The proton charge radius unsolved puzzle

Paul Indelicato

UPMC
IAet PARISUNIVERSITAS

Nடкв
 CREMA: Muonic Hydrogen Collaboration

F.D Amaro, A. Antogninii, F.Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, L.M.P. Fernandes, A. Giesen, T. Graf, T.W. Hänsch, P. Indelicato, L.Julien, C.-Y. Kao,
 P.E. Knowles, F. Kottmann, J.A.M. Lopes, E. Le Bigat, Y.-W. Liu, L. Ludhava, C.M.B. Monteira, F. Mulhauser, T. Nebel, F. Nez, R. Pohl, P. Rabinowitz, J.M.F. dos Santas, L.A. Schaller, K. Schuhmann, E. Schwob, D. Taqqu, J.F.C.A. Veloso

PAUL SCHERRER INSTITUT

http://muhy.web.psi.ch

Mainz MITP Oct. 2013

- Description of the experiment
- spectra for μ
- specta for $\mu \mathrm{d}$
- Theary
- Results far radii of p and d
- explanations

$\sqrt{ } \mathrm{LKB}$

8 juillet 2 IID
8.dly 2010 | wwwastuecom/kature 510

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

NLKB

8 juillet 2 III

The size of the proton, R. Pohl, A. Antognini, F. Nez et al. Nature 466, 213-216 (2010).

The size of the proton, R. Pohl, A. Antognini, F. Nez et al. Nature 466, 213-216 (2010).

Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen, A. Antognini, F. Nez, K. Schuhmann et al. Science 339, 417-420 (2013).

MLKB

Form factor

A rapid definition

2 quarks up (2/3 e) +1 quark down (-1/3 e) + strong interaction (gluons) Vertex EM interaction: Dirac and Pauli Form factors (S, P: spin and 4-mamentum of nuclean, f: quark flavor)

$$
\begin{aligned}
\left\langle P^{\prime}, S^{\prime}\right| V_{(f)}^{\mu}|P, S\rangle= & \bar{U}\left(P^{\prime}, S^{\prime}\right)\left[\gamma^{\mu} F_{1}^{(f)}\left(Q^{2}\right)\right. \\
& \left.+i \sigma^{\mu \nu} \frac{q_{\nu}}{2 M_{N}} F_{2}^{(f)}\left(Q^{2}\right)\right] U(P, S), \\
V_{(f)}^{\mu}= & \bar{\psi}_{(f)} \gamma^{\mu} \psi_{(f)},
\end{aligned}
$$

Physical charge density are derived from the Sachs Form factors

$G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 M_{N}\right)^{2}} F_{2}\left(Q^{2}\right)$,

$$
G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) .
$$

Measure the moments of the charge distribution:

$$
G_{N}\left(q^{2}\right)=\int d \boldsymbol{r} e^{-i \boldsymbol{q} \cdot \boldsymbol{r}} \frac{\rho_{N}(\boldsymbol{r})}{4 \pi}
$$

$$
<r^{n}>=\int_{0}^{\infty} r^{2+n} \rho(r) d r,
$$

$$
\frac{d \sigma\left(E_{i}, \theta\right)}{d \omega}=\frac{d \sigma_{\mathrm{Rut} .}\left(E_{i}, \theta\right)}{d \omega} G_{E}\left(q^{2}\right)
$$

$$
\begin{aligned}
& \mathrm{q}=\mathrm{p}_{\mathrm{f}}-\mathrm{p}_{\mathrm{i}} \\
& \mathrm{G}_{N}\left(q^{2}\right)=\frac{1}{\left(1+\frac{R^{2} q^{2}}{12}\right)^{2}} \approx 1-\frac{R^{2}}{6} q^{2}+\frac{R^{4}}{48} q^{2}+\cdots
\end{aligned}
$$

$$
G_{N}\left(q^{2}\right)=e^{-\frac{1}{6} R^{2} q^{2}} \approx 1-\frac{R^{2}}{6} q^{2}+\left(\frac{R^{4}}{72} q^{4}\right)+\cdots
$$

see S. Karshenboim in Can. J. Phys. 77, 241-266 (1999) andh seffs thereinct. 2013

MLKB

Metrology in hydrogen

Highest precision experiments

$\operatorname{MLKB}^{\square} \quad$ Hydrogen

V Lкв
 Hydrogen

 determined fundamental constant.

MLкв Why re-measure the proton charge radius?

1S Lamb shift in hydrogen: $L_{1 S}\left(r_{\mathrm{p}}\right)=8171.636(4)+1.5645\left\langle r_{\mathrm{p}}^{2}\right\rangle \mathrm{MHz}$

QED-test is limited by the uncertainty of the proton rms charge radius.

MLKB

Hydrogen

QED corrections

V ᄂкв
 QED at order α and α^{2}

H-like "Dre Phatan" arder α

H-like "Twa Photan" arder α^{2}

Z a expansion; replace exact Coulomb prapagatar by expansion in number of interactions with the nucleus

Mainz MITP Oct. 2013

$$
\Delta E=m\left(\frac{\alpha}{\pi}\right)^{2} \frac{(Z \alpha)^{4}}{n^{3}} F(Z \alpha)
$$

Mainz MITP Oct. 2013 V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. rev. A 71, 040101 (R) (2005).

$M \operatorname{LKB}$
 Two-loop self-energy (1s)

V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. rev. A 71, 040101 (R) (2005).

$$
\begin{aligned}
\Delta E_{\mathrm{SESE}}= & m\left(\frac{\alpha}{\pi}\right)^{2}(Z \alpha)^{4}\left\{B_{40}+(Z \alpha) B_{50}+(Z \alpha)^{2}\right. \\
& \left.\times\left[L^{3} B_{63}+L^{2} B_{62}+L B_{61}+G_{\mathrm{SESE}}^{\text {h.o. }}(Z)\right]\right\},
\end{aligned}
$$

MLKB

Using muonic hydrogen

The exotic way...

Self-energy:

The heavier the particle, the smaller (in relative term) it is

Hydrogen (electron) Effect of R: BxII-II

Vacuum Polarization:
The closer the particle is, the stronger it is

Muonic Hydragen
(muan 207 times heavier than the electron)
Effect of R: I.7\% determination of the "proton radius"

Exotic atom

Experiment

Challenges

- production of muonic hydrogen in $2 S$
- powerful triggerable $6 \mu \mathrm{~m}$ laser
- small signal analysis

Aim : better determination of proton radius r_{p}
Mainz MITP Oct. 2013

MLKB

The muonic hydrogen experiment

Getting up close and personal with the proton!
$M_{L K B}$

μ^{-}stop in H_{2} gas
$\Rightarrow \mu p^{*}$ atoms formed ($n \sim 14$)
99% : cascade to 1 S emitting prompt $\mathrm{K} \alpha, \mathrm{K} \beta, \ldots$

Fire laser ($\lambda \sim 6 \mu \mathrm{~m}, \Delta \mathrm{E} \sim 0.2 \mathrm{eV}$)
\Rightarrow induce $\mu \mathrm{p}(2 \mathrm{~S}-2 \mathrm{P})$
\qquad
mardi 1 octobre 2013

laser hut below concrete blocks

$M_{\text {LKB }}$ A muon's Odyssey

The laser trigger signal

Laser chain

- Each single muon triggers the laser system (random trigger)
- $2 S$ lifetime $\sim 1 \mu \mathrm{~s} \rightarrow$ short laser delay (disk laser)
- $6 \mu \mathrm{~m}$ tunable laser pulse (0.2mJ)

Thin disk laser (1030 nm) + LBO (515 nm)
pulsed TiSa os'cillator + amplifier (708 nm determined by cw TiSa seeding)

Raman cell
$6.02 \mu \mathrm{~m}$

Multipass cavity at $6 \mu \mathrm{~m}$ surrounding the H 2 target

Laser chain

-Large pulse energy: 85 (IGC) mل -Short trigger-to-pulse delay: ≤ 40 пns - Randam trigger
-Pulse-to-pulse delays dawn to 2 ms (гep. rate $\geq 50(\mathrm{~Hz}$)

Thin disk laser

Laser chain

MLPA TiSa laser

-cw laser, frequency stabilized

- referenced to a stable FP cavity -FP cavity calibrated with I2, Rb, Ls lines
\bullet-FP = N . FSR (free spectral range)
\bullet-FSR $=1447.344$ (C) MHz
${ }^{\text {cw Tisa }}$ a frequency absolutely known to 30 MHz
${ }^{-}{ }^{2 p-2 s}=18.6 \mathrm{CHz}$
-Seeded ascillator
$\bullet T i S a=$ cw \rightarrow pulsed TiSa (frequency chirp $\leq 10 \mathrm{MHz}$)
-Multipass amplifier (2f- configuration)
-gain=1[

A 1 LKB

Laser chain : Raman cell

- Vacuum tube for Gum laser beam transpart
- Direct frequency calibration at Bum
-Well known lines

FSR measured/controlled in cw with I_{2} (1 ph abs), Cs (2 ph fluo), Rb (2 ph fluo), lines

$v(\mu \mathrm{p}: 2 \mathrm{~S}-2 \mathrm{P})=v\left(\mathrm{H}_{2} \mathrm{O}\right.$ Line 2$)+\left(\mathrm{N}-\mathrm{N}^{\prime}\right)$ FSR

Mainz MITP Oct. 2013

Mainz MITP Oct. 2013

A^LKB

\rightarrow illuminate at $\mathrm{B} \mu \mathrm{m}$ all the muon stopping volume $\left(5 \times 15 \times 190 \mathrm{~mm} \mathrm{~m}^{3}\right)$

- coupling through a 0.63 mm diameter hole
- $\mathrm{R}=94.90 \%$ at $\mathrm{C} \mu \mathrm{m}$
- 10 OL reflections
- 0.15 m dinjected $\rightarrow 2 \mathrm{~S}-2 \mathrm{P}$ saturated

Vlкb

X-rays analysis \rightarrow event gate sorting \rightarrow noise rejection

Example : FP 900-11 hrs meas.
1.56 million detector events
expected 2-3 laser induced events/hour !
time signature in LAAPD

- photon $<10 \mathrm{keV} \rightarrow 1$ shot in the LAAPD
- e^{-}in $\mathrm{B}=5 \mathrm{~T} \rightarrow$ many counts in detectors

energy signature in LAAPD
- $\mathrm{E}>8 \mathrm{keV} \Leftrightarrow$ electron
- $1 \mathrm{keV}<\mathrm{E}<8 \mathrm{keV} \Leftrightarrow \mathrm{X}$ ray
- $\mathrm{E}<1 \mathrm{keV} \Leftrightarrow$ neutron

Example: FP 900-11 hrs meas.
$>400 \mu-\mathrm{s}$
> 240 laser shot/s
>860000 laser shot/hour
>1.56 million detector clicks
>19600 clicks in the laser region
$>$ expected 2-3 laser induced events/hour !

split "2010 data" (Nature)
add previously discarded data
fit resonances simultaneously
common position and width

1.9 keV Ka x-ray must follawed by the detection of an MeV-energy electron, but there are several detectars Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen, A. Antognini, F. Nez, K. Schuhmann et al. Science 339, 417-420 (2013).

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

MLKB

Reanalysis 2012

[^0]

Mainz MITP Oct. 2013

MLKB \square $\mu \mathrm{P}:{ }^{2} \mathrm{~S}_{1 / 2}(\mathrm{~F}=1)-{ }^{2} \mathrm{P}_{3 / 2}(\mathrm{~F}=2)$ uncertainty budget

Statistics

- uncertainty on position (fit)

$$
\Delta v_{\text {experimental }}=20(1) \mathrm{GHz} \quad\left(\Gamma_{\text {nat }}=18.6 \mathrm{GHz}\right)
$$

Sources:

- Laser frequency ($\mathrm{H}_{2} 0$ calibration, lines known to $\sim 1 \mathrm{MHz}$)
- AC and DC stark shift
- Zeeman shift (5 Telsa)
- Doppler shift
- Collisional shift

TOTAL UNCERTAINTY ON FREQUENCY
$541 \mathrm{MHz}\left(\sim 3 \%\right.$ of $\left.\Gamma_{\text {nat }}\right)$

$$
\begin{array}{r}
300 \mathrm{MHz} \\
<1 \mathrm{MHz} \\
<30 \mathrm{MHz} \\
<1 \mathrm{MHz} \\
2 \mathrm{MHz}
\end{array}
$$

618 MHz

Broadening :

- $6 \mu \mathrm{~m}$ laser line width
- Doppler Broadening
- Collisional broadening

$$
\begin{aligned}
& \sim 2 \mathrm{GHz} \\
& <1 \mathrm{GHz}
\end{aligned}
$$

2.4 MHz

Updated: $v\left(\mu p: 2 \mathrm{~S}_{1 / 2}(\mathrm{~F}=1)-2 \mathrm{P}_{3 / 2}(\mathrm{~F}=2)\right)<1 \sigma$
(12.5 ppm)

Nature: $\quad v\left(\mu \mathrm{p}: 2 \mathrm{~S}_{1 / 2}(\mathrm{~F}=1)-2 \mathrm{P}_{3 / 2}(\mathrm{~F}=2)\right)=49881.88(76) \mathrm{GHz}(16 \mathrm{ppm})$

Statistics

- uncertainty on position (fit) 960 MHz

Sources:

- Laser frequency ($\mathrm{H}_{2} 0$ calibration)
- AC and DC stark shift
- Zeeman shift (5 Telsa)
- Doppler shift
- Collisional shift

TOTAL UNCERTAINTY ON FREQUENCY

$$
300 \mathrm{MHz}
$$

$<1 \mathrm{MHz}$
$<30 \mathrm{MHz}$
$<1 \mathrm{MHz}$
2 MHz

Broadening :

- $6 \mu \mathrm{~m}$ laser line width
$\sim 2 \mathrm{GHz}$
- Doppler Broadening
- Collisional broadening
$<1 \mathrm{GHz}$
2.4 MHz
$v\left(\mu \mathrm{p}: 2 \mathrm{~S}_{1 / 2}(\mathrm{~F}=0)-2 \mathrm{P}_{3 / 2}(\mathrm{~F}=1)\right)$ good agreement with the other (18.5ppm)

Mainz MITP Oct. 2013

Иlкв muonic deuterium : ${ }^{2} \mathrm{~S}_{1 / 2}(\mathrm{~F}=3 / 2)-{ }^{2} \mathrm{P}_{3 / 2}(\mathrm{~F}=5 / 2)$

$$
\mu \mathrm{d}\left(2 \mathrm{~S}_{1 / 2}(\mathrm{~F}=3 / 2) \rightarrow 2 \mathrm{P}_{3 / 2}(\mathrm{~F}=5 / 2)\right) 50815.491 \pm 0.815 \mathrm{GHz} \text { still preliminary }
$$

Mainz MITP Oct. 2013

MLKB \quad muonic deuterium : ${ }^{2} \mathrm{~S}_{1 / 2}(\mathrm{~F}=3 / 2)-{ }^{2} \mathrm{P}_{3 / 2}(\mathrm{~F}=5 / 2)$

$\mu \mathrm{d}\left(2 \mathrm{~S}_{1 / 2}(\mathrm{~F}=3 / 2) \rightarrow 2 \mathrm{P}_{3 / 2}(\mathrm{~F}=5 / 2)\right) 50815.491 \pm 0.815 \mathrm{GHz}$ still preliminary

Mainz MITP Oct. 2013

MLKB muonic deuterium : ${ }^{2} S_{1 / 2}(F=1 / 2)-{ }^{2} P_{3 / 2}(F=3 / 2)$ and ${ }^{2} S_{1 / 2}(F=1 / 2)-{ }^{2} P_{3 / 2}(F=1 / 2)$

Mainz MITP Oct. 2013

| $\mu \mathrm{d}\left(2 \mathrm{~S}_{1 / 2}(\mathrm{~F}=1 / 2) \rightarrow 2 \mathrm{P}_{3 / 2}(\mathrm{~F}=3 / 2)\right): 52061.0 \pm 1.6 \mathrm{GHz}$ | preliminary |
| :--- | :--- | :--- |
| $\mu \mathrm{d}\left(2 \mathrm{~S}_{1 / 2}(\mathrm{~F}=1 / 2) \rightarrow 2 \mathrm{P}_{3 / 2}(\mathrm{~F}=1 / 2)\right): 52154.4 \pm 3.0 \mathrm{GHz}$ | preliminary |

MLKB

Extraction of the radii

Charge, magnetic and Zemach's radii

- 2010 CIDATA value uses improved theary for hydragen and Mainz electronproton scattering is now at $\bar{B} .9 \sigma$ mastly by a reduction of σ :
- 0.8775 (59) fm 2010
- 0.8788 (68) fm 2006
- We have analyzed in details the second transition that was observed, using an improved algorithm that correct for the variation of the laser pulse energy from shat to shat
- We take inta account more events
- We have reanalyzed the first observed line using the improved methad
- This lead to a slightly reduced errar bar for the first transition, an accurate value of a second transition which allows to
- Get a measurement of the magnetic moment distribution mean radius
- An improved charge radius

Discrepancy: 0.31 meV Th. Uncertainty 0.0025 meV That's 120 times smaller!

Main contributions to the μp Lamb shift

Muon self-energy + muon VP \square IED

小 Lкв $\square \quad \mu \mathrm{P}$ theory

Discrepancy: 0.31 meV
 Th. Uncertainty 0.0225 meV
 That's 120 times smaller!

QED and Hyperfine energy

Contributions included to all-order

All-order: the charge distribution is included exactly in the wavefunction and in the operator, when relevant. Higher arder Vacuum Polarization contribution included by numerical solution of the Dirac equation

Nonperturbative evaluation of some QED contributions todhe muoniichydrogen n=2 Lamb shift and hyperfine structure, P. Indelicata. Phys. Rev. A 87, 022501 (2013).53

Contributions included to all-order

Nonperturbative evaluation of same QED contributions todhe muonichyydragen n=2 Lamb shift and hyperfine structure, P. Indelicata. Phys. Rev. A 87, [22501 (2013).

Remark: scale of QED corrections

$$
\left(c \boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta \mu_{\mathrm{r}} \mathrm{c}^{2}+V_{\mathrm{Nuc}}(\boldsymbol{r})\right) \Phi_{n \kappa \mu}(\boldsymbol{r})=\mathcal{E}_{n \kappa \mu} \Phi_{n \kappa \mu}(\boldsymbol{r}),
$$

Bohr radius/particle mass:

$$
\begin{aligned}
& V_{11}^{p n}(r)=-\frac{\alpha(Z \alpha)}{3 \pi} \int_{1}^{\infty} d z \sqrt{z^{2}-1}\left(\frac{2}{z^{2}}+\frac{1}{z^{4}}\right) \frac{e^{-2 m_{c} r z}}{r} \\
& =-\frac{2 \alpha(\mathrm{Z} \alpha)}{3 \pi} \frac{1}{r} \chi_{1}\left(\frac{2}{\lambda_{e}}\right) \\
& \text { Electron Compton wavelength/2m=44 R } \\
& \pi=1 \text { in hydragen: } a=137 \lambda_{\mathrm{e}}=6034 \mathrm{R} \\
& п=2 \text { in muonic } \mathrm{H}: \mathrm{a}=2.65 \lambda_{\mathrm{e}} \\
& n=1 \text { in h-like (Z=5Z) : a=2.65 } \lambda_{\text {e }}
\end{aligned}
$$

Extraction of the size dependence

- Fit to the Coulomb+Vacuum polarization contribution to 2s-Zp//2 separation, plus higher order corrections using Friar functional form

$$
\begin{aligned}
E_{2 p_{1 / 2}}^{\text {Tot,fs }}-E_{2 s_{1 / 2}}^{\text {Tot,fs }}(R) & =206.046613695-5.226988678 R^{2} \\
& +0.03532068001 R^{3} \\
& +0.00006692700063 R^{4} \\
& +0.0002962967640 R^{2} \log (R) \\
& -0.00004751147090 R^{4} \log (R) \mathrm{meV}
\end{aligned}
$$

Nonperturbative evaluation of some QED contributions to the muonic hydrogen n=2 Lamb shift and hyperfine structure, P. Indelicata. Phys. Rev. A 87, 0225II (2미).

Other contributions for $\mu \mathrm{P}$

\#	Contribution	Reference	Value	Unc.
1	NR three-loop electron VP (Eq. (11), (15), (18) and (23))	[73]	0.00529	
2	Virtual Delbrück scattering (2:2)	[75,78]	0.00115	0.00001
3	Light by light electron loop contribution (3:1)	[75, 78]	-0.00102	0.00001
4	Mixed self-energy vacuum polarization	[35, 84, 107]	-0.00254	
5	Hadronic vacuum polarization	[108-110]	0.01121	0.00044
6	Recoil contribution Eqs. (82) and (83)	[11, 36, 62, 85]	0.05747063	
7	Relativistic recoil of order (Za) ${ }^{5}$ Eq. (84)	[11, 37-39, 41]	-0.04497053	
8	Relativistic Recoil of order (Z $\alpha)^{6}$ Eq. (86)	[11, 37]	0.0002475	
9	Recoil correction to VP of order m / M and (m/M) ${ }^{2}$ in Eq. (4)	[72]	-0.001987	
10	Proton Self-energy	[35, 37, 41, 111]	-0.0108	0.0010
11	Proton polarization	[18, 37, 109, 112, 113]	0.0129	0.0040
12	Electron loop in the radiative photon of order $\alpha^{2}(\mathrm{Z} \alpha)^{4}$	[98, 114-116]	-0.00171	
13	Mixed electron and muon loops	[117]	0.00007	
14	Rad. Recoil corr. $\alpha(\mathrm{Z} a)^{5}$	[61]	0.000136	
15	Hadronic polarization $\alpha(\mathrm{Z} \alpha)^{5} \mathrm{~m}_{r}$	[109, 110]	0.000047	
16	Hadronic polarization in the radiative photon $\alpha^{2}(Z \alpha)^{4} m_{r}$	[109, 110]	-0.000015	
17	Polarization operator induced correction to nuclear polarizability $a(Z a)^{5} m_{r}$	[110]	0.00019	
18	Radiative photon induced correction to nuclear polarizability $a(Z a)^{5} m_{r}$	[110]	-0.00001	
	Total		0.0256	0.0041

The role of the nuclear model

Dependence on the charge distribution

UPMC
inat PARISUNIVERSITAS

Nuclear Models and experiment

- Using the electronic density from Arrington et al. I get
- $\mathrm{Rp}=0.85035 \mathrm{fm} \mathrm{Rm}=0.831 \mathrm{fm} \mathrm{Rz}=1.04 \mathrm{BE} \mathrm{fm}$
- Dirac + Uehling vacuum polarization with this density:
- $\mathrm{E}=201.2789 \mathrm{meV}$
- Dirac + Uehling vacuum polarization with same radius and other models
- Gauss: E=201.2680 (-0.0109) meV
- Dipole: E=201.270 (-D.0089) meV
- Uniform: E=201.2669 (-0.ㅁ120) meV
- Fermi: E=201.2686 (-D.0102)
- Solving EDipole $(\mathbb{R})=201.2788$ meV gives:
- R=0.84334 (-0.0이미) fm

Proton polarization

- Several calculations
- Rosenfelder (I993)

$$
\Delta E_{2 s}^{\mathrm{p} \cdot \mathrm{pol}}=-\frac{136 \pm 30}{n^{3}} \mu \mathrm{eV}=-0.017 \pm 0.004 \mathrm{meV}
$$

- Pachucki (1949) $\Delta E_{2 s}^{\text {p.pol }}=-0.012 \pm 0.002 \mathrm{meV}$,
- Martynenka (200]) $\Delta E_{2 s}^{\text {p.pol }}=\Delta E^{\text {subt. }}+\Delta E^{\text {inel. }}$

$$
=0.0023-0.01613 \mathrm{meV}
$$

$$
=-0.0138(29) \mathrm{meV},
$$

- Carlson and Vanderhaeghen (2ロII) $\Delta E_{2 s}^{\text {p.pol }}=\Delta E^{\text {subt. }}+\Delta E^{\text {inel. }}+\Delta E^{\text {el. }}$

$$
\begin{aligned}
& =0.0053(19)-0.0127(5)-0.0295(13) \mathrm{meV} \\
& =-0.0074(20)-0.0295(13) \mathrm{meV} .
\end{aligned}
$$

- Hill and Paz (20II+DPF 2DII)

$$
\begin{aligned}
\Delta E_{2 s}^{\text {p.pol }} & =\Delta E^{\text {subt. }}+\Delta E^{\text {inel. }} \\
& =\left[\delta E^{W_{1}\left(0, Q^{2}\right)}+\delta E^{\text {proton pole }}\right]+\delta E^{\text {continuum }}
\end{aligned}
$$

$$
\text { Could be wrong by } 0.04 \mathrm{meV} \Longrightarrow\left\{\delta E^{W_{1}\left(0, Q^{2}\right)}+0016\right]-0.0127(5) \mathrm{meV},
$$

- Several calculations

- Proton polarisability contribution to the Lamb shift in muonic hydrogen at faurth order in chiral perturbation theory. M.C. Birse et J.A. McGovern. Eur. Phys. J. A 48, I-G (2012).

We calculate the amplitude TI for farward doubly virtual Compton scattering in heavy-baryon chiral perturbation theory, to fourth arder in the chiral expansion and with the leading contribution of the $\gamma N \Delta$ form factar. This provides a model-independent expression far the amplitude in the low-momentum region, which is the dominant one far its contribution to the Lamb shift. It allows us to significantly reduce the thearetical uncertainty in the proton polarisability contributions to the Lamb shift in muonic hydrogen. We also stress the importance of consistency between the definitions of the Barn and structure parts of the amplitude. Dur result leaves no room for any effect large enough to explain the discrepancy between proton charge radii as determined from muonic and normal hydragen.

No radial excitations in low energy QCD. I. Diquarks and classification of mesons, T. Friedmann. The Eurapean Physical Journal C 73, 2788 (2013)
No radial excitations in low energy QCD. II. The shrinking radius of hadrons, T. Friedmann. The Eurapean Physical Journal C 73 , 2299 (2013).

multipole	Eqn.	ZRA Ref. [5]		diff	$\%$	sum-0	sum-[5]
leading C1	13	1.925	1.910	0.015	0.8	1.925	1.910
sub-leading C1	14	-0.037	-0.035	-0.002	7.0	1.888	1.875
C 0	16	-0.042	-0.045	0.003	-7.6	1.846	1.830
retarded C1	17	0.137	0.151	-0.014	-9.4	1.983	1.981
C 2	18	-0.061	-0.066	0.005	-7.9	1.922	1.915
M1	19	-0.011	-0.016	0.005	-34.0	1.912	1.899
$\left\langle r^{3}\right\rangle_{(2)}^{p p}$ f.s.	15	0.030				1.942	
pn correl. f.s.	15	-0.023			1.920		
retarded C1 f.s.	17	0.021				1.941	
C0+ret-C1+C2		0.034	0.040	-0.006	-14.0		

IVIaınz IVIIIP Uct. 2013

Chen Ji, Nir Nevo Dinur, Sonia Bacca, Nir Barnea (arXiv:1307.6577)
TABLE I. Nuclear polarization contributions to the $2 S-2 P$ Lamb shift $\Delta E[\mathrm{meV}]$ in $\mu \mathrm{D}$, compared to Pachucki [17].

	Ref. [17]	This work
$\delta_{D 1}^{(0)}$	-1.910	-1.907
$\delta_{L}^{(0)}$	0.035	0.029
$\delta_{T}^{(0)}$	-	-0.012
$\delta_{C}^{(0)}$	0.261	0.259

MLKB

Hyperfine structure

Beyond Zemach

Hyperfine structure

$$
\begin{aligned}
\Delta E_{\mathrm{M} 1}^{\mathrm{HFS}}= & A \frac{g \alpha}{2 M_{p}} \int_{0}^{\infty} d r \frac{P_{1}(r) Q_{2}(r)+P_{2}(r) Q_{1}(r)}{r^{2}}, \\
\Delta E^{B W}= & -A \frac{g \alpha}{2 M_{p}} \int_{0}^{\infty} d r_{n} r_{n}^{2} \mu\left(r_{n}\right) \\
& \times \int_{0}^{r_{n}} d r \frac{P_{1}(r) Q_{2}(r)+P_{2}(r) Q_{1}(r)}{r^{2}}, \\
\Delta E_{\mathrm{HFS}}^{\mathrm{Z}}= & -\frac{2}{3}\left\langle S_{p} \cdot \boldsymbol{S}_{\mu}\right\rangle\left|\phi_{C}(0)\right|^{2} \\
& \times\left(1-2 \alpha m_{\mu} \int \rho(u)|u-r| \mu(r) d u d r\right), \\
= & E_{\mathrm{F}}\left(1-2 \alpha m_{\mu} \int \rho(u)|u-r| \mu(r) d u d r\right),
\end{aligned}
$$

$$
\Delta E_{\mathrm{HFS}}^{\mathrm{Z}}=E_{\mathrm{F}}\left(1-2 \alpha m_{\mu}\left\langle r_{\mathrm{Z}}\right\rangle\right)
$$

Fig. 10. Finite charge and magnetic moment distribution energy shift for the $2 s$ state as a function of the charge R and Zemach radius R_{Z} for the Gaussian ($R_{\mathrm{Z}}=1.045 \mathrm{fm}$) and exponential model, divided by R_{Z}. The lines correspond to the function in Eq. (90).

$M \operatorname{LKB}$
 Hyperfine structure FS corrections

$$
\begin{aligned}
E_{\mathrm{HFS}}^{2 \mathrm{~s}}\left(R_{\mathrm{Z}}, R\right) & =22.807995 \\
& -0.0022324349 R^{2}+0.00072910794 R^{3} \\
& -0.000065912957 R^{4}-0.16034434 R_{\mathrm{Z}} \\
& -0.00057179529 R R_{\mathrm{Z}} \\
& -0.00069518048 R^{2} R_{\mathrm{Z}} \\
& -0.00018463878 R^{3} R_{\mathrm{Z}} \\
& +0.0010566454 R_{\mathrm{Z}}^{2} \\
& +0.00096830453 R R_{\mathrm{Z}}^{2} \\
& +0.00037883473 R^{2} R_{Z}^{2} \\
& -0.00048210961 R_{\mathrm{Z}}^{3} \\
& -0.00041573690 R R_{\mathrm{Z}}^{3} \\
& +0.00018238754 R_{\mathrm{Z}}^{4} \mathrm{meV} .
\end{aligned}
$$

Full calculation beyond Zemach

Nonperturbative evaluation of some QED contributions to the muonic hydrogen $n=2$ Lamb shift and hyperfine structure, P. Indelicato. Phys. Rev. A 87, 022501 (2013).
$E_{\text {HFS }}^{2 s, V P}\left(R_{Z}, R\right)=0.074369030+0.000074236132 R^{2}$
$+0.00013277334 R^{3}-8.0987285 \times 10^{-6} R^{4}$
$-0.0017880269 R_{\mathrm{Z}}-0.00017204505 R R_{\mathrm{Z}}$
$-0.00037499458 R^{2} R_{Z}$
$-0.000070355379 R^{3} R_{\text {Z }}$
$-0.00022093411 R_{Z}^{2}+0.00035038656 R R_{Z}^{2}$
$+0.00020554316 R^{2} R_{\mathrm{Z}}^{2}+0.00025100642 R_{\mathrm{Z}}^{3}$
$-0.00017200435 R R_{Z}^{3}$
$-0.000061266973 R_{Z}^{4} \mathrm{meV}$.

Would need to be evaluated as well Results HFS

	\#	Ref. [40]	Ref. [70]	This work
Fermi energy	1	22.8054	22.8054	
Dirac Energy (includes Breit corr.)	2			22.807995
Vacuum polarization corrections of orders α^{5}, α^{6} in 2nd-order perturbation theory $\epsilon_{V P 1}$	3	0.0746	0.07443	
All-order VP contribution to HFS, with finite magnetisation distribution	4			0.07244
finite extent of magnetisation density correction to the above	5		-0.00114	
Proton structure corr. of order α^{5}	6	-0.1518	-0.17108	-0.17173
Proton structure corrections of order α^{6}	7	-0.0017		
Electron vacuum polarization contribution+ proton structure corrections of order a^{6}	8	-0.0026		
contribution of 1γ interaction of order α^{6}	9	0.0003	0.00037	0.00037
$\epsilon_{V p} 2 E_{F}$ (neglected in Ref. [40])	10		0.00056	0.00056
muon loop VP (part corresponding to $\epsilon_{\text {VP2 }}$ neglected in Ref. [40])	11		0.00091	0.00091
Hadronic Vac. Pol.	12	0.0005	0.0006	0.0006
Vertex (order α^{5})	13		-0.00311	-0.00311
Vertex (order α^{6}) (only part with powers of $\ln (\alpha)$ - see Ref. [103])	14		-0.00017	-0.00017
Breit	15	0.0026	0.00258	
Muon anomalous magnetic moment correction of order α^{5}, α^{6}	16	0.0266	0.02659	0.02659
Relativistic and radiative recoil corrections with proton anomalous magnetic moment of order α^{6}	17	0.0018		
One-loop electron vacuum polarization contribution of 1γ interaction of orders $\alpha^{5}, \alpha^{6}\left(\epsilon_{V P 2}\right)$	18	0.0482	0.04818	0.04818
finite extent of magnetisation density correction to the above	19		-0.00114	-0.00114
One-loop muon vacuum polarization contribution of 1γ interaction of order α^{6}	20	0.0004	0.00037	0.00037
Muon self energy + proton structure correction of order α^{6}	21	0.001		0.001
Vertex corrections + proton structure corrections of order α^{6}	22	-0.0018		-0.0018
"Jellyfish" diagram correction+ proton structure corrections of order α^{6}	23	0.0005		0.0005
Recoil correction Ref. [104]	24		0.02123	0.02123
Proton polarizability contribution of order α^{5}	25	0.0105		
Proton polarizability Ref. [104]	26		0.00801	0.00801
Weak interaction contribution	27	0.0003	0.00027	0.00027
Total		22.8148	22.8129	22.8111

－Using the second line measured during the experiment we can imprave the charge radius and get a value for the Zemach＇s radius．

```
E 2p/Z
    +0.035105381R
    +0.000085386880R4
    +1.5472388\times10-8}\mp@subsup{0}{}{-8
    -2.1359270\times10-9 尔
    +0.040533092Rz
    +0.00018596008RRz
    +0.00026754376\mp@subsup{R}{}{2}Rz
    +0.000063748539R 每Rz
    -0.00020892783R\mp@subsup{z}{}{2}
    -0.00032967277RR\mp@subsup{z}{}{2}
    -0.00014609447R R R R '
    +0.000057775798Rzz
    +0.00014693531RR2}\mp@subsup{}{}{3
    -0.000030280142Rz
    +0.00029629676\mp@subsup{R}{}{2}\operatorname{log}(R)
    -0.000047511471\mp@subsup{R}{}{4}\operatorname{log}(R)
        meV.
```

```
E 2PvN/ 
    +0.035967212R
    +0.000011416693R午
    -0.12159928R\mp@subsup{R}{Z}{}-0.00055788025RR\mp@subsup{R}{Z}{}
    -0.00080263129R政
    -0.00019124562R 3}\mp@subsup{R}{z}{
    +0.00062678350RR
    +0.00098901832RR2
    +0.00043828342R海
    -0.00017332740R Z
    -0.00044080593RR每
    +0.000090840426R支
    +0.00029629676R2}\operatorname{log}(R
    -0.000047511471R 年奠(R)
        meV.
```

Simultaneous solution of these two equations with the two line energies

Assuming a dipole madel，this gives Rm： $0.878(5 \mathrm{CD}) \mathrm{fm}$ Mainz results：Rc $=0.879 \mathrm{fm}, \mathrm{Rm}=0.777 \mathrm{fm}$ and $\mathrm{Rz}=1.047 \mathrm{fm}$

Extracting the magnetic radius

- We can extract the magnetic radius by using the dipole madel to be consistent withe the calculations.

$$
R_{\mathrm{Z}}^{\text {Exp. }}=\frac{3 R^{4}+9 R^{3} R_{\mathrm{M}}+11 R^{2} R_{\mathrm{M}}^{2}+9 R R_{\mathrm{M}}^{3}+3 R_{\mathrm{M}}^{4}}{2 \sqrt{3}\left(R+R_{\mathrm{M}}\right)^{3}}
$$

Simultaneaus solution of the two equations with the two line energies $\mathrm{Rc}=0.841 \mathrm{CD}(\mathrm{G3})$ fm and $\mathrm{Rz}=1.086(4 \mathrm{D})$ fm Assuming a dipole model, this gives Rm: 0.877 (50) fm Mainz results: Rc $=0.879 \mathrm{fm}, \mathrm{Rm}=0.777 \mathrm{fm}$ and $\mathrm{Rz}=1.047 \mathrm{fm}$

A magnetic radius larger than the charge radius leads to large discrepancies when applied to electron proton scattering data

Summary of results: charge radius

$$
\begin{array}{rlrl}
\nu\left(2 S_{1 / 2}^{F=1} \rightarrow 2 P_{3 / 2}^{F=2}\right)= & 49881.88(76) \mathrm{GHz} \quad \text { R. Pohl et al, Nature 466, 213 (2010) } \\
& 49881.35(64) \mathrm{GHz} \quad & \\
& & \\
\nu\left(2 S_{1 / 2}^{F=0} \rightarrow 2 P_{3 / 2}^{F=1}\right)= & 54611.16(1.04) \mathrm{GHz} \quad \begin{aligned}
\text { Antognini, F. Nez, K. } \\
\text { Schuhmann, et al., Science } \\
339,417(2013) .
\end{aligned}
\end{array}
$$

Proton charge radius: $\quad r_{\mathrm{p}}=0.84089(26)_{\exp }(29)_{\mathrm{th}}=0.84089(39) \mathrm{fm}$ $\mu \mathrm{p}$ theory:
A. Antognini, F. Kottmann, F. Biraben, et al.,

Annals of Physics 331, 127 (2013).

Summary of results: Zemach radius

2 S hyperfine splitting in $\mu \mathrm{p}$ is: $\quad \Delta E_{\mathrm{HFS}}=22.8089(51) \mathrm{meV}$
gives a proton Zemach radius $r_{Z}=\int \mathrm{d}^{3} r \int \mathrm{~d}^{3} r^{\prime} r \rho_{E}(r) \rho_{M}\left(r-r^{\prime}\right)$

$$
r_{Z}=1.082(31)_{\exp }(20)_{\mathrm{th}}=1.082(37) \mathrm{fm}
$$

$\mu \mathrm{p}$ theory: A. Antognini, F. Kottmann, F. Biraben, et al.,

$\mu \mathrm{p} 2012$							
Distler 2011 (e-p)							
Volotka 2005 (H) \longmapsto							
Friar 2005 (e-p) \longmapsto ¢							

Summary of present status

High-precision measurement of the proton elastic form factor ratio at low, X. Zhan, et al Physics Letters B 705, 59-64 (2011).

New 2013: deuterium charge radius

CODATA-2010

CODATA D + e-d

e-d scatt.

Deuteron charge radius [fm]

New 2013: deuterium charge radius

$$
\mu \mathrm{H}+\text { iso } \mathrm{H} / \mathrm{D}(1 \mathrm{~S}-2 \mathrm{~S})
$$

CODATA-2010

CODATA D + e-d
e-d scatt.

Deuteron charge radius [fm]

New 2013: deuterium charge radius

$$
\begin{gathered}
\mu \mathrm{D} 2013 \\
\mu \mathrm{H}+\text { iso } \mathrm{H} / \mathrm{D}(1 \mathrm{~S}-2 \mathrm{~S})
\end{gathered}
$$

CODATA-2010

CODATA D + e-d
e-d scatt.

Deuteron charge radius [fm]

New 2013: deuterium charge radius

$$
\begin{gathered}
\mu \mathrm{D} 2013 \\
\mu \mathrm{H}+\text { iso } \mathrm{H} / \mathrm{D}(1 \mathrm{~S}-2 \mathrm{~S})
\end{gathered}
$$

CODATA-2010
CODATA D + e-d
e-d scatt.

It is not possible to extract the magnetic mament distribution
Deuteron charge radius [fm] radius: uncalculated $\mu \mathrm{D}$ 2S hyperfine structure polarization спггесtion.

MLKB

Other measurements

How to get the radius from hydrogen and electron-proton scattering

- Needed: new measurements with independent systematic errars and get an independent Rydberg constant value:
- 2S-4P in H (Garching)
- 2S-nS.D in H (J. Flowers. NPL)
- IS-3S (Garching, Paris)
- transitions between Rydberg states of heavy H-like ion (NIST)
- IS-2S and IS hfs in ue (A. Antognini, PSI)

$r_{\mathrm{e}}=0.84 \mathrm{fm}, r_{\mathrm{m}}=0.87 \mathrm{fm}$
$r_{\mathrm{e}}=0.90 \mathrm{fm}, r_{\mathrm{m}}=0.82 \mathrm{fm}$
Bernauer fit (solid) and
$r_{\mathrm{e}}=0.88 \mathrm{fm}, r_{\mathrm{m}}=0.78 \mathrm{fm}$

Mainz MITP Oct. 2013

Electron-Proton scattering

$r_{\mathrm{e}}=0.84 \mathrm{fm}, r_{\mathrm{m}}=0.87 \mathrm{fm} \quad$ Bernauer fit
$r_{\mathrm{e}}=0.90 \mathrm{fm}, r_{\mathrm{m}}=0.82 \mathrm{fm}$
M.D. Distler, Trenta, 2012

MLKB

Possible origin of the discrepancy

Systematic errors or new physics?

- Frequency shift: unlikely - several redundant measurements at 708 nm (FabryPerat, two-phaton transition in Rb) and $Б \mu \mathrm{~m}$ (water lines)
- μ épmalecules ar p p μ malecules. Nat passible - Why Three-Bady Physics Daes Not Solve the Proton-Radius Puzzle, J.-P. Karr and L. Hilico. Phys. Rev. Lett. III, 103401 (2012).
- Experimental problems, e.g., a small air leak in the hydragen target: we see characteristic $\mu \mathrm{N}$ and $\mu \mathrm{Cl}$ x-rays
- Less than 1% of all created $\mu \mathrm{P}$ atoms see any N_{2} molecules
- Less than $\mathrm{D} .1 \%$ of all $\mu \mathrm{P}$ in 2 S state see any N_{2} molecule during laser time
- $\mu \mathrm{P}$ theary: many checks, no effect seems large enough to explain a 0.3 meV energy shift, probably not even proton polarization (30 times too small)

Possible origin for the discrepancy

- Electron-protan elastic scattering data analysis
- Under-estimated systematic errors in some hydrogen measurements
- possible, but many different kind of experiments (microwave, Is-3s, 2s-ns and $2 s$-nd)
- Praton structure
- New physics
- Constraints:
- g-2 of the muon (30),
- g -2 of the electron (Harvard)+fine structure canstant from atomic recail (LKB)
- Hydrogen
- Precision highly charged ions experiments at GSI (if long range interaction)
- ...

U டкв Unsolved problems in the muon corner...

Example: muon g-2, discrepancy not solved after improved QED calculation

For electrons:

$$
\begin{aligned}
& \alpha^{-1}\left(a_{e}\right)=137.0359991727(68)(46)(19)(331) \\
& \alpha^{-1}=137.035999037(91)
\end{aligned}
$$

Reevaluation of the hadronic contributions to the muon g-2 and to \$lalpha ($\left.M^{\wedge}\{2\} _\{Z\}\right) \$^{\prime \prime}, \mathrm{M}$. Davier, A. Hoecker, B. Malaescu and Z. Zhang. The European Physical Journal C - Particles and Fields 71, 1-13 (2011).

Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant, T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio. Phys. Rev. Lett. 109, 111807 (2012).
Complete Tenth-Order QED Contribution to the Muon g-2, T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio. Phys. Rev. Lett.
109, 111808 (2012).

Toward a resolution of the proton size puzzle, G.A. Miller, A.W. Thomas, J.D. Carroll and J. Rafelski. Phys. Rev. A 84, CODIIII (20II).

. 31 meV for uH and SHz for hydragen (with model dependent parametrization)

FIG. 1: Direct two-photon exchange graph corresponding to the hitherto neglected term. The dashed line denotes the
lepton; the solid line, the I and the ellipse the off-shell I

We next seek values of the model parameters λ, b, ξ of $F\left(-q^{2}\right)$. chosen to reproduce the value of the energy shift, 0.31 meV , to resolve the puzzle. With $\xi=0, \widetilde{\Lambda}=\Lambda, \lambda / b^{2}=$ $2.35 /(79 \mathrm{MeV})^{2}$ is required. With this value, the corresponding change in the electronic H Lamb shift for the 2 S state is about 9 Hz , significantly below the current uncertainty in both theory and experiment [3]. If ξ is changed substantially from 0 to 1 our value of λ would be increased by about 10%. Other tests of this effect could show sensitivity to the value of ξ or $\tilde{\Lambda}$.

No other work supports such a large effect

- Proton Size Anomaly, V. Barger, C.-W. Chiang, W.-Y. Keung et al. Phys. Rev. Lett. ICB, 1530Iㅣ (20II):
A measurement of the Lamb shift in muonic hydrogen yields a charge radius of the proton that is smaller than the CTDATA value by about 5 standard deviations. We explore the possibility that new scalar, pseudoscalar, vector, and tensor flavor-conserving nonuniversal interactions may be responsible for the discrepancy. We consider exotic particles that, among leptons, couple preferentially to muons and mediate an attractive nucleon-muon interaction. We find that the many constraints from low energy data disfavor new spin-प, spin-I, and spin-2 particles as an explanation.
- Lamb shift in muonic hydrogen--II. Analysis of the discrepancy of theary and experiment, U.D. Jentschura. Annals of Physics 326, 51G-533 (20II). No unstable vector bosan, no millicharged particles,

Where could it come from?

- New physics and the proton radius problem, C.E. Carlson and B.C. Rislow. Physical Review D 8 , 035013 (2012):
- Particles that couple to muons and hadrons but not electrons
- For the scalar-pseudoscalar madel, masses between ICO to 200 MeV are not allowed.
- For the vector model, masses below about 200 MeV are not allowed. The strength of the couplings for both models approach that of electrodynamics for particle masses of about 2 GeV.
- New physics with fine-tuned couplings may be entertained as a possible explanation for the Lamb shift discrepancy.
- New Parity-Violating Muonic Forces and the Proton Charge Radius, B. Batell, D. McKeen and M. Pospelov. Phys. Rev. Lett. ID7, DIII83 (201I).
- We identify a class of madels with gauged right-handed muon number, which contains new vector and scalar force carriers at thel0 MeV scale ar lighter, that is consistent with observations.
- Such forces would lead to an enhancement by several orders-of-magnitude of the parityviolating asymmetries in the scattering of low-energy muons on nuclei.

Where could it come from?

Muonic hydrogen and MeV forces. D. Tucker-Smith et I. Yavin. Physical Review D 83. 101702 (201I).

We explore the possibility that a new interaction between muons and protans is responsible for the discrepancy between the CDDATA value of the proton-radius and the value deduced from the measurement of the Lamb shift in muonic hydrogen. We show that a new force carrier with roughly MeV-mass can account for the observed energyshift as well as the discrepancy in the muon anomalous magnetic moment. However, measurements in other systems constrain the couplings to electrons and neutrons to be suppressed relative to the couplings to muons and protons, which seems challenging from a theoretical point of view. Dne can nevertheless make predictions for energy shifts in muonic deuterium, muonic helium, and true muonium under the assumption that the new particle couples dominantly to muons and protons.

Where could it come from?

Muonic hydrogen and MeV farces, D. Tucker-Smith at I. Yavin. Physical Review D 83, 101702 (201I).

Where could it come from?

Nonidentical protons, T. Mart et A. Sulaksonn. Phys. Rev. C 87, 025807 (2013).

We have calculated the proton charge radius by assuming that the real proton radius is not unique and the radii are randomly distributed in a certain range. This is performed by averaging the elastic electron-proton differential cross section over the form factor cutoff. By using a dipole form factor and fitting the middle value of the cutoff to the low-Q2 Mainz data, we found the lowest $X 2 / \mathrm{N}$ for a cutoff $=0.8203 \pm 0.0003 \mathrm{GeV}$, which corresponds to a proton charge radius $\mathrm{re}=0.8333 \pm 0.0004 \mathrm{fm}$. The result is compatille with the recent precision measurement of the Lamb shift in muonic hydrogen as well as recent calculations using more sophisticated techniques. Dur result indicates that the relative variation of the form factor cutoff should be around 21.5%. Based on this result we have investigated effects of the nucleon radius variation on the symmetric nuclear matter (SNM) and the neutron star matter (NSM) by considering the excluded volume effect in our calculation. The mass-radius relation of a neutron star is found to be sensitive to this variation. The nuclean effective mass in the SNM and the equation of state of both the SNM and the NSM extibitit a similar sensitivity.

Where could it come from?

No radial excitations in low energy QCD. II. The shrinking radius of hadrons, T. Friedmann.
The European Physical Journal 73 , 2299 (2013).
We discuss the implications of our priar results obtained in our companion paper (Eur. Phys. ل. $〔(2013)$). Inescapably, they lead to three laws governing the size of hadrons, including in particular protons and neutrons that make up the bulk of ardinary matter: (a) there are no radial excitations in low-energy RCD; (b) the size of a hadron is largest in its ground state; (c) the hadron's size shrinks when its arbital excitation increases. The second and third laws follow from the first law. It follows that the path from confinement to asymptotic freedom is a Regge trajectory. It also follows that the top quark is a free, albeit short-lived, quark.

Note added Nine months after this paper was ariginally posted ta arXiv [32, 33], an experiment studying muonic hydrogen [34], repeated more recently [35], observed a smaller size of the proton than previiusly expected, consistent with our predicitions. It is possible that this is a manifestation of our three laws, and may be a RCD, rather than QED, effect.

\bullet •PROTON RADIUS PUZZLE AND LAREE EXTRA DIMENIINS, L.B. Wang et W.T. Ni. Modern Physics Letters A 28, I350094 (2013).

We propose a theoretical scenario to solve the proton radius puzzle which recently arises from the muonic hydrogen experiment. In this framework, 4 + n dimensional theary is incorporated with madified gravity. The extra gravitational interaction between the proton and muon at very short range pravides an energy shift which accounts far the discrepancy between spectrascopic results from muonic and electronic hydragen experiments. Assuming the modified gravity is a small perturbation to the existing electromagnetic interaction, we find the puzzle can be solved with stringent constraint on the range of the new farce. Dur result not only provides a passible solution to the proton radius puzzle but also suggest a direction to test new physics at very small length scale.

Can Large Extra Dimensions Solve the Proton Radius Puzzle? Zhigang Li, Xuelei Chen (http://arxiv.org/abs//303.5146vi)

The proton charge radius extracted from the recent muonic hydrogen spectroscopy [Antagnini et al. 20I3: Pohl et al. 2ОID] differs from the [CDATA 2ОID recommended value [Mahr et al. 2012] by more than 4\%. This discrepancy, dubbed as the "Proton Radius Puzzle", is a big challenge to the Standard Madel of particle physics, and has triggered a number of warks on the quantum electrodynamic calculations recently. The proton radius puzzle may indicate the presence of an extra correction which enlarges the 2S-2P energy gap in muonic hydragen. Here we explore the possibility of large extra dimensions which could madify the Newtonian gravity at small scales and lower the ZS state energy while leaving the ZP state nearly unchanged. We find that such effect could be produced by four ar more large extra dimensions which are allowed by the current constraints from low energy physics.

MLKB

What's next

Muonic Helium: experiment set up October 8th, 2013

Muonic He spectroscopy

Nuclear Physics A278 (1977) p. 381
but signal never reproduced (10 bars, 40 bars)

2011-2013 \rightarrow muonic helium spectroscopy (4 mbar) $\mu^{4} \mathrm{He}^{+} \quad \mu^{3} \mathrm{He}^{+}$

$-\mu \mathrm{He}^{+}$spectroscopy $+\mathrm{He}^{+}$spectroscopy \rightarrow QED test $(\mathrm{Z} \alpha)$

- improve He spectroscopy
$M L K B$

Muonic He spectroscopy

MLKB \quad Improve statistics...

Maving in on Dctober 3rd beam time until December 1Sth
Mainz MITP Oct. 2013

IF\% more from the beam time: reliquefying He Better disk laser
Much more intensity (no Raman shift)

Conclusions

- We have performed a 12.5 ppm measurement of the Lamb-shift in muonic hydragen
- The deduced praton radius using a Dipole madel is 6.5 standard deviations away from the hydragen and electron-proton elastic scattering data
- Better madeling of the proton farm-factar and polarization required to confirm ם г reduce the disagreement
- Experiment confirmed with 2nd $\mu \mathrm{H}$ line
- $3 \mu \mathrm{D}$ lines abserved and being analyzed
- No explanation of the discrepancy yet, but possibilities
- CED
- Problems with hydragen experiments
- New physics
- Muonic He in 20I3 (check of theary, different laser wavelength-in the red) predictions of measurable effects from new physics!!

MLKB CREMA 2011

[^0]: Mainz MITP Oct. 2013

