Reduction to Master Integrals

Reduction to Master Integrals

- IBP (integration by parts)

Reduction to Master Integrals

- IBP (integration by parts)
- Solving IBP relations by hand: simple one-loop examples

Reduction to Master Integrals

- IBP (integration by parts)
- Solving IBP relations by hand: simple one-loop examples
- Laporta algorithm and its implementations

Reduction to Master Integrals

- IBP (integration by parts)
- Solving IBP relations by hand: simple one-loop examples
- Laporta algorithm and its implementations
- Some other approaches to solve IBP relations

Evaluating a family of Feynman integrals associated with a given graph with general integer powers of the propagators (indices)

$$
\begin{aligned}
& F_{\Gamma}\left(q_{1}, \ldots, q_{n} ; d ; a_{1}, \ldots, a_{L}\right) \\
& \quad=\int \ldots \int I\left(q_{1}, \ldots, q_{n} ; k_{1}, \ldots, k_{h} ; a_{1}, \ldots, a_{L}\right) \mathbf{d}^{d} k_{1} \mathbf{d}^{d} k_{2} \ldots \mathbf{d}^{d} k_{h} \\
& I\left(q_{1}, \ldots, q_{n} ; k_{1}, \ldots, k_{h} ; a_{1}, \ldots, a_{L}\right)=\frac{1}{\left(p_{1}^{2}-m_{1}^{2}\right)^{a_{1}}\left(p_{2}^{2}-m_{2}^{2}\right)^{a_{2}} \ldots}
\end{aligned}
$$

An old straightforward analytical strategy:
to evaluate, by some methods, every scalar Feynman integral generated by the given graph.

The standard modern strategy:
to derive, without calculation, and then apply IBP identities between the given family of Feynman integrals as recurrence relations.

The standard modern strategy:
to derive, without calculation, and then apply IBP identities between the given family of Feynman integrals as recurrence relations.
Any integral of the given family is expressed as a linear combination of some basic (master) integrals.

The standard modern strategy:
to derive, without calculation, and then apply IBP identities between the given family of Feynman integrals as recurrence relations.
Any integral of the given family is expressed as a linear combination of some basic (master) integrals.
The whole problem of evaluation \rightarrow

- constructing a reduction procedure
- evaluating master integrals

Integral calculus:

$$
\int_{a}^{b} u v^{\prime} \mathrm{d} x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u^{\prime} v \mathrm{~d} x
$$

Integral calculus:

$$
\int_{a}^{b} u v^{\prime} \mathrm{d} x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u^{\prime} v \mathrm{~d} x
$$

Feynman integral calculus:
Use IBP and neglect surface terms
[Chetyrkin \& Tkachov'81]

$$
\begin{array}{r}
\int \ldots \int\left[\left(q_{i} \cdot \frac{\partial}{\partial k_{j}}\right) \frac{1}{\left(p_{1}^{2}-m_{1}^{2}\right)^{a_{1}}\left(p_{2}^{2}-m_{2}^{2}\right)^{a_{2}} \ldots}\right] \mathbf{d}^{d} k_{1} \mathbf{d}^{d} k_{2} \ldots=0 \\
\int \ldots \int\left[\frac{\partial}{\partial k_{j}} \cdot k_{i} \frac{1}{\left(p_{1}^{2}-m_{1}^{2}\right)^{a_{1}}\left(p_{2}^{2}-m_{2}^{2}\right)^{a_{2}} \ldots}\right] \mathbf{d}^{d} k_{1} \mathbf{d}^{d} k_{2} \ldots=0
\end{array}
$$

An example

$$
F(a)=\int \frac{\mathbf{d}^{d} k}{\left(k^{2}-m^{2}\right)^{a}}
$$

$F(a)$ for integer $a \leq 0$. We need $F(a)$ for positive integer a.

An example

$$
F(a)=\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{a}}
$$

$F(a)$ for integer $a \leq 0$. We need $F(a)$ for positive integer a. Apply IBP

$$
\int \mathbf{d}^{d} k \frac{\partial}{\partial k} \cdot\left(k \frac{1}{\left(k^{2}-m^{2}\right)^{a}}\right)=0
$$

An example

$$
F(a)=\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{a}}
$$

$F(a)$ for integer $a \leq 0$. We need $F(a)$ for positive integer a. Apply IBP

$$
\int \mathbf{d}^{d} k \frac{\partial}{\partial k} \cdot\left(k \frac{1}{\left(k^{2}-m^{2}\right)^{a}}\right)=0
$$

Taking derivatives:

$$
\frac{\partial}{\partial k} \cdot k=\frac{\partial}{\partial k_{\mu}} \cdot k_{\mu}=d
$$

$$
\begin{aligned}
k \cdot \frac{\partial}{\partial k} \frac{1}{\left(k^{2}-m^{2}\right)^{a}} & =-a \frac{2 k^{2}}{\left(k^{2}-m^{2}\right)^{a+1}} \\
& =-2 a\left[\frac{1}{\left(k^{2}-m^{2}\right)^{a}}+\frac{m^{2}}{\left(k^{2}-m^{2}\right)^{a+1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
k \cdot \frac{\partial}{\partial k} \frac{1}{\left(k^{2}-m^{2}\right)^{a}} & =-a \frac{2 k^{2}}{\left(k^{2}-m^{2}\right)^{a+1}} \\
& =-2 a\left[\frac{1}{\left(k^{2}-m^{2}\right)^{a}}+\frac{m^{2}}{\left(k^{2}-m^{2}\right)^{a+1}}\right]
\end{aligned}
$$

IBP relation

$$
(d-2 a) F(a)-2 a m^{2} F(a+1)=0
$$

$$
\begin{aligned}
k \cdot \frac{\partial}{\partial k} \frac{1}{\left(k^{2}-m^{2}\right)^{a}} & =-a \frac{2 k^{2}}{\left(k^{2}-m^{2}\right)^{a+1}} \\
& =-2 a\left[\frac{1}{\left(k^{2}-m^{2}\right)^{a}}+\frac{m^{2}}{\left(k^{2}-m^{2}\right)^{a+1}}\right]
\end{aligned}
$$

IBP relation

$$
(d-2 a) F(a)-2 a m^{2} F(a+1)=0
$$

Its solution

$$
F(a)=\frac{d-2 a+2}{2(a-1) m^{2}} F(a-1)
$$

Feynman integrals with integer $a>1$ can be expressed recursively in terms of one integral $F(1) \equiv I_{1}$ (master integral).

Feynman integrals with integer $a>1$ can be expressed recursively in terms of one integral $F(1) \equiv I_{1}$ (master integral).

Explicitly,

$$
F(a)=\frac{(-1)^{a}(1-d / 2)_{a-1}}{(a-1)!\left(m^{2}\right)^{a-1}} I_{1},
$$

where $(x)_{a}$ is the Pochhammer symbol

One more example

One more example

$$
F_{\Gamma}\left(a_{1}, a_{2}\right)=\int \frac{\mathrm{d}^{d} k}{\left(m^{2}-k^{2}\right)^{a_{1}}\left(-(q-k)^{2}\right)^{a_{2}}}
$$

Apply IBP

$$
\begin{aligned}
& \int \frac{\partial}{\partial k} \cdot k\left(\frac{1}{\left(m^{2}-k^{2}\right)^{a_{1}}\left(-(q-k)^{2}\right)^{a_{2}}}\right) \mathbf{d}^{d} k=0, \\
& \int q \cdot \frac{\partial}{\partial k}\left(\frac{1}{\left(m^{2}-k^{2}\right)^{a_{1}}\left(-(q-k)^{2}\right)^{a_{2}}}\right) \mathbf{d}^{d} k=0,
\end{aligned}
$$

One more example

$$
F_{\Gamma}\left(a_{1}, a_{2}\right)=\int \frac{\mathrm{d}^{d} k}{\left(m^{2}-k^{2}\right)^{a_{1}}\left(-(q-k)^{2}\right)^{a_{2}}}
$$

Apply IBP

$$
\begin{aligned}
& \int \frac{\partial}{\partial k} \cdot k\left(\frac{1}{\left(m^{2}-k^{2}\right)^{a_{1}}\left(-(q-k)^{2}\right)^{a_{2}}}\right) \mathbf{d}^{d} k=0, \\
& \int q \cdot \frac{\partial}{\partial k}\left(\frac{1}{\left(m^{2}-k^{2}\right)^{a_{1}}\left(-(q-k)^{2}\right)^{a_{2}}}\right) \mathbf{d}^{d} k=0,
\end{aligned}
$$

use $2 k \cdot(k-q) \rightarrow(k-q)^{2}+\left(k^{2}-m^{2}\right)-q^{2}+m^{2}$ to obtain

$$
\begin{array}{r}
d-2 a_{1}-a_{2}-2 m^{2} a_{1} \mathbf{1}^{+}-a_{2} \mathbf{2}^{+}\left(\mathbf{1}^{-}-q^{2}+m^{2}\right)=0 \quad \text { (A) } \\
a_{2}-a_{1}-a_{1} \mathbf{1}^{+}\left(q^{2}+m^{2}-\mathbf{2}^{-}\right)-a_{2} \mathbf{2}^{+}\left(\mathbf{1}^{-}-q^{2}+m^{2}\right)=0 \quad \text { (B) }
\end{array}
$$

$$
\text { where, e.g., } \mathbf{1}^{+} \mathbf{2}^{-} F\left(a_{1}, a_{2}\right)=F\left(a_{1}+1, a_{2}-1\right) .
$$

$$
\begin{array}{r}
d-2 a_{1}-a_{2}-2 m^{2} a_{1} \mathbf{1}^{+}-a_{2} \mathbf{2}^{+}\left(\mathbf{1}^{-}-q^{2}+m^{2}\right)=0 \quad \text { (A) } \\
a_{2}-a_{1}-a_{1} \mathbf{1}^{+}\left(q^{2}+m^{2}-\mathbf{2}^{-}\right)-a_{2} \mathbf{2}^{+}\left(\mathbf{1}^{-}-q^{2}+m^{2}\right)=0 \quad \text { (B) }
\end{array}
$$

$$
\text { where, e.g., } \mathbf{1}^{+} \mathbf{2}^{-} F\left(a_{1}, a_{2}\right)=F\left(a_{1}+1, a_{2}-1\right) .
$$

$$
F_{\Gamma}\left(a_{1}, a_{2}\right)=0 \text { for } a_{1} \leq 0
$$

$$
\begin{array}{r}
d-2 a_{1}-a_{2}-2 m^{2} a_{1} \mathbf{1}^{+}-a_{2} \mathbf{2}^{+}\left(\mathbf{1}^{-}-q^{2}+m^{2}\right)=0 \\
a_{2}-a_{1}-a_{1} \mathbf{1}^{+}\left(q^{2}+m^{2}-\mathbf{2}^{-}\right)-a_{2} \mathbf{2}^{+}\left(\mathbf{1}^{-}-q^{2}+m^{2}\right)=0 \tag{B}
\end{array}
$$

where, e.g., $\mathbf{1}^{+} \mathbf{2}^{-} F\left(a_{1}, a_{2}\right)=F\left(a_{1}+1, a_{2}-1\right)$.
$F_{\Gamma}\left(a_{1}, a_{2}\right)=0$ for $a_{1} \leq 0$

A manual solution.

1. Apply $\left(q^{2}+m^{2}\right)(A)-2 m^{2}(B)$,

$$
\begin{aligned}
\left(q^{2}-m^{2}\right)^{2} a_{2} \mathbf{2}^{+} & =\left(q^{2}-m^{2}\right) a_{2} \mathbf{1}^{-} \mathbf{2}^{+} \\
& \quad-\left(d-2 a_{1}-a_{2}\right) q^{2}-\left(d-3 a_{2}\right) m^{2}+2 m^{2} a_{1} \mathbf{1}^{+} \mathbf{2}^{-}
\end{aligned}
$$

to reduce a_{2} to 1 or 0 .
F[a1_, a2_ /; a2 > 1] :=
1/(a2-1)/(qq - mm) ^2 (
(a2-1) (qq - mm) $F[a 1-1, a 2]$
$-((d-2 a 1-a 2+1) q q$
$+(d-3 a 2+3) \mathrm{mm}) \mathrm{F}[\mathrm{a} 1, \mathrm{a} 2-1]$
+2 mm a1 $\mathrm{F}[\mathrm{a} 1+1, \mathrm{a} 2$ - 2]);
2. Suppose that $a_{2}=1$. Apply $(A)-(B)$, i.e.

$$
\left(q^{2}-m^{2}\right) a_{1} \mathbf{1}^{+}=a_{1}+2-d+a_{1} \mathbf{1}^{+} \mathbf{2}^{-}
$$

to reduce a_{1} to 1 or a_{2} to 0 .
F[a1_ /; a1 > 1, 1] :=
$1 /(a 1-1) /(q q-m m)((a 1-1) F[a 1,0]$
-(d - a1 - 1) F[a1 - 1, 1]);
Therefore, any $F\left(a_{1}, a_{2}\right)$ can be reduced to $I_{1}=F(1,1)$ and integrals with $a_{2} \leq 0$ (which can be evaluated in terms of gamma functions for general d).
3. Let $a_{2} \leq 0$. Apply (A) to reduce a_{1} to one.

$$
\begin{aligned}
& \mathrm{F}\left[\mathrm{a} 1_{-} / ; \mathrm{al}>1, \mathrm{a} 1_{-} / ; \mathrm{a} 2<=0\right]:= \\
& 1 /(a 1-1) / 2 / m m((d-2 a 1-a 2+2) F[a 1-1, a 2] \\
& -a 2 \mathrm{~F}[\mathrm{a} 1-2, \mathrm{a}-\mathrm{t}]+\mathrm{a} 2(q q-\mathrm{mm}) \mathrm{F}[\mathrm{a} 1-1, \mathrm{a}-1+1
\end{aligned}
$$

4. Let $a_{1}=1$. Apply the following corollary of (A) and (B)
$\left(d-a_{2}-1\right) \mathbf{2}^{-}=\left(q^{2}-m^{2}\right)^{2} a_{2} \mathbf{2}^{+}+\left(q^{2}+m^{2}\right)\left(d-2 a_{2}-1\right)$
to increase a_{2} to zero or one starting from negative values.
```
F[1, a2_ /; a2 < 0] := 1/(d - a2 - 2) (
(a2 + 1) (qq - mm)^2 F[1, a2 + 2] +
(qq + mm) (d - 2 a2 - 3) F[1, a2 + 1] );
```

Any $F\left(a_{1}, a_{2}\right)$ is a linear combination of the two master integrals $I_{1}=F(1,1)$ and $I_{2}=F(1,0)$.

For example,

$$
\begin{aligned}
& F[3,2]= \\
& (-(((-5+d)(-3+d)(-4 \mathrm{~mm}+\mathrm{dmm}-8 \mathrm{qq}+\mathrm{dqq})) /(\\
& \left.\left.2(\mathrm{~mm}-\mathrm{qq})^{\wedge} 4\right)\right) \mathrm{I} 1 \\
& +\left((- 2 + \mathrm { d }) \left(96 \mathrm{~mm} \wedge 2-39 \mathrm{dmm}^{\wedge} 2+4 \mathrm{~d}^{\wedge} 2 \mathrm{~mm}^{\wedge} 2\right.\right. \\
& +28 \mathrm{~mm} q q-6 \mathrm{dmm} \mathrm{mq}-4 \mathrm{qq}^{\wedge} 2+\mathrm{dqq} \\
& (8 \mathrm{~mm} 2)) / \\
& \left.\left.(\mathrm{mm}-\mathrm{qq})^{\wedge} 4\right) \mathrm{I} 2\right)
\end{aligned}
$$

Triangle rule

$$
m_{3}=0
$$

$$
F\left(a_{1}, a_{2}, a_{3}\right)=\int \frac{\mathbf{d}^{d} k}{\left[\left(k+p_{1}\right)^{2}-m_{1}^{2}\right]^{a_{1}}\left[\left(k+p_{2}\right)^{2}-m_{2}^{2}\right]^{a_{2}}\left(k^{2}\right)^{a_{3}}}
$$

The IBP identity with the operator $(\partial / \partial k) \cdot k \rightarrow$

$$
\begin{aligned}
1= & \frac{1}{d-a_{1}-a_{2}-2 a_{3}} \\
& \times\left[a_{1} \mathbf{1}^{+}\left(\mathbf{3}^{-}-\left(p_{1}^{2}-m_{1}^{2}\right)\right)+a_{2} \mathbf{2}^{+}\left(\mathbf{3}^{-}-\left(p_{2}^{2}-m_{2}^{2}\right)\right)\right]
\end{aligned}
$$

A manual solution of IBP relations for massless three-loop propagator diagrams
[K.G. Chetyrkin \& F.V. Tkachov'81]

A manual solution of IBP relations for massless three-loop propagator diagrams
[K.G. Chetyrkin \& F.V. Tkachov'81]

MINCER:

[S.G. Gorishny, S.A. Larin, L.R. Surguladze \& F.V. Tkachov'89]
[S.A. Larin, F.V. Tkachov \& J. Vermaseren'91]
(implemented in FORM)

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Use IBP relations written at points $\left(a_{1}, \ldots, a_{L}\right)$ with $\sum\left|a_{i}\right| \leq N$ and solve them for the Feynman integrals involved.
(A Gauss elimination)

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Use IBP relations written at points $\left(a_{1}, \ldots, a_{L}\right)$ with $\sum\left|a_{i}\right| \leq N$ and solve them for the Feynman integrals involved.
(A Gauss elimination)
Feynman integrals on the right-hand sides of such solutions are master integrals.

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Use IBP relations written at points $\left(a_{1}, \ldots, a_{L}\right)$ with $\sum\left|a_{i}\right| \leq N$ and solve them for the Feynman integrals involved.
(A Gauss elimination)
Feynman integrals on the right-hand sides of such solutions are master integrals.

When N increases, the situation stabilizes, in the sense that the number of the master integrals becomes stable starting from sufficiently large N.

Experience: the number of master integrals is always finite.

Experience: the number of master integrals is always finite.
Theorem [A. Smirrov \& A. Petukhov'10]
The number of master integrals is finite

Experience: the number of master integrals is always finite.
Theorem [A. Smirnov \& A. Petukhov'10]
The number of master integrals is finite
(for Feynman integrals with usual propagators)

Experience: the number of master integrals is always finite.
Theorem [A. Smirnov \& A. Petukhov'10]
The number of master integrals is finite
(for Feynman integrals with usual propagators)
An algorithm to obtain the number of the master integrals in a given sector
[R.N. Lee \& A.A. Pomeransky'13]

Experience: the number of master integrals is always finite.
Theorem [A. Smirnov \& A. Petukhov'10]
The number of master integrals is finite
(for Feynman integrals with usual propagators)
An algorithm to obtain the number of the master integrals in a given sector
[R.N. Lee \& A.A. Pomeransky'13]
A sector σ_{ν} is defined by a subset $\nu \subseteq\{1, \ldots, N\}$ for which indices are positive:
$\sigma_{\nu}=\left\{\left(a_{1}, \ldots, a_{N}\right): a_{i}>0\right.$ if $i \in \nu, a_{i} \leq 0$ if $\left.i \notin \nu\right\}$.

Experience: the number of master integrals is always finite.
Theorem [A. Smirnov \& A. Petukhov'10]
The number of master integrals is finite
(for Feynman integrals with usual propagators)
An algorithm to obtain the number of the master integrals in a given sector
[R.N. Lee \& A.A. Pomeransky'13]
A sector σ_{ν} is defined by a subset $\nu \subseteq\{1, \ldots, N\}$ for which indices are positive:
$\sigma_{\nu}=\left\{\left(a_{1}, \ldots, a_{N}\right): a_{i}>0\right.$ if $i \in \nu, a_{i} \leq 0$ if $\left.i \notin \nu\right\}$.
The problem was reduced to evaluating the volume of the Newton polytope associated with the polynomials in the alpha representation.

The same example

$$
F_{\Gamma}\left(a_{1}, a_{2}\right)=\int \frac{\mathbf{d}^{d} k}{\left(m^{2}-k^{2}\right)^{a_{1}}\left(-(q-k)^{2}\right)^{a_{2}}}
$$

The left-hand sides of the two primary IBP relations:

```
ibp1[a1_, a2_] := (d - 2 a1 - a2) F[a1, a2]
- 2 mm a1 F[a1 + 1, a2] - a2 (F[a1 - 1, a2 + 1]
+ (mm - qq) F[a1, a2 + 1]);
ibp2[a1_, a2_] := (a2 - a1) F[a1, a2] -
a1 ((qq + mm) F[a1 + 1, a2] - F[a1 + 1, a2 - 1]) -
a2 (F[a1 - 1, a2 + 1] + (mm - qq) F[a1, a2 + 1]);
```

Let us consider the sector $a_{1}>0, a_{2} \leq 0$
Use IBP at various $\left(a_{1}, a_{2}\right)$ with $a_{1}+\left|a_{2}\right| \leq N$
Solve the corresponding linear system of equation with respect to $F\left(a_{1}, a_{2}\right)$ involved.
Increase N.
$N=1$
Solve[\{ibp1[1, 0] == 0, ibp2[1, 0] == 0\},
$\{F[2,0], F[2,-1]\}]$
$\{F[2,-1]->((-2 q q+d(m m+q q)) F[1,0]) /(2 \mathrm{~mm})$, F[2, 0] -> ((-2 + d) F[1, 0])/(2 mm) \}

$$
\begin{aligned}
& N=2 \\
& \text { Solve[\{ibp1[1, 0] == 0, ibp2[1, 0] == 0, } \\
& \text { ibp1[2, 0] == 0, ibp2[2, 0] == 0, } \\
& \text { ibp1[1, }-1]==0, \quad \text { ibp2[1, }-1]==0 \text { \}, } \\
& \{F[2,0], F[3,0], F[1,-1], \\
& F[2,-1], F[3,-1], F[2,-2]\}] \\
& \{F[2,-2]->(((2+d) m m \wedge 2+2(2+d) m m q q \\
& \left.\left.+(-2+d) q q^{\wedge} 2\right) F[1,0]\right) /(2 \mathrm{~mm}) \text {, } \\
& \text { F[3, -1] -> ((-2 + d) (-4 qq + d (mm + qq)) } \\
& \text { F[1, 0])/(8 mm^2), } \\
& \mathrm{F}[3,0]->((-4+d)(-2+d) F[1,0]) /\left(8 \mathrm{~mm}^{\wedge} 2\right) \text {, } \\
& \text { F[1, -1] -> (mm + qq) } F[1,0] \text {, } \\
& \mathrm{F}[2,-1]->((-2 \mathrm{qq}+\mathrm{d}(\mathrm{~mm}+\mathrm{qq})) \mathrm{F}[1,0]) /(2 \mathrm{~mm}) \text {, } \\
& \mathrm{F}[2,0]->((-2+d) F[1,0]) /(2 \mathrm{~mm})\}
\end{aligned}
$$

Implementations of the Laporta's algorithm

Implementations of the Laporta's algorithm Three public versions:

Implementations of the Laporta's algorithm Three public versions:

- AIR

Implementations of the Laporta's algorithm Three public versions:

- AIR
[Anastasiou \& Lazopoulos'04]
- FIRE
[A. Smirnov'08]
(in Mathematica; a C++ version is private)

Implementations of the Laporta's algorithm

 Three public versions:- AIR
- FIRE
[A. Smirnov'08]
(in Mathematica; a C++ version is private)
- Reduze
[C. Studerus'09, A. von Manteuffel \& C. Studerus'12-13]

Implementations of the Laporta's algorithm

 Three public versions:- AIR
- FIRE
[A. Smirnov'08]
(in Mathematica; a C++ version is private)
- Reduze
[C. Studerus'09, A. von Manteuffel \& C. Studerus'12-13]

Private versions

[Gehrmann \& Remiddi, Laporta, Czakon, Schröder, Pak, Sturm, Marquard \& Seidel, Velizhanin, ...]

Solving reduction problems algorithmically in other ways:

Solving reduction problems algorithmically in other ways:

- Baikov's method
[P.A. Baikov'96-...]
[V.A. Smirnov \& M. Steinhauser'03]
An Ansatz for coefficient functions at master integrals

$$
\int \ldots \int \frac{\mathrm{d} x_{1} \ldots \mathrm{~d} x_{N}}{x_{1}^{a_{1}} \ldots x_{N}^{a_{N}}}\left[P\left(\underline{x}^{\prime}\right)\right]^{(d-h-1) / 2}
$$

Solving reduction problems algorithmically in other ways:

- Baikov's method
[P.A. Baikov'96-...]
[V.A. Smirnov \& M. Steinhauser'03]
An Ansatz for coefficient functions at master integrals

$$
\int \ldots \int \frac{\mathrm{d} x_{1} \ldots \mathrm{~d} x_{N}}{x_{1}^{a_{1}} \ldots x_{N}^{a_{N}}}\left[P\left(\underline{x}^{\prime}\right)\right]^{(d-h-1) / 2}
$$

- Gröbner bases
[O.V. Tarasov'98]
An alternative approach
[A. Smirnov \& V. Smirnov, '05-08]
- Lee's approach (based on Lie algebras)
- Lee's approach (based on Lie algebras)
the IBP relations have the structure of a Lie algebra. The generators are $O_{i j}=\frac{\partial}{\partial k_{i}} \cdot p_{j}$
The commutation relations are

$$
\left[O_{i k}, O_{i^{\prime} j^{\prime}}\right]=\delta_{i j^{\prime}} O_{i^{\prime} j}-\delta_{i^{\prime} j} O_{i j^{\prime}} .
$$

- Lee's approach (based on Lie algebras)
the IBP relations have the structure of a Lie algebra.
The generators are $O_{i j}=\frac{\partial}{\partial k_{i}} \cdot p_{j}$
The commutation relations are

$$
\left[O_{i k}, O_{i^{\prime} j^{\prime}}\right]=\delta_{i j^{\prime}} O_{i^{\prime} j}-\delta_{i^{\prime} j} O_{i j^{\prime}} .
$$

It is sufficient to use IBP corresponding to

$$
\begin{gathered}
\frac{\partial}{\partial k_{i}} \cdot k_{i+1}, \quad i=1, \ldots, h, \quad k_{h+1} \equiv k_{1} \\
\frac{\partial}{\partial k_{1}} \cdot p_{j}, \quad j=1, \ldots, n ; \quad \sum_{i=1}^{h} \frac{\partial}{\partial k_{i}} \cdot k_{i} .
\end{gathered}
$$

- Lee's approach (based on Lie algebras)
the IBP relations have the structure of a Lie algebra.
The generators are $O_{i j}=\frac{\partial}{\partial k_{i}} \cdot p_{j}$
The commutation relations are

$$
\left[O_{i k}, O_{i^{\prime} j^{\prime}}\right]=\delta_{i j^{\prime}} O_{i^{\prime} j}-\delta_{i^{\prime} j} O_{i j^{\prime}} .
$$

It is sufficient to use IBP corresponding to

$$
\begin{gathered}
\frac{\partial}{\partial k_{i}} \cdot k_{i+1}, \quad i=1, \ldots, h, \quad k_{h+1} \equiv k_{1} \\
\frac{\partial}{\partial k_{1}} \cdot p_{j}, \quad j=1, \ldots, n ; \quad \sum_{i=1}^{h} \frac{\partial}{\partial k_{i}} \cdot k_{i} .
\end{gathered}
$$

A code to reveal independent IBP relations

LiteRed
A package which provides the possibility to find reduction rules in a given sector. It includes various additional tools.

LiteRed

A package which provides the possibility to find reduction rules in a given sector. It includes various additional tools. For example, reduction rules for massless four-loop propagator integrals

M_{61}

M_{62}

M_{63}
have been constructed in all the sectors.
A four-loop variant of MINCER!

The existence of the explicit reduction rules shows that any four-loop massless propagator integral can be represented as a linear combination, with coefficients rational in d, of the twenty eight master integrals revealed by Baikov and Chetyrkin.

The existence of the explicit reduction rules shows that any four-loop massless propagator integral can be represented as a linear combination, with coefficients rational in d, of the twenty eight master integrals revealed by Baikov and Chetyrkin.
This statement has the status of a mathematical theorem.

M_{52}, ε^{1}

M_{24}, ε^{4}

M_{11}, ε^{5}

M_{12}, ε^{5}

M_{31}, ε^{3}

FIRE4

can be applied together with LiteRed:

FIRE4
can be applied together with LiteRed:

- to perform a fast reduction when reduction rules have been constructed in all the sectors;

FIRE4
can be applied together with LiteRed:

- to perform a fast reduction when reduction rules have been constructed in all the sectors;
- to run reduction in the Laporta mode if reduction rules are unknown in some sectors.

Using symmetries to find extra relations

(at $p^{2}=m^{2}$) is the integral with the numerator is $k \cdot p$ where k is the momentum of the massless line, in addition to the corresponding master integral I_{10} without numerator (for the three-loop $g-2$ factor).

Using symmetries to find extra relations

I_{11}
(a)

(b)
(at $p^{2}=m^{2}$) is the integral with the numerator is $k \cdot p$ where k is the momentum of the massless line, in addition to the corresponding master integral I_{10} without numerator (for the three-loop $g-2$ factor).
Indeed, the IBP reduction shows that there are two master integrals in the highest sector.

G_{8}

$$
I_{11}=\frac{2 d-5}{2(d-2)} G_{4,4}-\frac{1}{4} G_{3} .
$$

$$
I_{11}=\frac{2 d-5}{2(d-2)} G_{4,4}-\frac{1}{4} G_{3} .
$$

can be obtained from the IBP reduction of $F(1,2,1,2,1)=F(1,1,2,2,1)$

The whole problem of evaluating a given family of Feynman integrals \rightarrow

- constructing a reduction procedure to master integrals (using IBP)
- evaluating master integrals

The whole problem of evaluating a given family of Feynman integrals \rightarrow

- constructing a reduction procedure to master integrals (using IBP)
- evaluating master integrals

Methods of evaluating master integrals based on IBP

The whole problem of evaluating a given family of Feynman integrals \rightarrow

- constructing a reduction procedure to master integrals (using IBP)
- evaluating master integrals

Methods of evaluating master integrals based on IBP

- method of differential equations
[A. Kotikov'91, E. Remiddi'97, Gehrmann \& Remiddi'00, J. Henn'13]

The whole problem of evaluating a given family of Feynman integrals \rightarrow

- constructing a reduction procedure to master integrals (using IBP)
- evaluating master integrals

Methods of evaluating master integrals based on IBP

- method of differential equations
[A. Kotikov'91, E. Remiddi'97, Gehrmann \& Remiddi'00, J. Henn'13]
- R. Lee's method [R. Lee'09, R. Lee \& VS'1 2] based on the use of dimensional recurrence relations
[O. Tarasov'96]

