Asymptotic expansions in momenta and masses

- Introduction

Asymptotic expansions in momenta and masses

- Introduction
- Expansion by subgraphs

Asymptotic expansions in momenta and masses

- Introduction
- Expansion by subgraphs
- Expansion by regions

Asymptotic expansions in momenta and masses

- Introduction
- Expansion by subgraphs
- Expansion by regions
- Expansion by regions for parametric integrals

Asymptotic expansions in momenta and masses

- Introduction
- Expansion by subgraphs
- Expansion by regions
- Expansion by regions for parametric integrals
- Revealing potential and Glauber regions

Asymptotic expansions in momenta and masses

- Introduction
- Expansion by subgraphs
- Expansion by regions
- Expansion by regions for parametric integrals
- Revealing potential and Glauber regions
- Conclusion

Asymptotic expansions in momenta and masses

- Introduction
- Expansion by subgraphs
- Expansion by regions
- Expansion by regions for parametric integrals
- Revealing potential and Glauber regions
- Conclusion

Applied Asymptotic Expansions in Momenta and Masses
(STMP 177, Springer 2002)
Analytic Tools for Feynman Integrals (STMP 250, Springer 2013)

Introduction

If a given Feynman integral depends on kinematic invariants and masses which essentially differ in scale, a natural idea is to expand it in ratios of small and large parameters. As a result, the integral is written as a series of simpler quantities than the original integral itself and it can be substituted by a sufficiently large number of terms of such an expansion.

Introduction

If a given Feynman integral depends on kinematic invariants and masses which essentially differ in scale, a natural idea is to expand it in ratios of small and large parameters. As a result, the integral is written as a series of simpler quantities than the original integral itself and it can be substituted by a sufficiently large number of terms of such an expansion.

Limits typical of Euclidean space.
External momenta are Euclidean, $\left(\sum q_{i}\right)^{2}<0$. q is large in the sense $q \rightarrow \Lambda q$ and $\Lambda \rightarrow \infty$.

If a given Feynman integral depends on kinematic invariants and masses which essentially differ in scale, a natural idea is to expand it in ratios of small and large parameters. As a result, the integral is written as a series of simpler quantities than the original integral itself and it can be substituted by a sufficiently large number of terms of such an expansion.

Limits typical of Euclidean space.
External momenta are Euclidean, $\left(\sum q_{i}\right)^{2}<0$. q is large in the sense $q \rightarrow \Lambda q$ and $\Lambda \rightarrow \infty$.

For example, the off-shell large-momentum limit or the large-mass limit.

Limits typical of Minkowski space.

Limits typical of Minkowski space.

For example, Sudakov limit, $p_{1}^{2}=p_{2}^{2}=0, m^{2} /\left(p_{1}+p_{2}\right)^{2} \rightarrow 0$.

Limits typical of Minkowski space.

For example,
Sudakov limit, $p_{1}^{2}=p_{2}^{2}=0, m^{2} /\left(p_{1}+p_{2}\right)^{2} \rightarrow 0$.
Regge limit, $t / s \rightarrow 0$.

Limits typical of Minkowski space.

For example,
Sudakov limit, $p_{1}^{2}=p_{2}^{2}=0, m^{2} /\left(p_{1}+p_{2}\right)^{2} \rightarrow 0$.
Regge limit, $t / s \rightarrow 0$.
Threshold limit $q^{2} \rightarrow 4 m^{2}$.

Expansion by subgraphs

Let us consider a Feynman integral F_{Γ}, corresponding to a graph Γ, in the off-shell large-momentum limit.
$F_{\Gamma}\left(Q_{1}, \ldots, Q_{n_{1}}, q_{1}, \ldots, q_{n_{2}}\right)$
(All the masses are supposed to be small.)

Expansion by subgraphs

Let us consider a Feynman integral F_{Γ}, corresponding to a graph Γ, in the off-shell large-momentum limit.
$F_{\Gamma}\left(Q_{1}, \ldots, Q_{n_{1}}, q_{1}, \ldots, q_{n_{2}}\right)$
(All the masses are supposed to be small.)
[Chetyrkin, Gorishnii, V.S.]

$$
F_{\Gamma} \sim \sum_{\gamma} F_{\Gamma / \gamma} \circ \mathcal{M}_{\gamma} F_{\gamma}
$$

Expansion by subgraphs

Let us consider a Feynman integral F_{Γ}, corresponding to a graph Γ, in the off-shell large-momentum limit.
$F_{\Gamma}\left(Q_{1}, \ldots, Q_{n_{1}}, q_{1}, \ldots, q_{n_{2}}\right)$
(All the masses are supposed to be small.)
[Chetyrkin, Gorishnii, V.S.]

$$
F_{\Gamma} \sim \sum_{\gamma} F_{\Gamma / \gamma} \circ \mathcal{M}_{\gamma} F_{\gamma}
$$

The sum runs over asymptotically irreducible (AI) subgraphs.
Let $\hat{\gamma}$ be the graph that is obtained from a given subgraph γ by identifying all the external vertices associated with the large external momenta.

A subgraph γ is Al if

- it contains all the vertices with the large external momenta and
- $\hat{\gamma}$ is one-particle-irreducible (1PI).

A subgraph γ is Al if

- it contains all the vertices with the large external momenta and
- $\hat{\gamma}$ is one-particle-irreducible (1PI).

The operator \mathcal{M}_{γ} corresponding to an Al subgraph γ is the Taylor expansion operator with respect to its masses and small external momenta

A subgraph γ is Al if

- it contains all the vertices with the large external momenta and
- $\hat{\gamma}$ is one-particle-irreducible (1PI).

The operator \mathcal{M}_{γ} corresponding to an Al subgraph γ is the Taylor expansion operator with respect to its masses and small external momenta
Let us suppose that the large external momenta flow through γ. Then the loop momenta of Γ / γ are external for γ and, by definition, they are considered small.

A subgraph γ is Al if

- it contains all the vertices with the large external momenta and
- $\hat{\gamma}$ is one-particle-irreducible (1PI).

The operator \mathcal{M}_{γ} corresponding to an Al subgraph γ is the Taylor expansion operator with respect to its masses and small external momenta
Let us suppose that the large external momenta flow through γ. Then the loop momenta of Γ / γ are external for γ and, by definition, they are considered small.

The symbol \circ denotes the insertion of the polynomial which
stands to the right of it into the reduced vertex of the graph
Γ / γ, i.e. to the vertex to which the subgraph γ was reduced.

Example.

Example.

$$
F_{\Gamma}\left(q^{2}, m^{2} ; d\right)=\int \frac{\mathbf{d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}(q-k)^{2}} .
$$

Example.

$$
F_{\Gamma}\left(q^{2}, m^{2} ; d\right)=\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}(q-k)^{2}} .
$$

Two subgraphs contribute: the graph Γ itself and the subgraph γ consisting of the massless line. $\Gamma \rightarrow$ expanding the massive propagator in a Taylor series in m.

Example.

$$
F_{\Gamma}\left(q^{2}, m^{2} ; d\right)=\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}(q-k)^{2}} .
$$

Two subgraphs contribute: the graph Γ itself and the subgraph γ consisting of the massless line. $\Gamma \rightarrow$ expanding the massive propagator in a Taylor series in m.

The contribution from γ is obtained by expanding the propagator $1 /(q-k)^{2}$ in a Taylor series in k :

$$
\frac{1}{(q-k)^{2}}=\frac{1}{q^{2}}+\frac{2 q \cdot k-k^{2}}{\left(q^{2}\right)^{2}}+\frac{\left(2 q \cdot k-k^{2}\right)^{2}}{\left(q^{2}\right)^{3}}+\ldots .
$$

$$
\begin{aligned}
F_{\Gamma}\left(q^{2}, m^{2} ; d\right) & \sim \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{2}(q-k)^{2}}-2 m^{2} \int \frac{\mathrm{~d}^{d} k}{\left(k^{2}\right)^{3}(q-k)^{2}}+\ldots \\
& +\frac{1}{q^{2}} \int \frac{\mathrm{~d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}}+\frac{1}{\left(q^{2}\right)^{2}} \int \frac{\left(2 q \cdot k-k^{2}\right) \mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}}+\ldots
\end{aligned}
$$

$$
\begin{gathered}
F_{\Gamma}\left(q^{2}, m^{2} ; d\right) \sim \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{2}(q-k)^{2}}-2 m^{2} \int \frac{\mathrm{~d}^{d} k}{\left(k^{2}\right)^{3}(q-k)^{2}}+\ldots \\
+\frac{1}{q^{2}} \int \frac{\mathrm{~d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}}+\frac{1}{\left(q^{2}\right)^{2}} \int \frac{\left(2 q \cdot k-k^{2}\right) \mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}}+\ldots . \\
F_{\Gamma}\left(q^{2}, m^{2} ; d\right) \sim \frac{\mathrm{i} \pi^{d / 2}}{\left(-q^{2}\right)^{1+\epsilon}} \frac{\Gamma(1-\epsilon)^{2} \Gamma(\epsilon)}{\Gamma(1-2 \epsilon)}\left(1+2 \epsilon \frac{m^{2}}{q^{2}}+\ldots\right) \\
\quad+\frac{\mathrm{i} \pi^{d / 2}}{q^{2}\left(m^{2}\right)^{\epsilon}} \Gamma(\epsilon)\left(1+\frac{\epsilon}{1+\epsilon} \frac{m^{2}}{q^{2}}+\ldots\right) .
\end{gathered}
$$

The pole in ϵ in the contribution from Γ is of IR nature, while the pole in the contribution from γ is UV.

The pole in ϵ in the contribution from Γ is of IR nature, while the pole in the contribution from γ is UV .

$$
F_{\Gamma}\left(q^{2}, m^{2} ; 4\right) \sim \frac{\mathrm{i} \pi^{2}}{q^{2}}\left[\ln \left(\frac{-q^{2}}{m^{2}}\right)-\frac{m^{2}}{q^{2}}+\ldots\right] .
$$

Expansion by regions

For limits typical of Minkowski space space, the strategy of expansion by subgraphs is unknown.

Expansion by regions

For limits typical of Minkowski space space, the strategy of expansion by subgraphs is unknown.
Expansion by regions. [Beneke \& v.s.:98]

- Divide the space of the loop momenta into various regions and, in every region, expand the integrand in a Taylor series with respect to the parameters that are considered small there.
- Integrate the integrand, expanded in the appropriate way in every region, over the whole integration domain of the loop momenta.
- Set to zero any scaleless integral.

Consider the same example.
Two regions: $k \sim q$ and $k \sim m$.

Consider the same example.
Two regions: $k \sim q$ and $k \sim m$.
$k \sim q$:
$1 /(q-k)^{2}$ is not expanded, $1 /\left(k^{2}-m^{2}\right)^{2}$ is expanded in m.

Consider the same example.
Two regions: $k \sim q$ and $k \sim m$.
$k \sim q$:
$1 /(q-k)^{2}$ is not expanded, $1 /\left(k^{2}-m^{2}\right)^{2}$ is expanded in m.
$k \sim m:$
$1 /\left(k^{2}-m^{2}\right)^{2}$ is not expanded, $1 /(q-k)^{2}$ is expanded in k.

Consider the same example.
Two regions: $k \sim q$ and $k \sim m$.
$k \sim q$:
$1 /(q-k)^{2}$ is not expanded, $1 /\left(k^{2}-m^{2}\right)^{2}$ is expanded in m.
$k \sim m:$
$1 /\left(k^{2}-m^{2}\right)^{2}$ is not expanded, $1 /(q-k)^{2}$ is expanded in k.
the same contributions as within expansion by subgraphs

Consider the same example.
Two regions: $k \sim q$ and $k \sim m$.
$k \sim q$:
$1 /(q-k)^{2}$ is not expanded, $1 /\left(k^{2}-m^{2}\right)^{2}$ is expanded in m.
$k \sim m:$
$1 /\left(k^{2}-m^{2}\right)^{2}$ is not expanded, $1 /(q-k)^{2}$ is expanded in k.
the same contributions as within expansion by subgraphs
For limits typical of Euclidean space, where we have two scales, for example Q and q, there is a simple equivalence of the two strategies. (Consider the set of regions labelled by 1 PI subgraphs of the given graph.)

Regions typical for Sudakov limits. hard, collinear (i.e. almost parallel to two light-like four-vectors), ultrasoft.

Regions typical for Sudakov limits. hard, collinear (i.e. almost parallel to two light-like four-vectors), ultrasoft.
Regions typical for the threshold limit, $q^{2} \rightarrow 4 m^{2}$, with the expansion parameter, $y=m^{2}-q^{2} / 4$.

Regions typical for Sudakov limits. hard, collinear (i.e. almost parallel to two light-like four-vectors), ultrasoft.
Regions typical for the threshold limit, $q^{2} \rightarrow 4 m^{2}$, with the expansion parameter, $y=m^{2}-q^{2} / 4$. Choose the frame $q=\left(q_{0}, \overrightarrow{0}\right)$.

Regions typical for Sudakov limits.
hard, collinear (i.e. almost parallel to two light-like four-vectors), ultrasoft.
Regions typical for the threshold limit, $q^{2} \rightarrow 4 m^{2}$, with the expansion parameter, $y=m^{2}-q^{2} / 4$.
Choose the frame $q=\left(q_{0}, \overrightarrow{0}\right)$.
Consider the various regions where any loop momentum can be of one of the following four types:

$$
\begin{aligned}
\text { (hard), } & k_{0} \sim \sqrt{q^{2}}, \vec{k} \sim \sqrt{q^{2}}, \\
\text { (soft), } & k_{0} \sim \sqrt{y}, \vec{k} \sim \sqrt{y},
\end{aligned}
$$

(potential), $\quad k_{0} \sim y / \sqrt{q^{2}}, \vec{k} \sim \sqrt{y}$,
(ultrasoft), $\quad k_{0} \sim y / \sqrt{q^{2}}, \vec{k} \sim y / \sqrt{q^{2}}$.

Expansion by regions for parametric integrals

$$
\begin{aligned}
& F_{\Gamma}\left(q_{1}, \ldots, q_{n} ; d ; a_{1} \ldots, a_{L}\right)=\frac{\left(\mathrm{i} \pi^{d / 2}\right)^{h} \Gamma(a-h d / 2)}{\prod_{l} \Gamma\left(a_{l}\right)} \\
\times & \int_{0}^{\infty} \ldots \int_{0}^{\infty} \delta\left(\sum_{l=1}^{L} \alpha_{l}-1\right) \frac{\prod_{l} \alpha_{l}^{a_{l}-1} \mathcal{U}^{a-(h+1) d / 2}}{\left(-\mathcal{V}+\mathcal{U} \sum m_{l}^{2} \alpha_{l}\right)^{a-h d / 2}} \mathrm{~d} \alpha_{1} \ldots \mathrm{~d} \alpha_{L}
\end{aligned}
$$

where \mathcal{U} and \mathcal{V} are (Kirchhoff, Symanzik) polynomials determined by a given graph.

Expansion by regions for parametric integrals

$$
\begin{aligned}
& F_{\Gamma}\left(q_{1}, \ldots, q_{n} ; d ; a_{1} \ldots, a_{L}\right)=\frac{\left(\mathrm{i} \pi^{d / 2}\right)^{h} \Gamma(a-h d / 2)}{\prod_{l} \Gamma\left(a_{l}\right)} \\
\times & \int_{0}^{\infty} \ldots \int_{0}^{\infty} \delta\left(\sum_{l=1}^{L} \alpha_{l}-1\right) \frac{\prod_{l} \alpha_{l}^{a_{l}-1} \mathcal{U}^{a-(h+1) d / 2}}{\left(-\mathcal{V}+\mathcal{U} \sum m_{l}^{2} \alpha_{l}\right)^{a-h d / 2}} \mathrm{~d} \alpha_{1} \ldots \mathrm{~d} \alpha_{L}
\end{aligned}
$$

where \mathcal{U} and \mathcal{V} are (Kirchhoff, Symanzik) polynomials determined by a given graph.

Expansion by regions in alpha parameters
asy.m
a public code to reveal regions.
Input: propagators
Output: regions in the language of alpha parameters

Let
$P\left(x_{1}, \ldots, x_{n}, t\right)=\sum_{w_{1}, \ldots, w_{n}, w_{n+1}} c_{w_{1}, \ldots, w_{n}, w_{n+1}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$ be a polynomial with $c_{\text {... }}>0$.

Let
$P\left(x_{1}, \ldots, x_{n}, t\right)=\sum_{w_{1}, \ldots, w_{n}, w_{n+1}} c_{w_{1}, \ldots, w_{n}, w_{n+1}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$
be a polynomial with $c_{\ldots}>0$.
The Newton polytope of P is the convex hull of the points
$\left(w_{1}, \ldots, w_{n+1}\right)$ in \mathbb{R}^{n+1}.

Let
$P\left(x_{1}, \ldots, x_{n}, t\right)=\sum_{w_{1}, \ldots, w_{n}, w_{n+1}} c_{w_{1}, \ldots, w_{n}, w_{n+1}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$
be a polynomial with $c_{\text {... }}>0$.
The Newton polytope of P is the convex hull of the points
$\left(w_{1}, \ldots, w_{n+1}\right)$ in \mathbb{R}^{n+1}.
A facet of P is a face of maximal dimension, i.e. n.

Let
$P\left(x_{1}, \ldots, x_{n}, t\right)=\sum_{w_{1}, \ldots, w_{n}, w_{n+1}} c_{w_{1}, \ldots, w_{n}, w_{n+1}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$
be a polynomial with $c_{\text {... }}>0$.
The Newton polytope of P is the convex hull of the points
$\left(w_{1}, \ldots, w_{n+1}\right)$ in \mathbb{R}^{n+1}.
A facet of P is a face of maximal dimension, i.e. n.
Conjecture. Let

$$
F(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

where $t>0$, and $\lambda \in \mathbb{C}$ is such that the integral is absolutely convergent.

Then the asymptotic expansion of the function $F(t)$ in the limit $t \rightarrow+0$ is given by

$$
F(t) \sim \sum_{i} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[M_{i}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda}\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

Then the asymptotic expansion of the function $F(t)$ in the limit $t \rightarrow+0$ is given by
$F(t) \sim \sum_{i} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[M_{i}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda}\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$,
where the sum runs over facets of the Newton polytope of P, for which the normal vectors
$r_{i}=\left(r_{i, 1}, \ldots, r_{i, n}, r_{i, n+1}\right), i=1, \ldots, N$ oriented inside the polytope have $r_{i, n+1}>0$.

Then the asymptotic expansion of the function $F(t)$ in the limit $t \rightarrow+0$ is given by
$F(t) \sim \sum_{i} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[M_{i}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda}\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$,
where the sum runs over facets of the Newton polytope of P, for which the normal vectors
$r_{i}=\left(r_{i, 1}, \ldots, r_{i, n}, r_{i, n+1}\right), i=1, \ldots, N$ oriented inside the polytope have $r_{i, n+1}>0$.
Let us normalize these vectors by $r_{i, n+1}=1$.

Let

$$
P_{i}\left(x_{1}, \ldots, x_{n}, t, \rho\right)=P\left(\rho^{r_{i, 1}} x_{1}, \ldots, \rho^{r_{i, n}} x_{n}, \rho t\right)
$$

Let

$$
P_{i}\left(x_{1}, \ldots, x_{n}, t, \rho\right)=P\left(\rho^{r_{i, 1}} x_{1}, \ldots, \rho^{r_{i, n}} x_{n}, \rho t\right)
$$

so that

$$
P_{i}\left(x_{1}, \ldots, x_{n}, t, \rho\right)=\sum_{m=m_{i, 1}}^{m_{i, 2}} \rho^{m} Q_{i, m}\left(x_{1}, \ldots, x_{n}, t\right)
$$

where the sum runs over rational numbers from a certain set determined by P and its i-th facet.

$$
\begin{aligned}
& M_{i}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda}=\left.\rho^{m_{i, 1} \lambda} \mathcal{T}_{\rho}\left(\sum_{m=m_{i, 1}}^{m_{i, 2}} \rho^{m-m_{i, 1}} Q_{i, m}\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda}\right|_{\rho=1} \\
& =\left.\mathcal{T}_{\rho}\left(Q_{i, m_{i, 1}}\left(x_{1}, \ldots, x_{n}, t\right)+\sum_{m=m_{i, 1}+1}^{m_{i, 2}} \rho^{m-m_{i, 1}} Q_{i, m}\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda}\right|_{\rho=1} \\
& =\left(Q_{i, m_{i, 1}}\left(x_{1}, \ldots, x_{n}, t\right)\right)^{\lambda}+\ldots
\end{aligned}
$$

where the operator \mathcal{T}_{ρ} performs an asymptotic expansion in powers of ρ at $\rho=0$.

Example. Let us expand

$$
F(t)=\int_{0}^{\infty} \frac{\mathrm{d} x}{P(x, t)},
$$

with $P(x, t)=t^{3}+t x+x^{2}+x^{3}$, in the limit $t \rightarrow+0$.

Example. Let us expand

$$
F(t)=\int_{0}^{\infty} \frac{\mathrm{d} x}{P(x, t)},
$$

with $P(x, t)=t^{3}+t x+x^{2}+x^{3}$, in the limit $t \rightarrow+0$. Introduce a regularization:

$$
F(t, \lambda)=\int_{0}^{\infty} \frac{\mathrm{d} x}{P(x, t)^{1+\lambda}} .
$$

The Newton polytope of P

The Newton polytope of P

Normal vectors for the three facets contributing to the expansion:
$r_{1}=(2,1), r_{2}=(1,1), r_{3}=(0,1)$

Facet 1. $x \rightarrow \rho^{2} x, t \rightarrow \rho t$.
$P(x, t) \rightarrow \rho^{3} t^{3}+\rho^{3} t x+\rho^{4} x^{2}+\rho^{6} x^{3}=\rho^{3}\left(t^{3}+t x+\rho x^{2}+\rho^{3} x^{3}\right)$
LO:

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(t^{3}+t x\right)^{1+\lambda}}=\frac{1}{\lambda} \frac{1}{t^{1+3 \lambda}}
$$

Facet 1. $x \rightarrow \rho^{2} x, t \rightarrow \rho t$.
$P(x, t) \rightarrow \rho^{3} t^{3}+\rho^{3} t x+\rho^{4} x^{2}+\rho^{6} x^{3}=\rho^{3}\left(t^{3}+t x+\rho x^{2}+\rho^{3} x^{3}\right)$
LO:

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(t^{3}+t x\right)^{1+\lambda}}=\frac{1}{\lambda} \frac{1}{t^{1+3 \lambda}}
$$

Facet 2. $x \rightarrow \rho x, t \rightarrow \rho t$.
$P(x, t) \rightarrow \rho^{3} t^{3}+\rho^{2} t x+\rho^{2} x^{2}+\rho^{3} x^{3}=\rho^{2}\left(t x+x^{2}+\ldots\right)$
LO:

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(t x+x^{2}\right)^{1+\lambda}}=\frac{\Gamma(-\lambda) \Gamma(1+2 \lambda)}{\Gamma(1+\lambda)} \frac{1}{t^{1+2 \lambda}}
$$

Facet 3. $t \rightarrow \rho t$. Just an expansion in t. LO:

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+x^{3}\right)^{1+\lambda}}=\ldots=O\left(t^{0}\right)
$$

Facet 3. $t \rightarrow \rho t$. Just an expansion in t. LO:

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+x^{3}\right)^{1+\lambda}}=\ldots=O\left(t^{0}\right)
$$

The result in LO

$$
F(t)=\int_{0}^{\infty} \frac{\mathrm{d} x}{P(x, t)} \sim-\frac{\ln t}{t}+O(\ln t)
$$

Normal vectors of the faces \leftrightarrow regions

Let $r=\left(r_{1}, \ldots, r_{n}\right)$.
Perform the scaling $x_{j} \rightarrow \rho^{r_{j}} x_{j}, i=1, \ldots, n$ and $t \rightarrow \rho t$ Then
$c x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}} \rightarrow c\left(\rho^{r_{1}} x_{1}\right)^{w_{1}} \ldots\left(\rho^{r_{n}} x_{n}\right)^{w_{n}}(\rho t)^{w_{n+1}}$
$=c \rho^{r_{1} w_{1}+\ldots+r_{n} w_{n}+w_{n+1}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$
$=c \rho^{\vec{r} \vec{w}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$

Normal vectors of the faces \leftrightarrow regions
Let $r=\left(r_{1}, \ldots, r_{n}\right)$.
Perform the scaling $x_{j} \rightarrow \rho^{r_{j}} x_{j}, i=1, \ldots, n$ and $t \rightarrow \rho t$ Then
$c x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}} \rightarrow c\left(\rho^{r_{1}} x_{1}\right)^{w_{1}} \ldots\left(\rho^{r_{n}} x_{n}\right)^{w_{n}}(\rho t)^{w_{n+1}}$
$=c \rho^{r_{1} w_{1}+\ldots+r_{n} w_{n}+w_{n+1}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$
$=c \rho^{\vec{r} \vec{w}} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}$
Keeping the minimal power of ρ in the polynomial reduced to taking terms corresponding to a face of the Newton polytope (to which r is normal).
If for a given r we obtain a face of dimension $<n$ then the corresponding contribution is a zero scaleless integral.

Example.

$$
F(t)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{P\left(x_{1}, x_{2}, t\right)}
$$

with $P\left(x_{1}, x_{2}, t\right)=\left(x_{1}+t\right)\left(x_{2}+t\right)\left(x_{1}+x_{2}+1\right)$, in the limit $t \rightarrow+0$.

Example.

$$
F(t)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{P\left(x_{1}, x_{2}, t\right)},
$$

with $P\left(x_{1}, x_{2}, t\right)=\left(x_{1}+t\right)\left(x_{2}+t\right)\left(x_{1}+x_{2}+1\right)$, in the limit $t \rightarrow+0$.
Introduce a regularization:

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{P\left(x_{1}, x_{2}, t\right)^{1+\lambda}}
$$

Example.

$$
F(t)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{P\left(x_{1}, x_{2}, t\right)},
$$

with $P\left(x_{1}, x_{2}, t\right)=\left(x_{1}+t\right)\left(x_{2}+t\right)\left(x_{1}+x_{2}+1\right)$, in the limit $t \rightarrow+0$.
Introduce a regularization:

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{P\left(x_{1}, x_{2}, t\right)^{1+\lambda}}
$$

asy. $m \rightarrow$ four regions $(0,0,1),(0,1,1),(1,0,1),(1,1,1)$.
$(0,0,1)$

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1} x_{2}\left(x_{1}+x_{2}+1\right)\right)^{1+\lambda}}=\frac{\Gamma(-\lambda)^{2} \Gamma(1+3 \lambda)}{\Gamma(1+\lambda)}
$$

$(0,0,1)$

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1} x_{2}\left(x_{1}+x_{2}+1\right)\right)^{1+\lambda}}=\frac{\Gamma(-\lambda)^{2} \Gamma(1+3 \lambda)}{\Gamma(1+\lambda)}
$$

$(0,1,1) ; x_{2} \rightarrow \rho x_{2}, t \rightarrow \rho t$
$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1}\left(x_{2}+t\right)\left(x_{1}+1\right)\right)^{1+\lambda}}=\frac{\Gamma(-\lambda) \Gamma(1+2 \lambda)}{\lambda \Gamma(1+\lambda)} t^{-\lambda}$
$(0,0,1)$

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1} x_{2}\left(x_{1}+x_{2}+1\right)\right)^{1+\lambda}}=\frac{\Gamma(-\lambda)^{2} \Gamma(1+3 \lambda)}{\Gamma(1+\lambda)}
$$

$(0,1,1) ; x_{2} \rightarrow \rho x_{2}, t \rightarrow \rho t$
$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1}\left(x_{2}+t\right)\left(x_{1}+1\right)\right)^{1+\lambda}}=\frac{\Gamma(-\lambda) \Gamma(1+2 \lambda)}{\lambda \Gamma(1+\lambda)} t^{-\lambda}$
$(1,0,1)=(0,1,1)$
$(0,0,1)$

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1} x_{2}\left(x_{1}+x_{2}+1\right)\right)^{1+\lambda}}=\frac{\Gamma(-\lambda)^{2} \Gamma(1+3 \lambda)}{\Gamma(1+\lambda)}
$$

$(0,1,1) ; x_{2} \rightarrow \rho x_{2}, t \rightarrow \rho t$
$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1}\left(x_{2}+t\right)\left(x_{1}+1\right)\right)^{1+\lambda}}=\frac{\Gamma(-\lambda) \Gamma(1+2 \lambda)}{\lambda \Gamma(1+\lambda)} t^{-\lambda}$
$(1,0,1)=(0,1,1)$
$(1,1,1) ; x_{1} \rightarrow \rho x_{1}, x_{2} \rightarrow \rho x_{2}, t \rightarrow \rho t$

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(\left(x_{1}+t\right)\left(x_{2}+t\right)\right)^{1+\lambda}}=\frac{1}{\lambda^{2}} t^{-2 \lambda}
$$

Summing up the four LO contributions \rightarrow

$$
F(t) \sim \ln ^{2} t+\frac{\pi^{2}}{6}+O(t)
$$

Summing up the four LO contributions \rightarrow

$$
F(t) \sim \ln ^{2} t+\frac{\pi^{2}}{6}+O(t)
$$

in agreement with the explicit result

$$
F(t)=-\frac{1}{1-2 t}\left(2 \mathrm{Li}_{2}(t)+2 \ln t \ln (1-t)-\ln ^{2} t-\frac{\pi^{2}}{6}\right)
$$

Back to Feynman integrals:

$$
F_{\Gamma}\left(q^{2}, m^{2} ; d\right)=\int \frac{\mathbf{d}^{d} k}{\left(k^{2}-m^{2}\right)\left[(q-k)^{2}-m^{2}\right]}
$$

in the large-momentum limit so that the corresponding scaling is $m^{2} \rightarrow \rho m^{2}$.

Back to Feynman integrals:

$$
F_{\Gamma}\left(q^{2}, m^{2} ; d\right)=\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)\left[(q-k)^{2}-m^{2}\right]}
$$

in the large-momentum limit so that the corresponding
scaling is $m^{2} \rightarrow \rho m^{2}$.
We have $\mathcal{U}=x_{1}+x_{2}$,
$\mathcal{W}=-\mathcal{V}+m^{2}\left(x_{1}+x_{2}\right) \mathcal{U} \rightarrow \rho m^{2} x_{1}^{2}+\rho m^{2} x_{2}^{2}+\left(2 \rho m^{2}-q^{2}\right) x_{1} x_{2}$

To reveal relevant regions we consider the product of the two functions $\mathcal{U W}$.

To reveal relevant regions we consider the product of the two functions $\mathcal{U W}$.
The weights of the polynomials:

Revealing potential and Glauber regions

$$
F\left(q^{2}, y ; d\right)=\int \frac{\mathbf{d}^{d} k}{\left(k^{2}+q \cdot k-y\right)\left(k^{2}-q \cdot k-y\right)},
$$

in the threshold limit $y=m^{2}-q^{2} / 4 \rightarrow 0$

Revealing potential and Glauber regions

$$
F\left(q^{2}, y ; d\right)=\int \frac{\mathbf{d}^{d} k}{\left(k^{2}+q \cdot k-y\right)\left(k^{2}-q \cdot k-y\right)},
$$

in the threshold limit $y=m^{2}-q^{2} / 4 \rightarrow 0$
asy.m reported only about the hard region $k \sim q$.

$$
\begin{aligned}
F\left(q^{2}, y\right) & =\mathrm{i} \pi^{d / 2} \Gamma(\epsilon) \\
& \times \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\alpha_{1}+\alpha_{2}\right)^{2 \epsilon-2} \delta\left(\alpha_{1}+\alpha_{2}-1\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left[\frac{q^{2}}{4}\left(\alpha_{1}-\alpha_{2}\right)^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}-\mathrm{i} 0\right]^{\epsilon}}
\end{aligned}
$$

The domain where $\alpha_{1} \approx \alpha_{2}$ causes problems.

$$
\begin{aligned}
F\left(q^{2}, y\right) & =\mathrm{i} \pi^{d / 2} \Gamma(\epsilon) \\
& \times \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\alpha_{1}+\alpha_{2}\right)^{2 \epsilon-2} \delta\left(\alpha_{1}+\alpha_{2}-1\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left[\frac{q^{2}}{4}\left(\alpha_{1}-\alpha_{2}\right)^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}-\mathrm{i} 0\right]^{\epsilon}}
\end{aligned}
$$

The domain where $\alpha_{1} \approx \alpha_{2}$ causes problems.
Decompose the integration domain into $\alpha_{1} \leq \alpha_{2}$ and $\alpha_{2} \leq \alpha_{1}$, with equal contributions. Turn to new variables by
$\alpha_{1}=\alpha_{1}^{\prime} / 2, \alpha_{2}=\alpha_{2}^{\prime}+\alpha_{1}^{\prime} / 2$,

$$
\mathrm{i} \pi^{d / 2} \frac{\Gamma(\epsilon)}{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\alpha_{1}+\alpha_{2}\right)^{2 \epsilon-2} \delta\left(\alpha_{1}+\alpha_{2}-1\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left[\frac{q^{2}}{4} \alpha_{2}^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}-\mathrm{i} 0\right]^{\epsilon}}
$$

The goal of this trick is to make the line $\alpha_{1}=\alpha_{2}$ (in the old variables) the border of an integration domain which turned out to be (in the new variables) $\alpha_{2}=0$.

The goal of this trick is to make the line $\alpha_{1}=\alpha_{2}$ (in the old variables) the border of an integration domain which turned out to be (in the new variables) $\alpha_{2}=0$. asy.m: two regions $(0,0)$ and ($0,1 / 2$) (hard and potential).

The goal of this trick is to make the line $\alpha_{1}=\alpha_{2}$ (in the old variables) the border of an integration domain which turned out to be (in the new variables) $\alpha_{2}=0$. asy.m: two regions $(0,0)$ and ($0,1 / 2$) (hard and potential). The potential contribution is non-zero only in the leading order

$$
\mathrm{i} \pi^{d / 2} \frac{\Gamma(\epsilon)}{2} \int_{0}^{\infty} \frac{\mathrm{d} \alpha_{2}}{\left(\frac{q^{2}}{4} \alpha_{2}^{2}+y\right)^{\epsilon}},
$$

The goal of this trick is to make the line $\alpha_{1}=\alpha_{2}$ (in the old variables) the border of an integration domain which turned out to be (in the new variables) $\alpha_{2}=0$. asy.m: two regions $(0,0)$ and ($0,1 / 2$) (hard and potential). The potential contribution is non-zero only in the leading order

$$
\mathrm{i} \pi^{d / 2} \frac{\Gamma(\epsilon)}{2} \int_{0}^{\infty} \frac{\mathrm{d} \alpha_{2}}{\left(\frac{q^{2}}{4} \alpha_{2}^{2}+y\right)^{\epsilon}},
$$

with the result

$$
\mathrm{i} \pi^{d / 2} \Gamma(\epsilon-1 / 2) \sqrt{\frac{\pi y}{q^{2}}} y^{-\epsilon},
$$

The goal of this trick is to make the line $\alpha_{1}=\alpha_{2}$ (in the old variables) the border of an integration domain which turned out to be (in the new variables) $\alpha_{2}=0$. asy.m: two regions $(0,0)$ and ($0,1 / 2$) (hard and potential). The potential contribution is non-zero only in the leading order

$$
\mathrm{i} \pi^{d / 2} \frac{\Gamma(\epsilon)}{2} \int_{0}^{\infty} \frac{\mathrm{d} \alpha_{2}}{\left(\frac{q^{2}}{4} \alpha_{2}^{2}+y\right)^{\epsilon}},
$$

with the result

$$
\mathrm{i} \pi^{d / 2} \Gamma(\epsilon-1 / 2) \sqrt{\frac{\pi y}{q^{2}}} y^{-\epsilon},
$$

asy2.m
[Jantzen, A. Smirnov \& VS'2012]

Such a trick was already used in the algorithm of FIESTA

[A. Smirnov \& Tentyukov'2008, A.S., V.S. \& Tentyukov'2010]

Such a trick was already used in the algorithm of FIESTA
[A. Smirnov \& Tentyukov'2008, A.S., V.S. \& Tentyukov'2010]
The preresolution algorithm implemented in asy2.m tries to eliminate factorized combinations of terms in the function \mathcal{W} which potentially cancel each other, like $\left(\alpha_{1}-\alpha_{2}\right)^{2}$ in the example above.

Such a trick was already used in the algorithm of FIESTA
[A. Smirnov \& Tentyukov'2008, A.S., V.S. \& Tentyukov'2010]
The preresolution algorithm implemented in asy2.m tries to eliminate factorized combinations of terms in the function \mathcal{W} which potentially cancel each other, like $\left(\alpha_{1}-\alpha_{2}\right)^{2}$ in the example above.
It checks all pairs of variables (say, x and y) which are part of monomials with opposite sign. For all those pairs the code tries to build a linear combination z of x and y such that in the variables x and z or y and z this monomial disappears.

Such a trick was already used in the algorithm of FIESTA
[A. Smirnov \& Tentyukov'2008, A.S., V.S. \& Tentyukov'2010]
The preresolution algorithm implemented in asy $2 . \mathrm{m}$ tries to eliminate factorized combinations of terms in the function \mathcal{W} which potentially cancel each other, like $\left(\alpha_{1}-\alpha_{2}\right)^{2}$ in the example above.
It checks all pairs of variables (say, x and y) which are part of monomials with opposite sign. For all those pairs the code tries to build a linear combination z of x and y such that in the variables x and z or y and z this monomial disappears.
The code checks whether in the new variables the number of monomials with opposite sign decreases. For all such pairs the code recursively repeats the initial procedure in the new variables.

in the simplified kinematics $p_{1}=p_{2}=p$ and $q_{1}=q_{2}=q$ with $p^{2}=q^{2}=0$ and $(p+q)^{2}=2 p \cdot q=Q^{2}$ in the limit $m^{2} / Q^{2} \rightarrow 0$:

in the simplified kinematics $p_{1}=p_{2}=p$ and $q_{1}=q_{2}=q$ with $p^{2}=q^{2}=0$ and $(p+q)^{2}=2 p \cdot q=Q^{2}$ in the limit $m^{2} / Q^{2} \rightarrow 0$:

$$
\begin{aligned}
F\left(Q^{2}, m^{2}\right) & =\int \frac{\mathbf{d}^{d} k}{\left(k^{2}-m^{2}\right)\left(k^{2}-2 p \cdot k\right)\left(k^{2}+2 p \cdot k\right)} \\
& \times \frac{1}{\left(k^{2}-2 q \cdot k\right)\left(k^{2}+2 q \cdot k\right)} .
\end{aligned}
$$

[Jantzen'2011]

- a hard region where $k \sim Q$,

2 a 1-collinear region where $k^{2} \sim p \cdot k \sim m^{2}$ and $q \cdot k \sim Q^{2}$,

- a 2-collinear region where $k^{2} \sim q \cdot k \sim m^{2}$ and $p \cdot k \sim Q^{2}$,
- a Glauber region where $p \cdot k \sim q \cdot k \sim m^{2}$, and the components of k perpendicular to the plane spanned by p, q scale as $k_{\perp} \sim m$.

[Jantzen'2011]

- a hard region where $k \sim Q$,
- a 1-collinear region where $k^{2} \sim p \cdot k \sim m^{2}$ and $q \cdot k \sim Q^{2}$,
- a 2-collinear region where $k^{2} \sim q \cdot k \sim m^{2}$ and $p \cdot k \sim Q^{2}$,
- a Glauber region where $p \cdot k \sim q \cdot k \sim m^{2}$, and the components of k perpendicular to the plane spanned by p, q scale as $k_{\perp} \sim m$.

The Glauber region: LO $\left(m^{2}\right)^{-2-\epsilon}$
The collinear contributions: $\left(m^{2}\right)^{-1-\epsilon}$
The hard contribution: $\left(m^{2}\right)^{0}$

$$
\begin{aligned}
& F\left(Q^{2}, m^{2}\right)=-\mathrm{i} \pi^{d / 2} \Gamma(3+\epsilon) \int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathrm{d} \alpha_{1} \cdots \mathrm{~d} \alpha_{5} \\
& \quad \times \frac{\delta\left(\sum_{i} \alpha_{i}-1\right)\left(\alpha_{1}+\ldots+\alpha_{5}\right)^{1+2 \epsilon}}{\left[\alpha_{1}\left(\alpha_{1}+\ldots+\alpha_{5}\right) m^{2}+\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{4}-\alpha_{5}\right) Q^{2}-\mathrm{i} 0\right]^{3+\epsilon}} .
\end{aligned}
$$

$$
\begin{aligned}
& F\left(Q^{2}, m^{2}\right)=-\mathrm{i} \pi^{d / 2} \Gamma(3+\epsilon) \int_{0}^{\infty} \ldots \int_{0}^{\infty} \mathrm{d} \alpha_{1} \cdots \mathrm{~d} \alpha_{5} \\
& \qquad \times \frac{\delta\left(\sum_{i} \alpha_{i}-1\right)\left(\alpha_{1}+\ldots+\alpha_{5}\right)^{1+2 \epsilon}}{\left[\alpha_{1}\left(\alpha_{1}+\ldots+\alpha_{5}\right) m^{2}+\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{4}-\alpha_{5}\right) Q^{2}-\mathrm{i} 0\right]^{3+\epsilon}} . \\
& \text { asy.m: }(0,0,0,0,0),(0,0,0,1,1) \text { and }(0,1,1,0,0) \\
& \text { (hard and two collinear regions) }
\end{aligned}
$$

$$
\begin{aligned}
& \qquad F\left(Q^{2}, m^{2}\right)=-\mathrm{i} \pi^{d / 2} \Gamma(3+\epsilon) \int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathrm{d} \alpha_{1} \cdots \mathrm{~d} \alpha_{5} \\
& \quad \times \frac{\delta\left(\sum_{i} \alpha_{i}-1\right)\left(\alpha_{1}+\ldots+\alpha_{5}\right)^{1+2 \epsilon}}{\left[\alpha_{1}\left(\alpha_{1}+\ldots+\alpha_{5}\right) m^{2}+\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{4}-\alpha_{5}\right) Q^{2}-\mathrm{i} 0\right]^{3+\epsilon}} \\
& \text { asy } \cdot \mathrm{m}:(0,0,0,0,0),(0,0,0,1,1) \text { and }(0,1,1,0,0) \\
& \text { (hard and two collinear regions) }
\end{aligned}
$$

the domain $\left(\alpha_{2}-\alpha_{3}\right) \sim\left(m^{2}\right)^{1}$ or $\left(\alpha_{4}-\alpha_{5}\right) \sim\left(m^{2}\right)^{1}$ is responsible for the Glauber contribution

$$
\begin{aligned}
& F\left(Q^{2}, m^{2}\right)=-\mathrm{i} \pi^{d / 2} \Gamma(3+\epsilon) \int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathrm{d} \alpha_{1} \cdots \mathrm{~d} \alpha_{5} \\
& \qquad \frac{\delta\left(\sum_{i} \alpha_{i}-1\right)\left(\alpha_{1}+\ldots+\alpha_{5}\right)^{1+2 \epsilon}}{\left[\alpha_{1}\left(\alpha_{1}+\ldots+\alpha_{5}\right) m^{2}+\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{4}-\alpha_{5}\right) Q^{2}-\mathrm{i} 0\right]^{3+\epsilon}} \\
& \text { asy.m: }(0,0,0,0,0),(0,0,0,1,1) \text { and }(0,1,1,0,0) \\
& \text { (hard and two collinear regions) }
\end{aligned}
$$

the domain $\left(\alpha_{2}-\alpha_{3}\right) \sim\left(m^{2}\right)^{1}$ or $\left(\alpha_{4}-\alpha_{5}\right) \sim\left(m^{2}\right)^{1}$ is responsible for the Glauber contribution
decompose the integral into four parts corresponding to the domains where $\left(\alpha_{2}-\alpha_{3}\right)$ and $\left(\alpha_{4}-\alpha_{5}\right)$ are either positive or negative and then introduce new variables in such a way that this product takes the form $\pm \alpha_{2}^{\prime} \alpha_{4}^{\prime}$.

For example, in the domain $\alpha_{2} \leq \alpha_{3}, \alpha_{5} \leq \alpha_{4}$ change the variables by $\alpha_{2}=\alpha_{3}^{\prime} / 2, \alpha_{3}=\alpha_{2}^{\prime}+\alpha_{3}^{\prime} / 2$ and by $\alpha_{4}=\alpha_{4}^{\prime}+\alpha_{5}^{\prime} / 2, \alpha_{5}=\alpha_{5}^{\prime} / 2$

For example, in the domain $\alpha_{2} \leq \alpha_{3}, \alpha_{5} \leq \alpha_{4}$ change the variables by $\alpha_{2}=\alpha_{3}^{\prime} / 2, \alpha_{3}=\alpha_{2}^{\prime}+\alpha_{3}^{\prime} / 2$ and by $\alpha_{4}=\alpha_{4}^{\prime}+\alpha_{5}^{\prime} / 2, \alpha_{5}=\alpha_{5}^{\prime} / 2$

$$
F\left(Q^{2}, m^{2}\right)=2\left(I_{+}+I_{-}\right)
$$

$$
\begin{aligned}
I_{ \pm} & =-\mathrm{i} \pi^{d / 2} \frac{\Gamma(3+\epsilon)}{4} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathrm{d} \alpha_{1} \cdots \mathrm{~d} \alpha_{5} \\
& \times \frac{\delta\left(\alpha_{1}-1\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right)^{1+2 \epsilon}}{\left[\alpha_{1}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right) m^{2} \pm \alpha_{2} \alpha_{4} Q^{2}-\mathrm{i} 0\right]^{3+\epsilon}}
\end{aligned}
$$

The code asy 2 .m applied to I_{+}reveals three regions: $(0,0,0,0,0),(0,1,0,0,0)$ and ($0,0,0,1,0$).

The code asy $2 . \mathrm{m}$ applied to I_{+}reveals three regions: $(0,0,0,0,0),(0,1,0,0,0)$ and ($0,0,0,1,0$).
The LO contribution of the second and third regions leads to the following LO asymptotics of $F\left(Q^{2}, m^{2}\right)$:

$$
-i \pi^{d / 2} \frac{i \pi \Gamma(\epsilon)}{2 Q^{2}\left(m^{2}\right)^{2+\epsilon}} .
$$

This agrees with the leading contribution of the Glauber region in the momentum-space expansion.

The code asy 2 . m applied to I_{+}reveals three regions: $(0,0,0,0,0),(0,1,0,0,0)$ and ($0,0,0,1,0$).
The LO contribution of the second and third regions leads to the following LO asymptotics of $F\left(Q^{2}, m^{2}\right)$:

$$
-i \pi^{d / 2} \frac{i \pi \Gamma(\epsilon)}{2 Q^{2}\left(m^{2}\right)^{2+\epsilon}} .
$$

This agrees with the leading contribution of the Glauber region in the momentum-space expansion.
When revealing Glauber regions the preresolution algorithm of asy $2 . \mathrm{m}$ tries to eliminate monomials with opposite sign by automatically separating the integration into domains and performing changes of variables.

Conclusion

- The new code asy.m reveals potential and Glauber regions.

Conclusion

- The new code asy.m reveals potential and Glauber regions.
- It can happen that more exotic regions will need special treatment.

Conclusion

- The new code asy.m reveals potential and Glauber regions.
- It can happen that more exotic regions will need special treatment.
- The new code asy.m can be applied to general parametric integrals with polynomial raised to some powers. For example, to parametrical integrals for Wilson loops [Del Duca, Duhr \& VS'11]

Conclusion

- The new code asy.m reveals potential and Glauber regions.
- It can happen that more exotic regions will need special treatment.
- The new code asy.m can be applied to general parametric integrals with polynomial raised to some powers. For example, to parametrical integrals for Wilson loops [Del Duca, Duhr \& VS'11]
- The mathematical status is unclear. To prove expansion by regions is an interesting mathematical problem.

