical Computing

32

27/5/2013 33
3rd CERN openlab/Intel Workshop on

Numerical Computing

22/5/2013 LHCb Computing Workshop 34

VDT provides “array” and “scalar” signatures

Scalar signature: T(T)!

•  Example: double y = vdt::fast_exp(x);!

Array signature: void(const unsigned int,T*,T*)!

•  Example: vdt::fast_expv(11, input_array, output_array);!

Array signatures trivially autogenerated: script steered by CMake

All the difficulties dropped on the compiler

Similar generator script is in place to autogenerate signatures to allow library
preload if requested.

void fast_expv(const unsigned int n, float* in, float* out{!
!for (unsigned int i=0;i<n;++i)!
! !out[i] = fast_exp(in[i]);}!

22/5/2013 LHCb Computing Workshop 35

Function VDT VDT SSE svml SSE VDTAVX svml AVX
Expf 6.76 1.9 1.33 2.07 1.38
Logf 13.1 2.48 1.70 1.90 1.62
Sinf 12.2 2.69 1.60 2.00 1.44
Cosf 10.1 2.45 1.89 1.71 1.82
Tanf 12.4 3.31 1.99 2.58 1.86
Asinf 8.93 2.00 2.37 0.71 2.19
Acosf 9.42 2.16 2.74 0.72 2.55
Atanf 6.01 1.92 2.00 0.70 1.79
Isqrtf 2.99 0.58 0.1* 0.42 0.1*

Time in nanoseconds per value calculated

22/5/2013 LHCb Computing Workshop 36

Function Libm VDT VDT SSE VDT AVX
Expf 180 6.76 2.50 2.07
Logf 12.6 13.1 2.48 1.90
Sinf 180* 12.2 2.69 2.00
Cosf 180* 10.1 2.45 1.71
Tanf 183* 12.4 3.31 2.58
Asinf 12.1 8.93 2.00 0.71
Acosf 14.6 9.42 2.16 0.72
Atanf 10.8 6.01 1.92 0.70
Isqrtf 5.02 2.99 0.58 0.42

Func. libm
Sinf 17.9
Cosf 18.4
Tanf 26.1

*Reducing range
to [-10,10]

Time in nanoseconds per value calculated

22/5/2013 LHCb Computing Workshop 37

 MAX	
 VDT	
 AVG	
 VDT	

Acosf	
 7	
 0.48	

Asinf	
 3	
 0.6	

Atanf	
 2	
 0.37	

Cosf	
 6	
 0.24	

Expf	
 6	
 3.36	

Isqr;	
 7	
 3.7	

Logf	
 2	
 0.26	

Sinf	
 6	
 0.24	

Tanf	
 6	
 0.52	

27/5/2013 38

Starting point: the well known Cephes library
•  Developed by Stephen Moshier in the eighties

in C
•  Pade’ approximation
•  Single, double and quad precision

Tool: a modern compiler like GCC 4.7
•  Autovectorisation capabilities of GCC are

getting more and more mature
•  Go the extra mile: make the functions not only

fast, but autovectorisable!
3rd CERN openlab/Intel Workshop on

Numerical Computing

