Transverse Electric Contributions to Atomic EDM

Satoru Inoue
MITP Workshop, 8 Oct 2013
(work w/ M. Ramsey-Musolf \& W. Haxton)

Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst

Why diamagnetic atoms?

We want more than 1 number for hadronic sector

from Ritz \& Pospelov, hep-th/0504231

Scope of this talk

Q: What nuclear calculations do we need?

from Ritz \& Pospelov, hep-th/0504231

What to calculate

Atomic EDM is defined by $\Delta E=-\vec{d}_{A} \cdot \vec{E}^{\text {ext }}$

Perturbation theory

$$
H_{0}=H_{N}+H_{e}-Z \alpha \sum_{i=1}^{Z} \frac{1}{x_{i}}
$$

Decouple nuclear and atomic problems

Perturbation theory

$$
H_{0}=H_{N}+H_{e}-Z \alpha \sum_{i=1}^{Z} \frac{1}{x_{i}}
$$

Decouple nuclear and atomic problems

$$
V=\left(V_{e N}+Z \alpha \sum_{i=1}^{Z} \frac{1}{x_{i}}\right)+V_{e}^{\mathrm{ext}}+V_{N}^{\mathrm{ext}}
$$

Calculate energy shift, pick out terms $\propto E^{\text {ext }}$

Breit interaction

Order α correction to Coulomb
$V_{e N}=-\alpha \iint d^{3} x d^{3} y\left[\frac{\rho_{e} \rho_{N}}{|\vec{x}-\vec{y}|}-\frac{1}{2}\left(\frac{\vec{j}_{e} \cdot \vec{j}_{N}+\vec{j}_{e} \cdot \hat{n} \vec{j}_{N} \cdot \hat{n}}{|\vec{x}-\vec{y}|}\right)\right]$
\vec{x} - electron coordinate, \vec{y} - nuclear coordinate, $\vec{n}=\vec{x}-\vec{y}$

Breit interaction - multipoles

Order α correction to Coulomb
$V_{e N}=-\alpha \iint d^{3} x d^{3} y\left[\frac{\rho_{e} \rho_{N}}{|\vec{x}-\vec{y}|}-\frac{1}{2}\left(\frac{\vec{j}_{e} \cdot \vec{j}_{N}+\vec{j}_{e} \cdot \hat{n} \vec{j}_{N} \cdot \hat{n}}{|\vec{x}-\vec{y}|}\right)\right]$
\vec{x} - electron coordinate, \vec{y} - nuclear coordinate, $\vec{n}=\vec{x}-\vec{y}$

$$
\frac{1}{|\vec{x}-\vec{y}|}=\sum_{l m} \frac{4 \pi}{2 l+1}\left(\frac{y^{l}}{x^{l+1}} \theta(x-y)+\frac{x^{l}}{y^{l+1}} \theta(y-x)\right) Y_{l m}^{*}(\hat{x}) Y_{l m}(\hat{y})
$$

Breit interaction - multipoles

Order α correction to Coulomb

$$
V_{e N}=-\alpha \iint d^{3} x d^{3} y\left[\frac{\rho_{e} \rho_{N}}{|\vec{x}-\vec{y}|}-\frac{1}{2}\left(\frac{\vec{j}_{e} \cdot \vec{j}_{N}+\vec{j}_{e} \cdot \hat{n} \vec{j}_{N} \cdot \hat{n}}{|\vec{x}-\vec{y}|}\right)\right]
$$

\vec{x} - electron coordinate, \vec{y} - nuclear coordinate, $\vec{n}=\vec{x}-\vec{y}$

$$
\begin{aligned}
\frac{1}{|\vec{x}-\vec{y}|} & =\sum_{l m} \frac{4 \pi}{2 l+1}\left(\frac{y^{l}}{x^{l+1}} \theta(x-y)+\frac{x^{l}}{y^{l+1}} \theta(y-x)\right) Y_{l m}^{*}(\hat{x}) Y_{l m}(\hat{y}) \\
& =\sum_{l m} \frac{4 \pi}{2 l+1}\left[\frac{y^{l}}{x^{l+1}}+\left(\frac{x^{l}}{y^{l+1}}-\frac{y^{l}}{x^{l+1}}\right) \theta(y-x)\right] Y_{l m}^{*}(\hat{x}) Y_{l m}(\hat{y})
\end{aligned}
$$

Pointlike nucleus Penetration correction

Multipoles - classification

From charge-charge interaction:

$$
V_{\mathrm{pt} / \mathrm{pen}}^{C l} \propto C_{l}^{A} \odot C_{l}^{N}
$$

Pointlike CO - total nuclear charge (in H_{0})
Pointlike C1, C2, ... - EDM, EQM, ...

Penetration terms -> Schiff moment

Multipoles - classification

From current-current interaction:

$$
\begin{aligned}
& V_{\mathrm{pt} / \mathrm{pen}}^{M l} \propto T_{l}^{\mathrm{mag}, A} \odot T_{l}^{\mathrm{mag}, N} \\
& V_{\mathrm{pt} / \mathrm{pen}}^{E l} \propto T_{l}^{\mathrm{el}, A} \odot T_{l}^{\mathrm{el}, N}
\end{aligned}
$$

More than 1 way to couple current vector to spherical harmonics

So many terms!

Symmetries to the rescue

	$P C T C$	$P V T C$	$P C T V$	$P V T V$
C	even	-	-	odd
M	odd	-	-	even
E	-	odd	even	-

EDMs are PVTV -> need PVTV coupling to nucleus

Symmetries to the rescue

	$P C T C$	$P V T C$	$P C T V$	$P V T V$
C	even	-	-	odd
M	odd	-	-	even
E	-	odd	even	-

EDMs are PVTV -> need PVTV coupling to nucleus

Also - Atomic $J=0$, Nuclear $J=1 / 2$
M2, C3, etc. don't contribute

Schiff screening

$$
\langle 0| V_{N}^{\text {ext }}|0\rangle+\left(\langle 0| V_{e}^{\text {ext }} K V_{\mathrm{pt}}^{C 1}|0\rangle+\text { c.c. }\right)=0
$$

Naive LO terms cancel

$$
K=\sum_{n \neq 0} \frac{|n\rangle\langle n|}{E_{0}-E_{n}}
$$

Schiff moment - term 1

Penetration C 1 is not screened

Schiff moment - term 2

Higher order terms are only partially screened

nuc

e

nuc

Both terms - Penetration effect. Only Coulomb multipoles

Other terms?

	$P C T C$	$P V T C$	$P C T V$	$P V T V$
C	even	-	-	odd
M	odd	-	-	even
E	-	odd	even	-

E multipoles don't have PVTV moments, but what if you iterate?

Other terms?

	$P C T C$	$P V T C$	$P C T V$	$P V T V$
C	even	-	-	odd
M	odd	-	-	even
E	-	odd	even	-

E multipoles don't have PVTV moments, but what if you iterate?

Combine E1 \& E2 -> PVTV!

Size of Schiff moment

Nuclear Schiff moment operator
$\vec{S} \equiv \frac{1}{10}\left[\int d^{3} y\left(y^{2} \vec{y}-\frac{5}{3 Z} y^{2}\left\langle\vec{d}_{N}\right\rangle\right) \rho_{N}(\vec{y})\right]$
goes as $\sim R_{N}^{3}$

Energy shift due to Schiff moment is $\sim E^{\text {ext }} R_{A}\left(\frac{R_{N}}{R_{A}}\right)^{3}$
Suppression of $\left(\frac{R_{N}}{R_{A}}\right)^{2}$ compared to nuclear EDM

Power counting

This can be applied to other multipoles

$$
\begin{aligned}
V_{\mathrm{pt}}^{C l, M l} & \sim \frac{1}{R_{A}}\left(\frac{R_{N}}{R_{A}}\right)^{l} \\
V_{\mathrm{pt}}^{E l} & \sim \frac{1}{R_{A}}\left(\frac{R_{N}}{R_{A}}\right)^{l-1}
\end{aligned}
$$

Transverse electrics are less suppressed for given L

E1-E2 term

$\langle 0| V_{e}^{\text {ext }} K V_{\mathrm{pt}}^{E 1} K V_{\mathrm{pt}}^{E 2}|0\rangle$
$\sim E^{\mathrm{ext}} R_{A} \cdot R_{A} \cdot \frac{1}{R_{A}} \cdot R_{N} \cdot\left(\frac{1}{R_{A}} \frac{R_{N}}{R_{A}}\right)=E^{\mathrm{ext}} R_{A}\left(\frac{R_{N}}{R_{A}}\right)^{2}$
Schiff moment term had exponent of 3

Rough evaluation

Nuclear part of calculation

$$
\sum_{n \neq 0} \frac{1}{E_{0}-E_{N}}\left\langle 0_{N}\right| T_{1}^{\mathrm{el}, N}\left|n_{N}\right\rangle\left\langle n_{N}\right| T_{2}^{\mathrm{el}, N}\left|0_{N}\right\rangle
$$

Rough evaluation

Use Siegert's theorem:

$$
T_{l}^{\mathrm{el}, N} \propto\left[C_{l}^{N}, H_{N}\right]
$$

Nuclear part of the calculation becomes

$$
\begin{aligned}
& \sum_{n} \frac{1}{-\Delta E}\left\langle 0_{N}\right| T_{1}^{\mathrm{el}, N}\left|n_{N}\right\rangle\left\langle n_{N}\right| T_{2}^{\mathrm{el}, N}\left|0_{N}\right\rangle \\
\propto & \sum_{n} \Delta E\left\langle 0_{N}\right| C_{1}^{N}\left|n_{N}\right\rangle\left\langle n_{N}\right| C_{2}^{N}\left|0_{N}\right\rangle
\end{aligned}
$$

Rough evaluation

Use Siegert's theorem:

$$
T_{l}^{\mathrm{el}, N} \propto\left[C_{l}^{N}, H_{N}\right]
$$

Nuclear part of the calculation becomes

$$
\begin{aligned}
& \sum_{n} \frac{1}{-\Delta E}\left\langle 0_{N}\right| T_{1}^{\mathrm{el}, N}\left|n_{N}\right\rangle\left\langle n_{N}\right| T_{2}^{\mathrm{el}, N}\left|0_{N}\right\rangle \\
\propto & \sum_{n} \Delta E\left\langle 0_{N}\right| C_{1}^{N}\left|n_{N}\right\rangle\left\langle n_{N}\right| C_{2}^{N}\left|0_{N}\right\rangle
\end{aligned}
$$

Looks like a sum rule
Assume the sum is saturated by giant dipole resonance

Compare with Schiff moment term

E1-E2 energy shift (approximate):
$\frac{(4 \pi \alpha)^{2} E_{\mathrm{GDR}}}{30 \sqrt{3}}\left(\frac{R_{N}}{R_{A}}\right)^{3} \sum_{n^{\prime} \neq 0} \frac{1}{E_{0}-E_{n^{\prime}}}\left\langle j_{N}\left\|\left\{C_{1}^{N}, C_{2}^{N}\right\}_{1}\right\| j_{N}\right\rangle$
$\times\left(\left\langle j_{e}\left\|\sum_{i} \vec{x}_{i} \cdot \vec{E}^{\mathrm{ext}}\right\| j_{e}^{\prime}\right\rangle\left\langle j_{e}^{\prime}\left\|\left\{T_{1}^{\mathrm{el}, A}, T_{2}^{\mathrm{el}, A}\right\}_{1}\right\| j_{e}\right\rangle+\right.$ c.c. $)$

Schiff moment energy shift:
$-\frac{4 \pi \alpha}{3 R_{A}}\left(\frac{R_{N}}{R_{A}}\right)^{3} \sum_{n^{\prime} \neq 0} \frac{1}{E_{0}-E_{n^{\prime}}}\left\langle j_{N}\|\vec{S}\| j_{N}\right\rangle$
$\times\left(\left\langle j_{e}\left\|\sum_{i} \vec{x}_{i} \cdot \vec{E}^{\mathrm{ext}}\right\| j_{e}^{\prime}\right\rangle\left\langle j_{e}^{\prime}\left\|R_{A}^{4} \sum_{j}\left[\overleftarrow{\nabla}_{j} \delta^{3}\left(\vec{x}_{j}\right)+\delta^{3}\left(\vec{x}_{j}\right) \vec{\nabla}_{j}\right]\right\| j_{e}\right\rangle+\right.$ c.c. $)$

Compare with Schiff moment term
Focus on the numerical factors (S contains factor 1/10)

$$
\begin{aligned}
\frac{(4 \pi \alpha)^{2} E_{\mathrm{GDR}}}{30 \sqrt{3}} /\left(\frac{4 \pi \alpha}{3 R_{A}} \cdot \frac{1}{10}\right) & =\frac{4 \pi \alpha R_{A} E_{\mathrm{GDR}}}{\sqrt{3}} \\
& \sim 500
\end{aligned}
$$

E1-E2 term is *larger* assuming comparable matrix elements

Compare with Schiff moment term

Focus on the numerical factors

$$
\begin{aligned}
\frac{(4 \pi \alpha)^{2} E_{\mathrm{GDR}}}{30 \sqrt{3}} /\left(\frac{4 \pi \alpha}{3 R_{A}} \cdot \frac{1}{10}\right) & =\frac{4 \pi \alpha R_{A} E_{\mathrm{GDR}}}{\sqrt{3}} \\
& \sim 500
\end{aligned}
$$

E1-E2 term is *larger* assuming comparable matrix elements

Nuclear matrix elements were of same order in
a very simple model of nucleus (nucleons in pure HO potential)

What could go wrong?

1. Iterating Breit interaction

How large is

What could go wrong?

1. Iterating Breit interaction
2. R_{N} / R_{A} power counting may fail due to nuclear? atomic? physics we haven't considered

Conclusions

1. Atomic EDM can come from E multipoles

Conclusions

1. Atomic EDM can come from E multipoles
2. Naive power counting suggests contributions are large
-Better constraints on new physics than Schiff, if true

Conclusions

1. Atomic EDM can come from E multipoles
2. Naive power counting suggests contributions are large
-Better constraints on new physics than Schiff, if true
3. Nuclear calculation would be harder than Schiff moment

$$
\sum_{n \neq 0} \frac{1}{E_{0}-E_{N}}\left\langle 0_{N}\right| T_{1}^{\mathrm{el}, N}\left|n_{N}\right\rangle\left\langle n_{N}\right| T_{2}^{\mathrm{el}, N}\left|0_{N}\right\rangle
$$

