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Introduction

If a given Feynman integral depends on kinematic invariants
and masses which essentially differ in scale, a natural idea
is to expand it in ratios of small and large parameters. As a
result, the integral is written as a series of simpler quantities
than the original integral itself and it can be substituted by a
sufficiently large number of terms of such an expansion.
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External momenta are Euclidean, (

∑

qi)
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Introduction

If a given Feynman integral depends on kinematic invariants
and masses which essentially differ in scale, a natural idea
is to expand it in ratios of small and large parameters. As a
result, the integral is written as a series of simpler quantities
than the original integral itself and it can be substituted by a
sufficiently large number of terms of such an expansion.

Limits typical of Euclidean space.
External momenta are Euclidean, (

∑

qi)
2 < 0.

q is large in the sense q → Λq and Λ → ∞.

For example, the off-shell large-momentum limit

or the large-mass limit.
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Limits typical of Minkowski space.

For example,
Sudakov limit, p21 = p22 = 0,m2/(p1 + p2)

2 → 0.
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Limits typical of Minkowski space.

For example,
Sudakov limit, p21 = p22 = 0,m2/(p1 + p2)

2 → 0.

Regge limit, t/s → 0.

Threshold limit q2 → 4m2.
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Expansion by subgraphs

Let us consider a Feynman integral FΓ, corresponding to a
graph Γ, in the off-shell large-momentum limit.
FΓ(Q1, . . . , Qn1

, q1, . . . , qn2
)

(All the masses are supposed to be small.)
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Expansion by subgraphs

Let us consider a Feynman integral FΓ, corresponding to a
graph Γ, in the off-shell large-momentum limit.
FΓ(Q1, . . . , Qn1

, q1, . . . , qn2
)

(All the masses are supposed to be small.)
[Chetyrkin, Gorishnii, V.S. ]

FΓ ∼
∑

γ

FΓ/γ ◦MγFγ

The sum runs over asymptotically irreducible (AI)
subgraphs.
Let γ̂ be the graph that is obtained from a given subgraph γ
by identifying all the external vertices associated with the
large external momenta.
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A subgraph γ is AI if

it contains all the vertices with the large external
momenta and

γ̂ is one-particle-irreducible (1PI).
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A subgraph γ is AI if

it contains all the vertices with the large external
momenta and

γ̂ is one-particle-irreducible (1PI).

The operator Mγ corresponding to an AI subgraph γ is the
Taylor expansion operator with respect to its masses and
small external momenta
Let us suppose that the large external momenta flow
through γ. Then the loop momenta of Γ/γ are external for γ
and, by definition, they are considered small.
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A subgraph γ is AI if

it contains all the vertices with the large external
momenta and

γ̂ is one-particle-irreducible (1PI).

The operator Mγ corresponding to an AI subgraph γ is the
Taylor expansion operator with respect to its masses and
small external momenta
Let us suppose that the large external momenta flow
through γ. Then the loop momenta of Γ/γ are external for γ
and, by definition, they are considered small.

The symbol ◦ denotes the insertion of the polynomial which

stands to the right of it into the reduced vertex of the graph

Γ/γ, i.e. to the vertex to which the subgraph γ was reduced.
V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.5



Example.

V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.6



Example.

FΓ(q
2,m2; d) =

∫

ddk

(k2 −m2)2(q − k)2
.
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Example.

FΓ(q
2,m2; d) =

∫

ddk

(k2 −m2)2(q − k)2
.

Two subgraphs contribute: the graph Γ itself and the
subgraph γ consisting of the massless line.
Γ → expanding the massive propagator in a Taylor series in
m.
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Example.

FΓ(q
2,m2; d) =

∫

ddk

(k2 −m2)2(q − k)2
.

Two subgraphs contribute: the graph Γ itself and the
subgraph γ consisting of the massless line.
Γ → expanding the massive propagator in a Taylor series in
m.
The contribution from γ is obtained by expanding the
propagator 1/(q − k)2 in a Taylor series in k:

1

(q − k)2
=

1

q2
+

2q ·k − k2

(q2)2
+

(2q ·k − k2)2

(q2)3
+ . . . .
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FΓ(q
2,m2; d) ∼

∫

ddk

(k2)2(q − k)2
− 2m2

∫

ddk

(k2)3(q − k)2
+ . . .

+
1

q2

∫

ddk

(k2 −m2)2
+

1

(q2)2

∫

(2q ·k − k2)ddk

(k2 −m2)2
+ . . . .
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FΓ(q
2,m2; d) ∼

∫

ddk

(k2)2(q − k)2
− 2m2

∫

ddk

(k2)3(q − k)2
+ . . .

+
1

q2

∫

ddk

(k2 −m2)2
+

1

(q2)2

∫

(2q ·k − k2)ddk

(k2 −m2)2
+ . . . .

FΓ(q
2,m2; d) ∼ iπd/2

(−q2)1+ǫ

Γ(1− ǫ)2Γ(ǫ)

Γ(1− 2ǫ)

(

1 + 2ǫ
m2

q2
+ . . .

)

+
iπd/2

q2(m2)ǫ
Γ(ǫ)

(

1 +
ǫ

1 + ǫ

m2

q2
+ . . .

)

.
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The pole in ǫ in the contribution from Γ is of IR nature, while
the pole in the contribution from γ is UV.
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The pole in ǫ in the contribution from Γ is of IR nature, while
the pole in the contribution from γ is UV.

FΓ(q
2,m2; 4) ∼ iπ2

q2

[

ln

(

−q2

m2

)

− m2

q2
+ . . .

]

.

V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.8



Expansion by regions

For limits typical of Minkowski space space, the strategy of
expansion by subgraphs is unknown.
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Expansion by regions

For limits typical of Minkowski space space, the strategy of
expansion by subgraphs is unknown.
Expansion by regions. [Beneke & V.S.’98]

Divide the space of the loop momenta into various
regions and, in every region, expand the integrand in a
Taylor series with respect to the parameters that are
considered small there.

Integrate the integrand, expanded in the appropriate
way in every region, over the whole integration domain
of the loop momenta.

Set to zero any scaleless integral.
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Consider the same example.
Two regions: k ∼ q and k ∼ m.
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Consider the same example.
Two regions: k ∼ q and k ∼ m.
k ∼ q:
1/(q − k)2 is not expanded, 1/(k2 −m2)2 is expanded in m.
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Consider the same example.
Two regions: k ∼ q and k ∼ m.
k ∼ q:
1/(q − k)2 is not expanded, 1/(k2 −m2)2 is expanded in m.

k ∼ m:
1/(k2 −m2)2 is not expanded, 1/(q − k)2 is expanded in k.

the same contributions as within expansion by subgraphs

For limits typical of Euclidean space, where we have
two scales, for example Q and q, there is a simple
equivalence of the two strategies. (Consider the set of

regions labelled by 1PI subgraphs of the given graph.)
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Regions typical for Sudakov limits.
hard, collinear (i.e. almost parallel to two light-like
four-vectors), ultrasoft.
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Regions typical for Sudakov limits.
hard, collinear (i.e. almost parallel to two light-like
four-vectors), ultrasoft.

Regions typical for the threshold limit, q2 → 4m2,
with the expansion parameter, y = m2 − q2/4.
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Regions typical for Sudakov limits.
hard, collinear (i.e. almost parallel to two light-like
four-vectors), ultrasoft.

Regions typical for the threshold limit, q2 → 4m2,
with the expansion parameter, y = m2 − q2/4.
Choose the frame q = (q0,~0).
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Regions typical for Sudakov limits.
hard, collinear (i.e. almost parallel to two light-like
four-vectors), ultrasoft.

Regions typical for the threshold limit, q2 → 4m2,
with the expansion parameter, y = m2 − q2/4.
Choose the frame q = (q0,~0).
Consider the various regions where any loop momentum
can be of one of the following four types:

(hard), k0 ∼
√

q2 , ~k ∼
√

q2 ,

(soft), k0 ∼
√
y , ~k ∼ √

y ,

(potential), k0 ∼ y/
√

q2 , ~k ∼ √
y ,

(ultrasoft), k0 ∼ y/
√

q2 , ~k ∼ y/
√

q2 .
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Expansion by regions for parametric integrals

FΓ(q1, . . . , qn; d; a1 . . . , aL) =

(

iπd/2
)h

Γ(a− hd/2)
∏

l Γ(al)

×
∫

∞

0

. . .

∫

∞

0

δ

(

L
∑

l=1

αl − 1

)

∏

l α
al−1
l Ua−(h+1)d/2

(−V + U
∑

m2
l αl)

a−hd/2
dα1 . . .dαL

where U and V are (Kirchhoff, Symanzik) polynomials
determined by a given graph.
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Expansion by regions for parametric integrals

FΓ(q1, . . . , qn; d; a1 . . . , aL) =

(

iπd/2
)h

Γ(a− hd/2)
∏

l Γ(al)

×
∫

∞

0

. . .

∫

∞

0

δ

(

L
∑

l=1

αl − 1

)

∏

l α
al−1
l Ua−(h+1)d/2

(−V + U
∑

m2
l αl)

a−hd/2
dα1 . . .dαL

where U and V are (Kirchhoff, Symanzik) polynomials
determined by a given graph.

Expansion by regions in alpha parameters [VS’99]
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asy.m [Pak & A. Smirnov’11]

a public code to reveal regions.

Input: propagators
Output: regions in the language of alpha parameters
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Let
P (x1, . . . , xn, t) =

∑

w1,...,wn,wn+1
cw1,...,wn,wn+1

xw1

1
. . . xwn

n twn+1

be a polynomial with c...>0.
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∑

w1,...,wn,wn+1
cw1,...,wn,wn+1

xw1

1
. . . xwn

n twn+1

be a polynomial with c...>0.
The Newton polytope of P is the convex hull of the points
(w1, ..., wn+1) in Rn+1.
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Let
P (x1, . . . , xn, t) =

∑

w1,...,wn,wn+1
cw1,...,wn,wn+1

xw1

1
. . . xwn

n twn+1

be a polynomial with c...>0.
The Newton polytope of P is the convex hull of the points
(w1, ..., wn+1) in Rn+1.
A facet of P is a face of maximal dimension, i.e. n.
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Let
P (x1, . . . , xn, t) =

∑

w1,...,wn,wn+1
cw1,...,wn,wn+1

xw1

1
. . . xwn

n twn+1

be a polynomial with c...>0.
The Newton polytope of P is the convex hull of the points
(w1, ..., wn+1) in Rn+1.
A facet of P is a face of maximal dimension, i.e. n.

Conjecture. Let

F (t) =

∫

∞

0

. . .

∫

∞

0

(P (x1, . . . , xn, t))
λ dx1 . . . dxn ,

where t > 0, and λ ∈ C is such that the integral is absolutely

convergent.
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Then the asymptotic expansion of the function F (t) in the
limit t → +0 is given by

F (t) ∼
∑

i

∫

∞

0

. . .

∫

∞

0

[

Mi (P (x1, . . . , xn, t))
λ
]

dx1 . . . dxn ,
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Then the asymptotic expansion of the function F (t) in the
limit t → +0 is given by

F (t) ∼
∑

i

∫

∞

0

. . .

∫

∞

0

[

Mi (P (x1, . . . , xn, t))
λ
]

dx1 . . . dxn ,

where the sum runs over facets of the Newton polytope of
P , for which the normal vectors
ri = (ri,1, . . . , ri,n, ri,n+1), i = 1, . . . , N oriented inside the
polytope have ri,n+1 > 0.
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Then the asymptotic expansion of the function F (t) in the
limit t → +0 is given by

F (t) ∼
∑

i

∫

∞

0

. . .

∫

∞

0

[

Mi (P (x1, . . . , xn, t))
λ
]

dx1 . . . dxn ,

where the sum runs over facets of the Newton polytope of
P , for which the normal vectors
ri = (ri,1, . . . , ri,n, ri,n+1), i = 1, . . . , N oriented inside the
polytope have ri,n+1 > 0.

Let us normalize these vectors by ri,n+1 = 1.
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Let

Pi(x1, . . . , xn, t, ρ) = P (ρri,1x1, . . . , ρ
ri,nxn, ρt)

V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.16



Let

Pi(x1, . . . , xn, t, ρ) = P (ρri,1x1, . . . , ρ
ri,nxn, ρt)

so that

Pi(x1, . . . , xn, t, ρ) =

mi,2
∑

m=mi,1

ρmQi,m(x1, . . . , xn, t) ,

where the sum runs over rational numbers from a certain set

determined by P and its i-th facet.
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Mi (P (x1, . . . , xn, t))
λ
= ρmi,1λTρ





mi,2
∑

m=mi,1

ρm−mi,1Qi,m(x1, . . . , xn, t)





λ
∣

∣

∣

∣

∣

∣

∣

ρ=1

= Tρ



Qi,mi,1
(x1, . . . , xn, t) +

mi,2
∑

m=mi,1+1

ρm−mi,1Qi,m(x1, . . . , xn, t)





λ
∣

∣

∣

∣

∣

∣

∣

ρ=1

=
(

Qi,mi,1
(x1, . . . , xn, t)

)λ
+ . . .

where the operator Tρ performs an asymptotic expansion in
powers of ρ at ρ = 0.
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Example. Let us expand

F (t) =

∫

∞

0

dx
P (x, t)

,

with P (x, t) = t3 + tx+ x2 + x3, in the limit t → +0.
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Example. Let us expand

F (t) =

∫

∞

0

dx
P (x, t)

,

with P (x, t) = t3 + tx+ x2 + x3, in the limit t → +0.
Introduce a regularization:

F (t, λ) =

∫

∞

0

dx
P (x, t)1+λ

.
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The Newton polytope of P

1 2 3

w1

0

1

2

3

w2
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The Newton polytope of P

1 2 3

w1

0

1

2

3

w2

Normal vectors for the three facets contributing to the
expansion:
r1 = (2, 1), r2 = (1, 1), r3 = (0, 1)
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Facet 1. x → ρ2x, t → ρt.
P (x, t) → ρ3t3 + ρ3tx+ ρ4x2 + ρ6x3 = ρ3(t3 + tx+ ρx2 + ρ3x3)
LO:

∫

∞

0

dx
(t3 + tx)1+λ

=
1

λ

1

t1+3λ
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Facet 1. x → ρ2x, t → ρt.
P (x, t) → ρ3t3 + ρ3tx+ ρ4x2 + ρ6x3 = ρ3(t3 + tx+ ρx2 + ρ3x3)
LO:

∫

∞

0

dx
(t3 + tx)1+λ

=
1

λ

1

t1+3λ

Facet 2. x → ρx, t → ρt.
P (x, t) → ρ3t3 + ρ2tx+ ρ2x2 + ρ3x3 = ρ2(tx+ x2 + ...)
LO:

∫

∞

0

dx
(tx+ x2)1+λ

=
Γ(−λ)Γ(1 + 2λ)

Γ(1 + λ)

1

t1+2λ
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Facet 3. t → ρt. Just an expansion in t.
LO:

∫

∞

0

dx
(x2 + x3)1+λ

= ... = O(t0)
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Facet 3. t → ρt. Just an expansion in t.
LO:

∫

∞

0

dx
(x2 + x3)1+λ

= ... = O(t0)

The result in LO

F (t) =

∫

∞

0

dx
P (x, t)

∼ − ln t

t
+ O(ln t)
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Normal vectors of the faces ↔ regions

Let r = (r1, . . . , rn).
Perform the scaling xj → ρrjxj , i = 1, . . . , n and t → ρt
Then
cxw1

1
. . . xwn

n twn+1 → c(ρr1x1)
w1 . . . (ρrnxn)

wn(ρt)wn+1

= cρr1w1+...+rnwn+wn+1xw1

1
. . . xwn

n twn+1

= cρ~r ~wxw1

1
. . . xwn

n twn+1
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Normal vectors of the faces ↔ regions

Let r = (r1, . . . , rn).
Perform the scaling xj → ρrjxj , i = 1, . . . , n and t → ρt
Then
cxw1

1
. . . xwn

n twn+1 → c(ρr1x1)
w1 . . . (ρrnxn)

wn(ρt)wn+1

= cρr1w1+...+rnwn+wn+1xw1

1
. . . xwn

n twn+1

= cρ~r ~wxw1

1
. . . xwn

n twn+1

Keeping the minimal power of ρ in the polynomial reduced
to taking terms corresponding to a face of the Newton
polytope (to which r is normal).

If for a given r we obtain a face of dimension < n then the

corresponding contribution is a zero scaleless integral.
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Example.

F (t) =

∫

∞

0

∫

∞

0

dx1dx2
P (x1, x2, t)

,

with P (x1, x2, t) = (x1 + t)(x2 + t)(x1 + x2 + 1), in the limit
t → +0.
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Example.

F (t) =

∫

∞

0

∫

∞

0

dx1dx2
P (x1, x2, t)

,

with P (x1, x2, t) = (x1 + t)(x2 + t)(x1 + x2 + 1), in the limit
t → +0.
Introduce a regularization:

∫

∞

0

∫

∞

0

dx1dx2
P (x1, x2, t)1+λ
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Example.

F (t) =

∫

∞

0

∫

∞

0

dx1dx2
P (x1, x2, t)

,

with P (x1, x2, t) = (x1 + t)(x2 + t)(x1 + x2 + 1), in the limit
t → +0.
Introduce a regularization:

∫

∞

0

∫

∞

0

dx1dx2
P (x1, x2, t)1+λ

asy.m → four regions (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1).
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(0, 0, 1)

∫

∞

0

∫

∞

0

dx1dx2
(x1x2(x1 + x2 + 1))1+λ

=
Γ(−λ)2Γ(1 + 3λ)

Γ(1 + λ)

V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.24



(0, 0, 1)

∫

∞

0

∫

∞

0

dx1dx2
(x1x2(x1 + x2 + 1))1+λ

=
Γ(−λ)2Γ(1 + 3λ)

Γ(1 + λ)

(0, 1, 1); x2 → ρx2, t → ρt

∫

∞

0

∫

∞

0

dx1dx2
(x1(x2 + t)(x1 + 1))1+λ

=
Γ(−λ)Γ(1 + 2λ)

λΓ(1 + λ)
t−λ
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(0, 0, 1)

∫

∞

0

∫

∞

0

dx1dx2
(x1x2(x1 + x2 + 1))1+λ

=
Γ(−λ)2Γ(1 + 3λ)

Γ(1 + λ)

(0, 1, 1); x2 → ρx2, t → ρt

∫

∞

0

∫

∞

0

dx1dx2
(x1(x2 + t)(x1 + 1))1+λ

=
Γ(−λ)Γ(1 + 2λ)

λΓ(1 + λ)
t−λ

(1, 0, 1) = (0, 1, 1)
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(0, 0, 1)

∫

∞

0

∫

∞

0

dx1dx2
(x1x2(x1 + x2 + 1))1+λ

=
Γ(−λ)2Γ(1 + 3λ)

Γ(1 + λ)

(0, 1, 1); x2 → ρx2, t → ρt

∫

∞

0

∫

∞

0

dx1dx2
(x1(x2 + t)(x1 + 1))1+λ

=
Γ(−λ)Γ(1 + 2λ)

λΓ(1 + λ)
t−λ

(1, 0, 1) = (0, 1, 1)
(1, 1, 1); x1 → ρx1, x2 → ρx2, t → ρt

∫

∞

0

∫

∞

0

dx1dx2
((x1 + t)(x2 + t))1+λ

=
1

λ2
t−2λ
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Summing up the four LO contributions →

F (t) ∼ ln2 t+
π2

6
+O(t)
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Summing up the four LO contributions →

F (t) ∼ ln2 t+
π2

6
+O(t)

in agreement with the explicit result

F (t) = − 1

1− 2t

(

2Li2(t) + 2 ln t ln(1− t)− ln2 t− π2

6

)
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Back to Feynman integrals:

FΓ(q
2,m2; d) =

∫

ddk

(k2 −m2)[(q − k)2 −m2]

in the large-momentum limit so that the corresponding
scaling is m2 → ρm2.
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Back to Feynman integrals:

FΓ(q
2,m2; d) =

∫

ddk

(k2 −m2)[(q − k)2 −m2]

in the large-momentum limit so that the corresponding
scaling is m2 → ρm2.
We have U = x1 + x2,
W = −V +m2(x1 + x2)U → ρm2x2

1
+ ρm2x2

2
+ (2ρm2 − q2)x1x2
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To reveal relevant regions we consider the product of the
two functions UW.
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To reveal relevant regions we consider the product of the
two functions UW.
The weights of the polynomials:

C +D

C + E

A+D

A+ E

B +D

B + E

D

E

A

B

C

w1

w2

w3

Figure 1: Points corresponding to ,
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Revealing potential and Glauber regions

q

q=2 + k

q=2� k

F (q2, y; d) =

∫

ddk

(k2 + q ·k − y)(k2 − q ·k − y)
,

in the threshold limit y = m2 − q2/4 → 0
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Revealing potential and Glauber regions

q

q=2 + k

q=2� k

F (q2, y; d) =

∫

ddk

(k2 + q ·k − y)(k2 − q ·k − y)
,

in the threshold limit y = m2 − q2/4 → 0

asy.m reported only about the hard region k ∼ q.
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F (q2, y) = iπd/2 Γ(ǫ)

×
∫

∞

0

∫

∞

0

(α1 + α2)
2ǫ−2 δ (α1 + α2 − 1) dα1dα2

[

q2

4
(α1 − α2)2 + y(α1 + α2)2 − i0

]ǫ ,

The domain where α1 ≈ α2 causes problems.
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F (q2, y) = iπd/2 Γ(ǫ)

×
∫

∞

0

∫

∞

0

(α1 + α2)
2ǫ−2 δ (α1 + α2 − 1) dα1dα2

[

q2

4
(α1 − α2)2 + y(α1 + α2)2 − i0

]ǫ ,

The domain where α1 ≈ α2 causes problems.
Decompose the integration domain into α1 ≤ α2 and
α2 ≤ α1, with equal contributions. Turn to new variables by
α1 = α′

1/2, α2 = α′
2 + α′

1/2,

iπd/2
Γ(ǫ)

2

∫

∞

0

∫

∞

0

(α1 + α2)
2ǫ−2 δ (α1 + α2 − 1) dα1dα2

[

q2

4
α2
2
+ y(α1 + α2)2 − i0

]ǫ .
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The goal of this trick is to make the line α1 = α2 (in the old
variables) the border of an integration domain which turned
out to be (in the new variables) α2 = 0.
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The goal of this trick is to make the line α1 = α2 (in the old
variables) the border of an integration domain which turned
out to be (in the new variables) α2 = 0.
asy.m: two regions (0, 0) and (0, 1/2) (hard and potential).
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The goal of this trick is to make the line α1 = α2 (in the old
variables) the border of an integration domain which turned
out to be (in the new variables) α2 = 0.
asy.m: two regions (0, 0) and (0, 1/2) (hard and potential).
The potential contribution is non-zero only in the leading
order

iπd/2
Γ(ǫ)

2

∫

∞

0

dα2
(

q2

4
α2
2
+ y
)ǫ ,
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The goal of this trick is to make the line α1 = α2 (in the old
variables) the border of an integration domain which turned
out to be (in the new variables) α2 = 0.
asy.m: two regions (0, 0) and (0, 1/2) (hard and potential).
The potential contribution is non-zero only in the leading
order

iπd/2
Γ(ǫ)

2

∫

∞

0

dα2
(

q2

4
α2
2
+ y
)ǫ ,

with the result

iπd/2Γ(ǫ− 1/2)

√

πy

q2
y−ǫ ,
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The goal of this trick is to make the line α1 = α2 (in the old
variables) the border of an integration domain which turned
out to be (in the new variables) α2 = 0.
asy.m: two regions (0, 0) and (0, 1/2) (hard and potential).
The potential contribution is non-zero only in the leading
order

iπd/2
Γ(ǫ)

2

∫

∞

0

dα2
(

q2

4
α2
2
+ y
)ǫ ,

with the result

iπd/2Γ(ǫ− 1/2)

√

πy

q2
y−ǫ ,

asy2.m [Jantzen, A. Smirnov & VS’2012 ]
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Such a trick was already used in the algorithm of FIESTA
[A. Smirnov & Tentyukov’2008, A.S., V.S. & Tentyukov’2010]
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Such a trick was already used in the algorithm of FIESTA
[A. Smirnov & Tentyukov’2008, A.S., V.S. & Tentyukov’2010]

The preresolution algorithm implemented in asy2.m tries to
eliminate factorized combinations of terms in the function
W which potentially cancel each other, like (α1 − α2)

2 in the
example above.
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Such a trick was already used in the algorithm of FIESTA
[A. Smirnov & Tentyukov’2008, A.S., V.S. & Tentyukov’2010]

The preresolution algorithm implemented in asy2.m tries to
eliminate factorized combinations of terms in the function
W which potentially cancel each other, like (α1 − α2)

2 in the
example above.
It checks all pairs of variables (say, x and y) which are part
of monomials with opposite sign. For all those pairs the
code tries to build a linear combination z of x and y such
that in the variables x and z or y and z this monomial
disappears.

V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.31



Such a trick was already used in the algorithm of FIESTA
[A. Smirnov & Tentyukov’2008, A.S., V.S. & Tentyukov’2010]

The preresolution algorithm implemented in asy2.m tries to
eliminate factorized combinations of terms in the function
W which potentially cancel each other, like (α1 − α2)

2 in the
example above.
It checks all pairs of variables (say, x and y) which are part
of monomials with opposite sign. For all those pairs the
code tries to build a linear combination z of x and y such
that in the variables x and z or y and z this monomial
disappears.
The code checks whether in the new variables the number
of monomials with opposite sign decreases.
For all such pairs the code recursively repeats the

initial procedure in the new variables.
V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.31



p1 + p2

q1 + q2

p2 + q2

p1

q1

1

2

3

4

5

in the simplified kinematics p1 = p2 = p and q1 = q2 = q with
p2 = q2 = 0 and (p+ q)2 = 2p · q = Q2 in the limit m2/Q2 → 0:
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p1 + p2

q1 + q2

p2 + q2

p1

q1

1

2

3

4

5

in the simplified kinematics p1 = p2 = p and q1 = q2 = q with
p2 = q2 = 0 and (p+ q)2 = 2p · q = Q2 in the limit m2/Q2 → 0:

F (Q2,m2) =

∫

ddk

(k2 −m2)(k2 − 2p · k)(k2 + 2p · k)

× 1

(k2 − 2q · k)(k2 + 2q · k) .
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[Jantzen’2011]

a hard region where k ∼ Q,

a 1-collinear region where k2 ∼ p · k ∼ m2 and q · k ∼ Q2,

a 2-collinear region where k2 ∼ q · k ∼ m2 and p · k ∼ Q2,

a Glauber region where p · k ∼ q · k ∼ m2, and the
components of k perpendicular to the plane spanned by
p, q scale as k⊥ ∼ m.
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[Jantzen’2011]

a hard region where k ∼ Q,

a 1-collinear region where k2 ∼ p · k ∼ m2 and q · k ∼ Q2,

a 2-collinear region where k2 ∼ q · k ∼ m2 and p · k ∼ Q2,

a Glauber region where p · k ∼ q · k ∼ m2, and the
components of k perpendicular to the plane spanned by
p, q scale as k⊥ ∼ m.

The Glauber region: LO (m2)−2−ǫ

The collinear contributions: (m2)−1−ǫ

The hard contribution: (m2)0
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F (Q2,m2) = −iπd/2 Γ(3 + ǫ)

∫

∞

0

. . .

∫

∞

0

dα1 · · · dα5

×
δ
(
∑

i αi − 1
)

(α1 + . . .+ α5)
1+2ǫ

[

α1(α1 + . . .+ α5)m2 + (α2 − α3)(α4 − α5)Q2 − i0
]3+ǫ

.
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F (Q2,m2) = −iπd/2 Γ(3 + ǫ)

∫

∞

0

. . .

∫

∞

0

dα1 · · · dα5

×
δ
(
∑

i αi − 1
)

(α1 + . . .+ α5)
1+2ǫ

[

α1(α1 + . . .+ α5)m2 + (α2 − α3)(α4 − α5)Q2 − i0
]3+ǫ

.

asy.m: (0, 0, 0, 0, 0), (0, 0, 0, 1, 1) and (0, 1, 1, 0, 0)
(hard and two collinear regions)

V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.34



F (Q2,m2) = −iπd/2 Γ(3 + ǫ)

∫

∞

0

. . .

∫

∞

0

dα1 · · · dα5

×
δ
(
∑

i αi − 1
)

(α1 + . . .+ α5)
1+2ǫ

[

α1(α1 + . . .+ α5)m2 + (α2 − α3)(α4 − α5)Q2 − i0
]3+ǫ

.

asy.m: (0, 0, 0, 0, 0), (0, 0, 0, 1, 1) and (0, 1, 1, 0, 0)
(hard and two collinear regions)

the domain (α2 − α3) ∼ (m2)1 or (α4 − α5) ∼ (m2)1

is responsible for the Glauber contribution

V.A. Smirnov Atrani, September 30 – October 05, 2013 – p.34



F (Q2,m2) = −iπd/2 Γ(3 + ǫ)

∫

∞

0

. . .

∫

∞

0

dα1 · · · dα5

×
δ
(
∑

i αi − 1
)

(α1 + . . .+ α5)
1+2ǫ

[

α1(α1 + . . .+ α5)m2 + (α2 − α3)(α4 − α5)Q2 − i0
]3+ǫ

.

asy.m: (0, 0, 0, 0, 0), (0, 0, 0, 1, 1) and (0, 1, 1, 0, 0)
(hard and two collinear regions)

the domain (α2 − α3) ∼ (m2)1 or (α4 − α5) ∼ (m2)1

is responsible for the Glauber contribution

decompose the integral into four parts corresponding to the
domains where (α2 − α3) and (α4 − α5) are either positive or
negative and then introduce new variables in such a way
that this product takes the form ±α′

2α
′
4.
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For example, in the domain α2 ≤ α3, α5 ≤ α4 change the
variables by α2 = α′

3/2, α3 = α′
2 + α′

3/2 and by
α4 = α′

4 + α′
5/2, α5 = α′

5/2
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For example, in the domain α2 ≤ α3, α5 ≤ α4 change the
variables by α2 = α′

3/2, α3 = α′
2 + α′

3/2 and by
α4 = α′

4 + α′
5/2, α5 = α′

5/2

F (Q2,m2) = 2(I+ + I−),

I± = −iπd/2
Γ(3 + ǫ)

4

∫

∞

0

. . .

∫

∞

0

dα1 · · · dα5

× δ (α1 − 1) (α1 + α2 + α3 + α4 + α5)
1+2ǫ

[α1(α1 + α2 + α3 + α4 + α5)m2 ± α2α4Q2 − i0]
3+ǫ

,
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The code asy2.m applied to I+ reveals three regions:
(0, 0, 0, 0, 0), (0, 1, 0, 0, 0) and (0, 0, 0, 1, 0).
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The code asy2.m applied to I+ reveals three regions:
(0, 0, 0, 0, 0), (0, 1, 0, 0, 0) and (0, 0, 0, 1, 0).
The LO contribution of the second and third regions leads
to the following LO asymptotics of F (Q2,m2) :

−iπd/2
iπΓ(ǫ)

2Q2(m2)2+ǫ
.

This agrees with the leading contribution of the Glauber
region in the momentum-space expansion.
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The code asy2.m applied to I+ reveals three regions:
(0, 0, 0, 0, 0), (0, 1, 0, 0, 0) and (0, 0, 0, 1, 0).
The LO contribution of the second and third regions leads
to the following LO asymptotics of F (Q2,m2) :

−iπd/2
iπΓ(ǫ)

2Q2(m2)2+ǫ
.

This agrees with the leading contribution of the Glauber
region in the momentum-space expansion.
When revealing Glauber regions the preresolution algorithm
of asy2.m tries to eliminate monomials with opposite sign
by automatically separating the integration into domains

and performing changes of variables.
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Conclusion

The new code asy.m reveals potential and Glauber
regions.
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The new code asy.m reveals potential and Glauber
regions.

It can happen that more exotic regions will need special
treatment.
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Conclusion

The new code asy.m reveals potential and Glauber
regions.

It can happen that more exotic regions will need special
treatment.

The new code asy.m can be applied to general
parametric integrals with polynomial raised to some
powers.
For example, to parametrical integrals for Wilson loops
[Del Duca, Duhr & VS’11]
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Conclusion

The new code asy.m reveals potential and Glauber
regions.

It can happen that more exotic regions will need special
treatment.

The new code asy.m can be applied to general
parametric integrals with polynomial raised to some
powers.
For example, to parametrical integrals for Wilson loops
[Del Duca, Duhr & VS’11]

The mathematical status is unclear.
To prove expansion by regions is an interesting
mathematical problem.
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