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A rapid definition
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Proton form factor

6

Vertex EM interaction: Dirac and Pauli Form factors 
(S, P: spin and 4-momentum of nucleon, f: quark flavor)

2 quarks up (2/3 e) + 1 quark down (-1/3 e) + strong interaction (gluons) u

d

u
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where W is Lambert’s (or productLog) function. The wave-

function and differential equation between 0 and r0 are

represented by a 10 terms series expansion. For a point

nucleus, the first point is usually given by r0 = 10
−2/Z and

h = 0.025. Here we used values down to r0 = 10
−7/Z and

h = 0.002 to obtain the best possible accuracy. For a finite

charge distribution, r0 is obtained by fixing the nuclear

boundary at some arbitrary value of nNuc large enough

to get a good accuracy. The evaluation of mean values of

operators to obtain first-order contributions to the energy

calculated as

∆EO =
� ∞

0

dr
�
P(r)

2 +Q(r)
2
�

=

� r0

0

dr
�
P(r)

2 +Q(r)
2
�

+

� ∞

r0

dt
dr
dt

�
P(r(t))2 +Q(r(t))2

�
(6)

using 8 and 14 points integration formulas due to Roothan.

Both integration formulas provide identical results within

9 decimal places.

2.1 Charge distribution models

For the proton charge distribution, mostly two models

have been used. The first one correspond to a dipole pro-

ton Dirac (charge) form factor, the second is a gaussian

model. Here we also use a uniform and Fermi charge

distribution. These distribution are parametrized so that

they provide the same mean square radius R. We define

the moment of the charge distribution,

< rn >=
� ∞

0

r2+nρ(r)dr, (7)

where the nuclear charge distribution ρ(r) = ρN(r)/Z is

normalized by � ∞

0

ρ(r)r2dr = 1. (8)

The mean square radius is R =
√
< r2 >.

The potential can be deduced from the charge density

using the well known expression:

VNuc(r) =
1

r

� r

0

duρN(u)u2 +

� ∞

r
duuρN(u). (9)

The exponential charge distribution and potential are

written

ρN(r) = −Z
e
− r

c

2c3
,

VNuc(r) = −Z
�

1 − e
− r

c

r
− e

− r
c

2c

�
,

< r2 > = 12c2,

< rn > =
(n + 2)!cn

2
(10)

wich provides c = R
2
√

3
. The gaussian charge distribution

and potentials are given by

ρN(r) = −Z
4e
−( r

c )
2

√
πc3
,

VNuc(r) = −Z
Erf

�
r
c

�

r
,

< r2 > =
3c2

2
,

< r4 > =
15c4

4
,

< rn > =
2Γ
�

n+3

2

�
cn

√
π

, (11)

yielding c =
�

2

3
R. Erf(x) is the Error function. The Fermi

distribution is a two parameter distribution:

ρN(r) =
−Z

1 + e(4 ln(3)
r−c

t )
. (12)

Even though the relationship between c and R can be ex-

pressed in term of the polylogarithm function, it is not

very useful, as the potential itself must be evaluated by

direct numerical integration, using standard techniques

for the numerical evaluation of Eq. (9). The normalization

can be obtained by insuring that the potential behave as

−Z/r at infinity. The Fermi distribution is more suitable

for heavy nuclei, but it behaves closely to the Gaussian

distribution for the specific case where the thickness pa-

rameter t is set equal to c. We use this distribution as a

check, as it has been implemented in the MCDF code since

the origin and is well tested.

In electron-nucleon collision, the relevant quantity is

the Sach’s form factor defined as

GN(q2
) =

�
dre−iq ·r ρN(r)

4π
, (13)

which can be defined for both the electric charge and mag-

netic moment distribution. For the exponential model this

leads to

GN(q2
) =

1

�
1 +

R2q2

12

�2 ≈ 1 − R2

6
q2 +

R4

48
q4 + · · · (14)

while for the Gaussian model one gets

GN(q2
) = e−

1

6
R2q2 ≈ 1 − R2

6
q2 +

R4

72
q4 + · · · (15)

The two models have an identical R2/6 slope in q2
for

q→ 0 as expected (see, e.g, [54]).

A recent analysis of the world’s data on elastic electron-

proton scattering and calculations of two-photon exchange

effects provides the electric form factors, which have al-

lowed us to obtain a new estimate of charge radius [27].

Physical charge density are derived from the Sachs Form factors
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Even though the relationship between c and R can be ex-

pressed in term of the polylogarithm function, it is not

very useful, as the potential itself must be evaluated by

direct numerical integration, using standard techniques

for the numerical evaluation of Eq. (9). The normalization

can be obtained by insuring that the potential behave as

−Z/r at infinity. The Fermi distribution is more suitable

for heavy nuclei, but it behaves closely to the Gaussian

distribution for the specific case where the thickness pa-

rameter t is set equal to c. We use this distribution as a

check, as it has been implemented in the MCDF code since

the origin and is well tested.

In electron-nucleon collision, the relevant quantity is

the Sach’s form factor defined as

GN(q2
) =

�
dre−iq ·r ρN(r)

4π
, (13)

which can be defined for both the electric charge and mag-

netic moment distribution. For the exponential model this

leads to

GN(q2
) =
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12
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while for the Gaussian model one gets

GN(q2
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6
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6
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72
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The two models have an identical R2/6 slope in q2
for

q→ 0 as expected (see, e.g, [54]).

A recent analysis of the world’s data on elastic electron-

proton scattering and calculations of two-photon exchange

effects provides the electric form factors, which have al-

lowed us to obtain a new estimate of charge radius [27].

Measure the moments of the charge distribution:
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Electron-proton scattering

7

see S. Karshenboim in Can. J. 
Phys. 77, 241-266 (1999) 
and refs therein

Fit function a0+ a1q²+a2q4

H2

e- θ

momentum pi

energy Ei

e- pf

q = pf  - pi
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dσ(Ei,θ)
dω = dσRut.(Ei,θ)

dω GE(q2)
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Metrology in hydrogen

8

Highest precision experiments
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Hydrogen
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Proton size effect

1
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Hydrogen

10

2 466 061 413 187 103±46Hz
2000

2 466 061 413 187 035 ±10 Hz
2011

1
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Rydberg constant
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2006: R∞ = 10 973 731.568 525 ± 0.000 073m−1 (ur = 6.6 x 10−12) is the most accurately 
determined fundamental constant.
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Why re-measure the proton charge radius?

12
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Hydrogen

QED corrections

13
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H-like “Two Photon” order α2

H-like “One Photon” order α

Self Energy Vacuum Polarization

QED at order α and α2

14

 =                    +                         +                     +! 
Z α expansion; replace exact Coulomb propagator by expansion in number of interactions with the 
nucleus 
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Two-loop self-energy (1s)

V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. rev. A 71, 040101(R) (2005).
15
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Two-loop self-energy (1s)

V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. rev. A 71, 040101(R) (2005).

16

V. A. Yerokhin, Physical Review A 80, 040501 (2009) 
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Using muonic hydrogen

17

The exotic way...
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Lamb shift

18

Self-energy:
The heavier the particle, the smaller (in 

relative term) it is

1 GHz
n=2

2S1/2

2P1/2

Hydrogen (electron)
Effect of R: 6x10-11

Vacuum Polarization:
The closer the particle is, the stronger it is

50 THz

n=2

2S1/2(F=1)

2P3/2(F=2)

10-6s

Muonic Hydrogen
(muon 207 times heavier than the electron)

Effect of R: 1.7% 
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Exotic atom
µ−

p

• production of  muonic hydrogen in 2S 
• powerful triggerable 6µm laser
• small signal analysis

Challenges

Aim :  better  determination of  proton radius rp

1S

2S (1µs)

2P (8.5ps) 
Laser (6µm)

2keV

Experiment

muonic hydrogen 2S Lamb shift
determination of the “proton radius”
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The muonic hydrogen experiment

20

Getting up close and personal with the proton!
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“prompt” (t~0)

n~14

1%

99%

“delayed”  (t~1µs)

2S 2P

1S 1S

2S

2P
laser

2keV

µ-  stop in H2 gas
⇒ µp* atoms formed (n~14)

99%: cascade to 1S emitting
      prompt Kα,Kβ,…

1%: long lived 2S state (τ ~ 1µs at 1mbar)

Fire laser (λ~6µm, ΔE~0.2eV)
⇒ induce µp(2S-2P)

⇒ observe delayed Kα x-rays

⇒ normalize                        x-raysdelayed Kα
prompt Kα

time(µs)0.5 1.5 2.51 2

ev
en

ts

ppee + µ- → µ-p +…

H2

laser

Principle of the experiment
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Experimental set-up

22
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muon beam apparatus

23

PSC solenoid,

Muon extraction
 channel

π-    µ-+νµ
counting room

laser hut 
below 
concrete blocks

µp set up in πE5

H2 target, laser cavity,
detectors

mardi 1 octobre 2013



Mainz	  MITP	  Oct.	  2013

A muon’s Odyssey 

24
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A muon’s Odyssey 
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The laser trigger signal

25
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Laser chain

µ-  trigger

Thin disk laser (1030 nm) + LBO (515 nm)

pulsed TiSa oscillator + amplifier
 (708 nm determined by cw TiSa seeding)

Multipass cavity at 6μm 
surrounding the H2 target 

• Each single muon triggers the laser 
system (random trigger)
• 2S lifetime ~1µs → short laser delay (disk 
laser)
• 6 µm tunable laser pulse (0.2mJ)

6.02 µmRaman cell

Laser chain
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Laser chain

Thin disk laser 

•Large pulse energy: 85 (160) mJ
•Short trigger-to-pulse delay: ≤ 400 ns
•Random trigger
•Pulse-to-pulse delays down to 2 ms (rep. 
rate ≥ 500 Hz)

Laser chain

mardi 1 octobre 2013



Mainz	  MITP	  Oct.	  2013

Laser chain

MOPA TiSa laser
•cw laser, frequency stabilized

•referenced to a stable FP cavity
•FP cavity calibrated with I2, Rb, Cs 
lines
•FP = N . FSR (free spectral range)
•FSR = 1497.344(6) MHz

•cw TiSa frequency absolutely known to 
30 MHz
•Γ2P−2S = 18.6 GHz
•Seeded oscillator
•TiSa = cw → pulsed TiSa (frequency 
chirp ≤ 100 MHz)
•Multipass amplifier (2f- configuration)

•gain=10

Laser chain
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         H2 15.5 bars           
708 nm 6.02 µm

12 mJ 0.2 mJ

708 nm 1.00 µm
1.72 µm

6.02 µmv=1

v=0

4155,2 cm-1
H2

1st Stokes

2nd Stokes

3rd Stokes

Threshold 
but reliable

708 nm pump energy (mJ)

6 
µm

 e
ne

rg
y 

(m
J)

absorption@1662cm-1

in cell (37cm)

6 µm frequency calibration : H20 lines

Laser chain : Raman cell
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         H2 15.5 bars           
708 nm 6.02 µm

12 mJ 0.2 mJ

708 nm 1.00 µm
1.72 µm

6.02 µmv=1

v=0

4155,2 cm-1
H2

1st Stokes

2nd Stokes

3rd Stokes

Laser chain : Raman cell

•Vacuum tube for 6µm laser beam 
transport
•Direct frequency calibration at 6µm
•Well known lines
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Laser chain : frequency calibration

absorption@1662cm-1

in cell (37cm)

FSR measured/controlled  in cw with I2 (1 ph abs), Cs (2 ph fluo), Rb (2 ph fluo), lines

FP frequency

FSR
FP/H20FP/H20

H20 Line 1
in air 

H20 Line 2
in a cell 

µp 2S-2P

6µm pulsed frequency

Cw-TiSa frequency

I2 Line 1 ……..I2 Line xx Cs 2-ph

FP absolute frequency
calibration @ 6µm 

with H20 lines

ν(µp:2S-2P) = ν(H20 Line 2 ) + (N-N’) FSR

N N’

FP/I2
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The laser hut

32
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Ti:Sa and raman cell

33
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→ illuminate at 6 µm all the muon stopping volume (5×15×190 mm3)

muons

6 µm mirrors 

laser pulse

LAAPD (14´14mm²)

• coupling through a 0.63mm diameter hole
• R=99.90% at 6 µm
• 1000 reflections 
• 0.15mJ injected → 2S-2P saturated

Laser chain : multipass cavity
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• photon < 10keV → 1 shot in the LAAPD
• e-  in B = 5T → many counts in detectors 

µp Kα

n=1

Kα

Kβ

n=2
n=3

µp Krest

Krest

E(keV)

µNµO

L.Ludhova
phd thesis

µp Kβ

• E > 8keV  ⇔   electron
• 1keV < E < 8keV  ⇔  X ray
• E<1keV  ⇔ neutron 

energy signature in LAAPD
time signature in LAAPD

Example : FP 900 - 11 hrs meas.

1.56 million detector events

expected 2-3 laser induced events/hour !

target in the solenoid

 e- in B field

X-rays analysis → event gate sorting → noise rejection 
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Example : FP 900 - 11 hrs meas.
Ø 400 µ-/s
Ø 240 laser shot/s
Ø 860 000 laser shot/hour
Ø 1.56 million detector clicks
Ø 19600 clicks in the laser region
Ø expected 2-3 laser induced events/hour !

x rays multiplicity 1

µ→e νµ νe

LAAPD energy resolution

X-rays analysis → noise rejection 
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Time spectra

37
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New analysis: tacking into account more events

38

 1.9 keV Ka x-ray must followed by the detection of an MeV-energy electron, but there are several detectors
Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen, A. Antognini, F. 
Nez, K. Schuhmann et al. Science 339, 417-420 (2013).

mardi 1 octobre 2013



Mainz	  MITP	  Oct.	  2013

2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

• 550 events measured
• 155 backgrounds
• 31 FP fringes
• 250 hours 

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)
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2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)
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2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)

Discrepancy CODATA 
2010: 7σ (75 GHz)
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2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)
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2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)

Water-line/laser 
wavelength:
300 MHz uncertainty
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2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)
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2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)
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2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

→ proton charge radius (~0.1%)

R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).

muonic hydrogen : 2S1/2(F=1) - 2P3/2(F=2)

550 events measured on resonance
where 155 bgr events are expected
fit Lorentz + flat bgr⇒χ2/dof = 28.1/28

width agrees with expectation
bgr agrees with laser OFF data
χ2/dof = 283/31 for flat line → 16σ
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Reanalysis 2012
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New resonance 2012
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Statistics 
• uncertainty on position (fit)                              541 MHz  (~ 3 % of  Γnat) 

 Δνexperimental= 20 (1) GHz       ( Γnat = 18.6 GHz )

Sources :
• Laser frequency (H20 calibration, lines known to ~1 MHz)          300 MHz 
• AC and DC stark shift                                     < 1 MHz
• Zeeman shift ( 5 Telsa)                                       < 30 MHz
• Doppler shift                                             < 1 MHz
• Collisional shift                                                2 MHz

TOTAL UNCERTAINTY ON FREQUENCY                     618 MHz

Broadening :
• 6 µm laser line width     ~ 2 GHz
• Doppler Broadening     < 1 GHz
• Collisional broadening     2.4 MHz

Updated: ν (µp : 2S1/2(F=1)- 2P3/2(F=2))  <1σ                            (12.5 ppm)
Nature:     ν (µp : 2S1/2(F=1)- 2P3/2(F=2)) = 49 881.88 (76) GHz (16 ppm)

µP : 2S1/2(F=1) - 2P3/2(F=2) uncertainty budget
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Statistics 
• uncertainty on position (fit)                              960 MHz  

 
Sources :
• Laser frequency (H20 calibration)                             300 MHz 
• AC and DC stark shift                                 < 1 MHz
• Zeeman shift ( 5 Telsa)                               < 30 MHz
• Doppler shift                                         < 1 MHz
• Collisional shift                                            2 MHz

TOTAL UNCERTAINTY ON FREQUENCY             1006 MHz

Broadening :
• 6 µm laser line width     ~ 2 GHz
• Doppler Broadening     < 1 GHz
• Collisional broadening     2.4 MHz

ν (µp : 2S1/2(F=0)- 2P3/2(F=1)) good agreement with the other    
(18.5ppm)

µP : 2S1/2(F=0) - 2P3/2(F=1) uncertainty budget
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muonic deuterium : 2S1/2(F=3/2) - 2P3/2(F=5/2)

50815.491±0.815GHz
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muonic deuterium : 2S1/2(F=3/2) - 2P3/2(F=5/2)

50815.491±0.815GHz
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muonic deuterium : 2S1/2(F=1/2)- 2P3/2(F=3/2) and 2S1/2(F=1/2)- 2P3/2(F=1/2)

 52061.0±1.6GHz      preliminary        
52154.4±3.0GHz      preliminary         
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muonic deuterium : 2S1/2(F=1/2)- 2P3/2(F=3/2) and 2S1/2(F=1/2)- 2P3/2(F=1/2)

 52061.0±1.6GHz      preliminary        
52154.4±3.0GHz      preliminary         
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PRELIM
INARYStill to be investigated: possible shift due to proximity of both 

lines:
[1] Shifts due to distant neighboring resonances for laser 
measurements of 23S1-23PJ transitions of helium, A. Marsman,  
M. Horbatsch et E.A. Hessels. Phys. Rev. A 86, 040501 (2012).
[2] Shifts from a distant neighboring resonance for a four-
level atom, M. Horbatsch et E.A. Hessels. Phys. Rev. A 84, 
032508 (2011).
[3] Shifts from a distant neighboring resonance, M. 
Horbatsch et E.A. Hessels. Phys. Rev. A 82, 052519 (2010).
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Extraction of the radii

48

Charge, magnetic and Zemach’s radii
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New results

49

• 2010 CODATA value uses improved theory for hydrogen and Mainz electron-
proton scattering is now at 6.9σ mostly by a reduction of σ:

–  0.8775 (59) fm 2010
– 0.8768 (69) fm 2006

• We have analyzed in details the second transition that was observed, using an 
improved algorithm that correct for the variation of the laser pulse energy from 
shot to shot

• We take into account more events
• We have reanalyzed the first observed line using the improved method
• This lead to a slightly reduced error bar for the first transition, an accurate 

value of a second transition which allows to
– Get a measurement of the magnetic moment distribution mean radius
– An improved charge radius
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µP theory

50

QED
QED

QED
QED

How dependent on nuclear model?
How well is it calculated?

Discrepancy: 0.31 meV
Th. Uncertainty 0.0025 meV
That’s 120 times smaller!
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µP theory

51

Discrepancy: 0.31 meV
Th. Uncertainty 0.0025 meV
That’s 120 times smaller!
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QED and Hyperfine energy

• The two measured lines obey to:

52

E 5P3/2
− E 3S1/2

= ∆ELS +∆EFS + 3

8
∆EHFS(2p3/2)− 1

4
∆EHFS(2s)

E 3P3/2
− E 1S1/2

= ∆ELS +∆EFS − 5

8
∆EHFS(2p3/2) +

3

4
∆EHFS(2s)

2S1/2

F=1

F=0

F=1
F=0

2P1/2

2P3/2

F=2
F=1

5.56 THz

finite size 
0.96THz

2.03 THz

49.81 THz
~ 6 µm

(~708 nm)

Lamb shift
Fine structure

2p Hyperfine structure
2s hyperfine structure
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Contributions included to all-order

53

All-order: the charge distribution is included exactly in the wavefunction and in the operator, 
when relevant. Higher order Vacuum Polarization contribution included by numerical solution 
of the Dirac equation

a b

c d

+ +...

a b

Nonperturbative evaluation of some QED contributions to the muonic hydrogen n=2 
Lamb shift and hyperfine structure, P. Indelicato. Phys. Rev. A 87, 022501 (2013).

mardi 1 octobre 2013



Mainz	  MITP	  Oct.	  2013

Contributions included to all-order

53

a b

c d

+ +...

a b

Nonperturbative evaluation of some QED contributions to the muonic hydrogen n=2 
Lamb shift and hyperfine structure, P. Indelicato. Phys. Rev. A 87, 022501 (2013).
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Remark: scale of QED corrections

54

2 P. Indelicato, P.J. Mohr: non-perturbative calculations in muonic. . .

Ref. proton charge radius (fm) deuteron charge radius (fm)
Hand et al. [1] 0.805 ± 0.011 ±
Simon et a/ [2] 0.862 ± 0.012 ±
Mergel et al. [11] 0.847 ± 0.008
Sick et al. [12] ± 2.130 ± 0.010
Rosenfelder [13] 0.880 ± 0.015
Sick 2003 [14] 0.895 ± 0.018 ±
Angeli [15] 0.8791 ± 0.0088 2.1402 ± 0.0091
Kelly [16] 0.863 ± 0.004
hammer et al. [17] 0.848
CODATA 06 [10] 0.8768 ± 0.0069 2.1394 ± 0.0028
Arington et al. [18] 0.850
Belushkin et al. [19] SC approach 0.844 −0.004

+0.008
Belushkin et al. [19] pQCD app. 0.830 −0.008

+0.005
Babenko (a) [20] 2.124 ± 0.006
Babenko (b) [20] 2.126 ± 0.012
Pohl et al. [21] 0.84184 ± 0.00067
Ref. [21] and [22] 2.12809 ± 0.00031

r2
d − r2

p values
r2

d − r2
p (Fm2)

de Beauvoir (1996) 3.827 ± 0.026
Udem et al. [6] 3.8212 ± 0.0015
Angeli [15] 3.808 ± 0.054
CODATA 06 [10] 3.808 ± 0.024
Eides et al (2007) [23] 3.8203 ± 0.0007
Partney et al. (2010) [22] 3.82007 ± 0.00065

Table 1. Proton and deuteron charge radii. For the result corresponding to Ref. [18] see the analysis in Sec.2.1

In the present work, we use the latest version of the
MCDF code of Desclaux and Indelicato [44], which is de-
signed to calculate also properties of exotic atoms [45], to
evaluate exact contribution of the Uehling potential with
Dirac wavefunction and finite nuclear size. We evaluate
in the same way the Källén and Sabry contribution. Using
the same code, we also evaluate the hyperfine structure.

The next largest contribution comes from the muon
self-energy and muon-loop vacuum polarization. We use
the method developed by Mohr and Soff[46,47] to calcu-
late the self-energy in all order in Zα with non perturba-
tive finite-nuclear size contribution.

The paper is organized as follow. In Sec.2 we briefly re-
call the technique we use to solve the Dirac equation and
the different nuclear model we have used. In Sec. 3 we
evaluate the non-perturbative vacuum polarization con-
tribution, with finite nuclear size, and examine the effect
of the model used for the proton charge distribution. In
Sec.5, we evaluate the muon self-energy. The next section
is devoted to the hyperfine structure. Section 7 contains
results that enable to predict the different hyperfine com-
ponents of transition between the 2s and 2p levels, and
a detailed comparison with existing results, and Sec. 8 is
our conclusion.

2 Dirac equation and finite nuclear model

Techniques for the numerical solution of the Dirac equa-
tion in a Coulomb potential have been developed for

many years in the framework of the MultiConfiguration
Dirac-Fock (MCDF) method to solve the atomic many-
body problem [48–51].

The Dirac equation is written
�
cα ·p + βµrc2 + VNuc(r)

�
Φnκµ(r) = EnκµΦnκµ(r), (1)

where α and β are the Dirac 4 × 4 matrices, µr the par-
ticle reduced mass, VNuc(r) the nuclear potential, Enκµ
the atom total energy and Φ is a one-electron Dirac four-
component spinor :

Φnκµ(r) =
1
r

�
Pnκ(r)χκµ(θ,φ)

iQnκ(r)χ−κµ(θ,φ)

�
(2)

with χκµ(θ,φ) the two component Pauli spherical spinors
[49], n the principal quantum number, κ the Dirac quan-
tum number, and µ the eigenvalue of Jz . This reduces,
for a spherically symmetric potential, to the differential
equation:
�
αVNuc(r) − d

dr +
κ
r

d
dr +

κ
r αVNuc(r) − 2µrc

� � Pnκ(r)
Qnκ(r)

�
= αED

nκµ

� Pnκ(r)
Qnκ(r)

�

(3)
where Pnκ(r) and Qnκ(r) respectively the large and the
small radial components of the wavefunction, and Enκµ
the binding energy.

To solve this equation numerically, we use a 5 point
predictor-corrector method (order h7) [51,52] on a linear
mesh defined as

t = ln
� r

r0

�
+ ar, (4)

P. Indelicato, P.J. Mohr: non-perturbative calculations in muonic. . . 5

Table 2. Zemach radius values. “prot. elec. Scat.”: radius obtained from scattering data. “Hyd. HFS”: data obtained from hydrogen

hyperfine structure. “Comb.”: method combining both type of data.

Method Ref. RZ (fm) Rm
prot. Elec. Scat. [18], this work 1.0466 0.8309

Hyd. HFS [57] 1.045 ± 0.016

Hyd.,Prot. Elec. [54] 1.016 ± 0.016

prot. Elec. Scat. [58] 1.086 ± 0.012

prot. Elec. Scat. SC [19] 1.072 0.854 ± 0.005

prot. Elec. Scat. SC [19] 1.076 0.850 ± −0.007

+0.002

Hyd. HFS [59] 1.037 ± 0.016
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Fig. 1. Top: charge densities ρ(r), bottom: charge densities r2ρ(r)

for the experimental fits in Ref. [18], compared to Gaussian,

Fermi and exponential models distributions. All models are cal-

culated to have the same R = 0.850fm RMS radius as deduced

from the experimental function.

For a point charge, the Uëhling potential, which repre-

sents the leading contribution to the vacuum polarization,

is expressed as [62]

Vpn
11

(r) = −α(Zα)

3π

� ∞

1

dz
√

z2 − 1

�
2

z2
+

1

z4

� e−2merz

r

= −2α(Zα)

3π
1

r
χ1

�
2

λe
r
� (25)

where me is the electron mass, λe is the electron Compton

wavelength and the function χ1 belongs to a family of
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Fig. 2. Top: magnetic moment densities ρ(r), bottom: charge

densities r2ρ(r) for the experimental fits in Ref. [18], compared

to Gaussian, Fermi and exponential models distributions. All

models are calculated to have the same R = 0.831fm RMS radius

as deduced from the experimental function.

functions defined by

χn(x) =

� ∞

1

dze−xz 1

zn

�
1

z
+

1

2z3

� √
z2 − 1. (26)

The Uëhling potential for a spherically symmetric charge

distribution is expressed as [60]

V11(r) = −2α(Zα)

12π
1

r

� ∞

0

dr� r�ρ(r�)

×
�
χ2

�
2

λe
| r − r� |

�
− χ2

�
2

λe
| r + r� |

��
. (27)

Bohr radius/particle mass:

Electron Compton wavelength/2π=440 R
n=1 in hydrogen: a0=137λe=60340 R

n=2 in muonic H: a=2.65λe

n=1 in h-like (Z=52) : a=2.65λe
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Extraction of the size dependence

• Fit to the Coulomb+Vacuum polarization contribution to 2s-2p1/2 separation, plus 
higher order corrections using Friar functional form
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Nonperturbative evaluation of some QED contributions to the muonic hydrogen n=2 Lamb shift and hyperfine structure, P. 
Indelicato. Phys. Rev. A 87, 022501 (2013).
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The role of the nuclear model

Dependence on the charge distribution
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Nuclear Models and experiment
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• Using the electronic density from Arrington et al. I get
– Rp = 0.85035 fm Rm = 0.831 fm  Rz = 1.0466 fm

• Dirac + Uehling vacuum polarization with this density:
– E=201.2789 meV

• Dirac + Uehling vacuum polarization with same radius and other models
– Gauss: E=201.2680 (-0.0109) meV
– Dipole: E=201.2700 (-0.0089) meV
– Uniform: E=201.2669 (-0.0120) meV
– Fermi: E=201.2686 (-0.0102)

• Solving EDipole(R)=201.2789 meV gives:
– R=0.84934 (-0.00101) fm
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• Several calculations
– Rosenfelder (1999)

– Pachucki (1999)

– Martynenko (2006)

– Carlson and Vanderhaeghen (2011)

– Hill and Paz (2011+DPF 2011)
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Proton polarization
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Table 4. Finite size effect on the muon self-energy. Values of FNS(R,Zα) together with numerical accuracy.

Z R = 0.6 fm R = 0.875 fm R = 1.25 fm

20 3.4200 0.0002 3.3424 0.0001 3.2160 0.0001

25 3.0137 0.0001 2.9201 0.0001 2.7727 0.0001

30 2.7056 0.0001 2.5968 0.0001 2.4315 0.0001

35 2.4631 0.0001 2.3399 0.0001 2.1592 0.0001

40 2.26717 0.00006 2.13003 0.00005 1.93616 0.00004

45 2.10558 0.00003 1.95498 0.00003 1.74986 0.00002

50 1.97006 0.00004 1.80640 0.00004 1.59170 0.00004

55 1.85474 0.00003 1.67842 0.00003 1.45565 0.00003

60 1.75537 0.00001 1.56678 0.00001 1.33732 0.00001

65 1.66873 0.00002 1.46832 0.00001 1.23342 0.00001

70 1.59235 0.00002 1.38061 0.00002 1.14144 0.00002

75 1.52430 0.00002 1.30179 0.00002 1.05943 0.00002

80 1.46301 0.00001 1.23037 0.00001 0.98584 0.00001

85 1.407206 0.000006 1.165172 0.000006 0.919446 0.000007

90 1.355868 0.000002 1.105262 0.000002 0.859236 0.000003

Z R = 1.5 fm R = 2.130 fm R = 0 fm

20 3.12370 0.00004 2.87976 0.00016 3.506648

25 2.66826 0.00007 2.40251 0.00007 3.122959

30 2.31779 0.00009 2.03903 0.00009 2.838839

35 2.03861 0.00009 1.75329 0.00012 2.622336

40 1.81063 0.00004 1.52348 0.00005 2.454829

45 1.62090 0.00002 1.33529 0.00004 2.324690

50 1.46059 0.00004 1.17897 0.00005 2.224337

55 1.32344 0.00003 1.04756 0.00004 2.148727

60 1.20487 0.00001 0.93596 0.00002 2.094518

65 1.101443 0.000004 0.840336 0.000006 2.059611

70 1.01053 0.00001 0.757771 0.000004 2.042891

75 0.93008 0.00001 0.685993 0.000008 2.044115

80 0.85847 0.00001 0.623211 0.000007 2.063906

85 0.794378 0.000008 0.567998 0.000005 2.103876

90 0.736752 0.000003 0.519234 0.000094 2.166883

as a cut-off parameter:
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For the 2s level, for which the two expressions differ, Eq.

(88) gives ∆Eprot.
SE

(n, l) = 0.0108 meV, while Eq. (89) gives

∆Eprot.
SE

(n, l) = 0.0098 meV. We retain the first expression

and assign the difference as uncertainty.

7.2 Hadronic vacuum polarization

The hadronic contributions comes from both vacuum po-

larization from virtual pions and other resonances like

ω and ρ. The hadronic polarization correction has been

evaluated for hydrogen [91,92], for muonic hydrogen by

Borie [93,94] and more recently by Friar and coll. [92] and

Martynenko and Faustov [95,96,97], using experimental

data from e+ + e− → hadrons collisions. In Ref. [92], the

resulting correction is given for the 2s state as

EHadronic

VP,2s = 0.671(15)EµVP,2s. (90)

Combined with the muonic vacuum polarization (79), this

gives 0.01121(25) meV, while it is calculated as 0.01077(38) meV

in Ref. [97]. Here we take then the value of Ref. [92] with

an enlarged error bar.

7.3 Proton polarization

The proton polarization correction to the Lamb shift in

muonic hydrogen has been calculated by several authors

[32,98,34,96,97,99]. It is represented by the Feyman dia-

grams in Fig. 19. Rosenfelder [98] Eq. (16) finds

∆Ep.pol

2s = −136 ± 30

n3
µeV = −0.017 ± 0.004 meV. (91)

Pachucki [34] provides an independent value

∆Ep.pol

2s = −0.012 ± 0.002 meV, (92)
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For the 2s level, for which the two expressions differ, Eq.

(88) gives ∆Eprot.
SE

(n, l) = 0.0108 meV, while Eq. (89) gives

∆Eprot.
SE

(n, l) = 0.0098 meV. We retain the first expression

and assign the difference as uncertainty.

7.2 Hadronic vacuum polarization

The hadronic contributions comes from both vacuum po-

larization from virtual pions and other resonances like

ω and ρ. The hadronic polarization correction has been

evaluated for hydrogen [91,92], for muonic hydrogen by

Borie [93,94] and more recently by Friar and coll. [92] and

Martynenko and Faustov [95,96,97], using experimental

data from e+ + e− → hadrons collisions. In Ref. [92], the

resulting correction is given for the 2s state as

EHadronic

VP,2s = 0.671(15)EµVP,2s. (90)

Combined with the muonic vacuum polarization (79), this

gives 0.01121(25) meV, while it is calculated as 0.01077(38) meV

in Ref. [97]. Here we take then the value of Ref. [92] with

an enlarged error bar.

7.3 Proton polarization

The proton polarization correction to the Lamb shift in

muonic hydrogen has been calculated by several authors

[32,98,34,96,97,99]. It is represented by the Feyman dia-

grams in Fig. 19. Rosenfelder [98] Eq. (16) finds

∆Ep.pol

2s = −136 ± 30

n3
µeV = −0.017 ± 0.004 meV. (91)

Pachucki [34] provides an independent value

∆Ep.pol

2s = −0.012 ± 0.002 meV, (92)
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) as a function of nuclear size,

obtained by extrapolation of the results plotted in Fig. 15, com-

pared to the low-order result Flo
NS(R,α)/(αR2

) (86)

Fig. 18. Feynman diagrams corresponding to the proton self-

energy (88). The heavy double line represents the proton wave

function or propagator. The other symbols are explained in Fig.

6

Fig. 19. Feynman diagrams corresponding to the proton polar-

ization [Eqs. (91) to (95)]. The blob represents the excitation of

internal degrees of freedom of the proton. The other symbols

are explained in Fig. 5.

while Martynenko and Faustov [96] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [99]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)
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Fig. 20. Plot of the proton polarization for the 2s level [Eqs. (91)

to (95)]

in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by

E 5P3/2
− E 3S1/2

= ∆ELS + ∆EFS +
3

8
∆E2p3/2

HFS
− 1

4
∆E2s

HFS
, (97)
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in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by

E 5P3/2
− E 3S1/2

= ∆ELS + ∆EFS +
3

8
∆E2p3/2

HFS
− 1

4
∆E2s

HFS
, (97)
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while Martynenko and Faustov [96] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [99]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)
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in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by
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= ∆ELS + ∆EFS +
3
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Pachucki [34] provides an independent value

∆Ep.pol

2s = −0.012 ± 0.002 meV, (92)

while Martynenko and Faustov [97] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [100]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)

in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [101] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol�
2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which con-

tains proton structure terms not present in the relativistic

recoil. It is in fact the Zemach moment (24) contribution

to the Lamb shift, but is somewhat larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

less negative than previous works had provided. All the

results with provided uncertainties are plotted in Fig. 20.

The weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. In Ref. [91], it is argued that the two-photon

correction not only includes the elastic relativistic recoil

term ∆Eel.
and the polarization term but also the finite

size correction to the relativistic recoil. The correction is

written as

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

=
�
δEW1(0,Q2) + δEproton pole

�
+ δEcontinuum

=
�
δEW1(0,Q2) + 0016

�
− 0.0127(5) meV, (97)

where, using definition from previous authors ∆Esubt. =

δEW1(0,Q2) + δEproton pole
and ∆Einel. = δEcontinuum

. Using

the same model of form factor than Ref. [32], Hill and Paz

obtains δEW1(0,Q2) = −0.034 meV, reproducing ∆Esubt. =
−0.018 meV from [32]. However they claim that the model

used for the subtraction function W1

�
0,Q2

�
does not have

the correct behavior at small and large Q2
, that the values

for intermediate Q2
are not constrained by experiment,

and that an error bar as large as 0.04 meV should be used,

ten times larger than the dispersion between the different

calculations. We thus retain the value from Eq. (96) for

our final table, with an error bar increased to 0.04 meV.

This correction represents then overwhelmingly domi-

nant source of uncertainty. Higher orders polarization

corrections provided in [98] are negligible.

Could be wrong by 0.04 meV
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• Several calculations

– Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in 
chiral perturbation theory, M.C. Birse et J.A. McGovern. Eur. Phys. J. A 48, 1-9 (2012).

We calculate the amplitude T1 for forward doubly virtual Compton scattering in heavy-baryon 
chiral perturbation theory, to fourth order in the chiral expansion and with the leading 
contribution of the γNΔ∆ form factor. This provides a model-independent expression for the 
amplitude in the low-momentum region, which is the dominant one for its contribution to the 
Lamb shift. It allows us to significantly reduce the theoretical uncertainty in the proton 
polarisability contributions to the Lamb shift in muonic hydrogen. We also stress the 
importance of consistency between the definitions of the Born and structure parts of the 
amplitude. Our result leaves no room for any effect large enough to explain the discrepancy 
between proton charge radii as determined from muonic and normal hydrogen.

Proton polarization
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Fig. 17. (FNS(R,α) − F(α))/(αR2
) as a function of nuclear size,

obtained by extrapolation of the results plotted in Fig. 15, com-

pared to the low-order result Flo
NS(R,α)/(αR2

) (86)

Fig. 18. Feynman diagrams corresponding to the proton self-

energy (88). The heavy double line represents the proton wave

function or propagator. The other symbols are explained in Fig.

6

Fig. 19. Feynman diagrams corresponding to the proton polar-

ization [Eqs. (91) to (95)]. The blob represents the excitation of

internal degrees of freedom of the proton. The other symbols

are explained in Fig. 5.

while Martynenko and Faustov [96] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [99]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)
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Fig. 20. Plot of the proton polarization for the 2s level [Eqs. (91)

to (95)]

in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by

E 5P3/2
− E 3S1/2

= ∆ELS + ∆EFS +
3

8
∆E2p3/2

HFS
− 1

4
∆E2s

HFS
, (97)
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Fig. 17. (FNS(R,α) − F(α))/(αR2
) as a function of nuclear size,

obtained by extrapolation of the results plotted in Fig. 15, com-

pared to the low-order result Flo
NS(R,α)/(αR2

) (86)

Fig. 18. Feynman diagrams corresponding to the proton self-

energy (88). The heavy double line represents the proton wave

function or propagator. The other symbols are explained in Fig.

6

Fig. 19. Feynman diagrams corresponding to the proton polar-

ization [Eqs. (91) to (95)]. The blob represents the excitation of

internal degrees of freedom of the proton. The other symbols

are explained in Fig. 5.

while Martynenko and Faustov [96] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [99]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)
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Fig. 20. Plot of the proton polarization for the 2s level [Eqs. (91)

to (95)]

in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by

E 5P3/2
− E 3S1/2

= ∆ELS + ∆EFS +
3

8
∆E2p3/2

HFS
− 1

4
∆E2s

HFS
, (97)
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Fig. 17. (FNS(R,α) − F(α))/(αR2
) as a function of nuclear size,

obtained by extrapolation of the results plotted in Fig. 15, com-

pared to the low-order result Flo
NS(R,α)/(αR2

) (86)

Fig. 18. Feynman diagrams corresponding to the proton self-

energy (88). The heavy double line represents the proton wave

function or propagator. The other symbols are explained in Fig.

6

Fig. 19. Feynman diagrams corresponding to the proton polar-

ization [Eqs. (91) to (95)]. The blob represents the excitation of

internal degrees of freedom of the proton. The other symbols

are explained in Fig. 5.

while Martynenko and Faustov [96] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [99]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)
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Fig. 20. Plot of the proton polarization for the 2s level [Eqs. (91)

to (95)]

in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by

E 5P3/2
− E 3S1/2

= ∆ELS + ∆EFS +
3

8
∆E2p3/2

HFS
− 1

4
∆E2s

HFS
, (97)
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No radial excitations in low energy QCD. I. Diquarks and classification of mesons, T. Friedmann. The European Physical Journal 
C 73, 2298 (2013)
No radial excitations in low energy QCD. II. The shrinking radius of hadrons, T. Friedmann. The European Physical Journal C 73, 
2299 (2013).
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Fig. 17. (FNS(R,α) − F(α))/(αR2
) as a function of nuclear size,

obtained by extrapolation of the results plotted in Fig. 15, com-

pared to the low-order result Flo
NS(R,α)/(αR2

) (86)

Fig. 18. Feynman diagrams corresponding to the proton self-

energy (88). The heavy double line represents the proton wave

function or propagator. The other symbols are explained in Fig.

6

Fig. 19. Feynman diagrams corresponding to the proton polar-

ization [Eqs. (91) to (95)]. The blob represents the excitation of

internal degrees of freedom of the proton. The other symbols

are explained in Fig. 5.

while Martynenko and Faustov [96] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [99]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)
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Fig. 20. Plot of the proton polarization for the 2s level [Eqs. (91)

to (95)]

in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by

E 5P3/2
− E 3S1/2

= ∆ELS + ∆EFS +
3

8
∆E2p3/2

HFS
− 1

4
∆E2s

HFS
, (97)
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Fig. 17. (FNS(R,α) − F(α))/(αR2
) as a function of nuclear size,

obtained by extrapolation of the results plotted in Fig. 15, com-

pared to the low-order result Flo
NS(R,α)/(αR2

) (86)

Fig. 18. Feynman diagrams corresponding to the proton self-

energy (88). The heavy double line represents the proton wave

function or propagator. The other symbols are explained in Fig.

6

Fig. 19. Feynman diagrams corresponding to the proton polar-

ization [Eqs. (91) to (95)]. The blob represents the excitation of

internal degrees of freedom of the proton. The other symbols

are explained in Fig. 5.

while Martynenko and Faustov [96] provides

∆Ep.pol

2s = −0.092

n3
meV = −0.0115 meV, (93)

without giving error bars. More recently Martynenko [99]

reevaluated the proton polarization, given as the sum of

an inelastic and subtraction terms. He obtained

∆Ep.pol

2s = ∆Esubt. + ∆Einel.

= 0.0023 − 0.01613 meV

= −0.0138(29) meV, (94)

!"#"$%&

!"#"$"&

!"#"'%&

!"#"'"&

!"#""%&

"#"""&

()*+,*-.&/'0001&

2345675895:&/'0001&

;)<:=656-3&/$"">1&

?):8436&/$"''1&

!"
#$
#%

&'
#(
)&*
+
,-

.&

(:3<36&
@38#&
A5.B+<59&
CD5:#&
!E&

Fig. 20. Plot of the proton polarization for the 2s level [Eqs. (91)

to (95)]

in reasonable agreement with earlier work cited above.

Carlson and Vanderhaeghen [100] provide a new value,

which is the sum of an elastic, inelastic and subtraction

terms

∆Ep.pol

2s = ∆Esubt. + ∆Einel. + ∆Eel.

= 0.0053(19) − 0.0127(5) − 0.0295(13) meV

= −0.0074(20) − 0.0295(13) meV. (95)

The elastic contribution corresponds to the contribution

to the diagrams in Fig. 18 that is identical to the one from

the relativistic recoil in Fig. 5 and Eq. (44), but which

contains proton structure terms not present in the rela-

tivistic recoil. It is in fact the Zemach moment (24) contri-

bution to the Lamb shift, but is much larger than the value

−0.0232(10) meV provided in Ref. [34] Eq. (25), using the

proton form factor parametrization in Ref. [2], which cor-

responds to a proton size of 0.862 fm. The Carlson and

Vanderhaeghen proton polarization value is somewhat

lower than previous works had provided. All the results

with provided uncertainties are plotted in Fig. 20. The

weighted average

∆Ep.pol

2s = −0.0129(36) meV (96)

where the error is set to encompass the error bars of all

calculations. This is the value we retain for our final table.

Higher orders polarization corrections provided in [97]

are negligible.

7.4 Hyperfine structure

In order to compare with experiment, one has to combine

the calculations of the Lamb shift with the fine struc-

ture (provided in the next section) and 2s and 2p hyper-

fine structure (HFS). The line measured in Ref. [12] is

described by

E 5P3/2
− E 3S1/2

= ∆ELS + ∆EFS +
3

8
∆E2p3/2

HFS
− 1

4
∆E2s

HFS
, (97)
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12

reduction to radial and angular integrals is presented

in various works [84–86]. In heavy atoms, the hyper-

fine structure correction due to the magnetic moment

contribution is usually calculated for a finite charge dis-

tribution, but a point magnetic dipole moment (see, e.g.,

[84, 85]). When matrix elements non-diagonal in J are

needed, one can use [90] for a one-particle atom

∆E
HFS

M1
= A

gα
2Mp

� ∞

0

dr
P1(r)Q2(r) + P2(r)Q1(r)

r2
, (88)

where g = µp/2 = 2.792847356 for the proton, is the

anomalous magnetic moment, A is an angular coefficient

A = (−1)
I+ j1+F

�
I j1 F

j2 I k

�

�
I 1 I

−I 0 I

�

× (−1)
J1− 1

2

�
(2J1 + 1) (2J2 + 1)

�
j1 1 j2
1

2
0 − 1

2

�
π (l1, k, l2) ,

(89)

where π (l1, k, l2) = 0 if l1 + l2 + 1 is odd and 1 otherwise.

The ji are the total angular momentum of the i state for

the bound particle, li are orbital angular momentum, I

is the nuclear spin, k the multipole order (k = 1 for the

magnetic dipole contribution described in Eq. (88)) and F

the total angular momentum of the atom. The difference

between ∆E
HFS

values calculated with a finite or point

nuclear charge contribution is called the Breit-Rosenthal

correction [91].

To consider a finite magnetic moment distribution, one

uses the Bohr-Weisskopf correction [92]. The correction

can be written [93]

∆E
BW = −A

gα
2Mp

� ∞

0

drnr
2

n
µ(rn)

×
�

rn

0

dr
P1(r)Q2(r) + P2(r)Q1(r)

r2
,
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where the magnetic moment density µ(rn) is normalized

as

� ∞

0

drnr
2

n
µ(rn) = 1. (91)

Borie and Rinker [94], write the total diagonal hyper-

fine energy correction for a muonic atom as

∆Ei, j =
4πκ
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�
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where the normalization is different:
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This means that µBR(r) = µ(r)/(4π). Evaluation of the

Wigner 3J and 6J symbols in (89) give the same angular

factor than in Eq. (88).

The equivalence of the two formalism can be easily

checked: starting from (92) and droping the angular fac-

tors, we get, doing an integration by part
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where we have used (91). We thus find that the for-

mula in Borie and Rinker represents the full hyperfine

structure correction, including the Bohr-Weisskopf part.

In 1956, Zemach [95] calculated the fine structure en-

ergy of hydrogen, including recoil effects. He showed

that in first order in the finite size, the HFS depends

on the charge and magnetic distribution moments only

through the Zemacs’s form factor defined in Eq. (15).

The proton is assumed to be at the origin of coordinates.

Its charge and magnetic moment distribution are given

in terms of charge distribution ρ(r) and magnetic mo-

ment distributions µ(r). Zemach calculate the correction

in first order to the hyperfine energy of s-states of hy-

drogen due to the electric charge distribution. The HFS

energy is written as

∆E
Z

HFS
= −2

3

�
Sp ·Sµ

��
| φ(r) |2 µ(r)dr (95)

φ the non-relativistic electron wavefunction and Sx are

the spin operators of the electron and proton. If the

magnetic moment distribution is taken to be the one of a

point charge, µ(r) = δ(r), the integral reduces to | φ(0) |2.

The first order correction to the wavefunction due to the

nucleus finite charge distribution is given by

φ(r) = φC(0)

�
1 − αmµ

�
ρ(u) |u − r| du

�
, (96)

where φC(0) is the unperturbed Coulomb wavefunction

at the origin for a point nucleus. Replacing into Eq. (95)

and keeping only first order terms, we get (Eq. 2.8 of

12
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fine structure correction due to the magnetic moment
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where π (l1, k, l2) = 0 if l1 + l2 + 1 is odd and 1 otherwise.
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where we have used (91). We thus find that the for-

mula in Borie and Rinker represents the full hyperfine

structure correction, including the Bohr-Weisskopf part.

In 1956, Zemach [95] calculated the fine structure en-

ergy of hydrogen, including recoil effects. He showed

that in first order in the finite size, the HFS depends

on the charge and magnetic distribution moments only

through the Zemacs’s form factor defined in Eq. (15).

The proton is assumed to be at the origin of coordinates.

Its charge and magnetic moment distribution are given

in terms of charge distribution ρ(r) and magnetic mo-

ment distributions µ(r). Zemach calculate the correction

in first order to the hyperfine energy of s-states of hy-

drogen due to the electric charge distribution. The HFS

energy is written as

∆E
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HFS
= −2
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| φ(r) |2 µ(r)dr (95)

φ the non-relativistic electron wavefunction and Sx are

the spin operators of the electron and proton. If the

magnetic moment distribution is taken to be the one of a

point charge, µ(r) = δ(r), the integral reduces to | φ(0) |2.

The first order correction to the wavefunction due to the

nucleus finite charge distribution is given by

φ(r) = φC(0)

�
1 − αmµ

�
ρ(u) |u − r| du

�
, (96)

where φC(0) is the unperturbed Coulomb wavefunction

at the origin for a point nucleus. Replacing into Eq. (95)

and keeping only first order terms, we get (Eq. 2.8 of
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Ref. [95] corrected for a misprint):

∆EZ
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= −2

3

�
Sp ·Sµ

� ���φC(0)

���2
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ρ(u) | u − r | µ(r)dudr

�
,

= EF

�
1 − 2αmµ

�
ρ(u) | u − r | µ(r)dudr

�
,

(97)

where EF is the well known HFS Fermi energy. Trans-

forming Eq. (97) using r → r + u, etc. Zemach obtains

∆EZ

HFS
= EF

�
1 − 2αmµ �rZ�

�
, (98)

with �rZ� given in Eq. (16). The 2s state Fermi energy is

given by

E2s
F
=

(Zα)
4

3
gp
µ3

r

mpmµ
. (99)

A. Hyperfine structure of the 2s level

In order to check the dependence of the hyperfine

structure on the Zemach radius and on the proton fi-

nite size, I have performed a series of calculations for

a dipolar distribution for both the charge and magnetic

moment distribution. We can then study the dependence

of the HFS beyond the first order corresponding to the

Zemach correction. I calculated the hyperfine energy

splitting ∆EHFS (RZ,R) = EHFS(R) + EBW

HFS
(R,RM) numer-

ically. I also evaluate with and without self-consistent

inclusion of the Uëhling potential in the calculation, to

obtain all-order Uëhling contribution to the HFS energy.

We calculated the correction ∆EHFS (RZ,R) for several

value of RZ between 0.8 fm and 1.15 fm, and proton sizes

ranging from 0.3 fm to 1.2 fm, by steps of 0.05 fm, which

represents 285 values. The results show that the cor-

rection to the HFS energy due to charge and magnetic

moment distribution is not quite independent of R as

one would expect from Eq. (98), in which the finite size

contribution depends only on RZ. We fitted the hyper-

fine structure splitting of the 2s level, E2s
HFS

(RZ,R) by a

function of R and RZ, which gives:

E2s
HFS

(RZ,R) = 22.807995

− 0.0022324349R2 + 0.00072910794R3

− 0.000065912957R4 − 0.16034434RZ

− 0.00057179529RRZ

− 0.00069518048R2RZ

− 0.00018463878R3RZ

+ 0.0010566454R2

Z

+ 0.00096830453RR2

Z

+ 0.00037883473R2R2

Z

− 0.00048210961R3

Z

− 0.00041573690RR3

Z

+ 0.00018238754R4

Z
meV.

(100)

The constant term should be close to the sum of the Fermi

energy 22.80541 meV and of the Breit term [96]. the HFS

correction calculated with a point-nucleus Dirac wave-

function for which I find 22.807995 meV. When setting

the speed of light to infinity in the program I recover

exactly the Fermi energy. The Breit contribution is thus

0.002595 meV, to be compared to 0.0026 meV in Ref. [40]

(Table II, line 3) and 0.00258 meV in Ref. [70]. Mar-

tynenko [40] evaluates this correction, which he names

“Proton structure corrections of order α5
and α6

”, to be

−0.1535 meV, following [35]. He finds the coefficient

for the Zemach’s radius to be −0.16018 meVf
−1

, in very

good agreement with the present all-order calculation

−0.16034 meVf
−1

. Borie’s value [70] −0.16037 meVf
−1

is

even closer. The difference between Borie’s value and

Eq. (100) is represented in Fig. 11 as a function of the

charge and Zemach radii. The maximum difference is

around 1 µeV.

In Ref. [35], the charge and magnetic moment dis-

tributions are written down in the dipole form, which

corresponds to (13),

GE
�
q2
�
=

GM
�
q2

�

1 + κp
=

Λ4

�
Λ2 + q2

�2 , (101)

with Λ = 848.5MeV. This leads to R = 0.806 fm as in

Ref. [2] and RZ = 1.017 fm using this definition for

the form factor in Eq. (17). Moreover there are re-

coil corrections included. Pachucki [35] finds that the

pure Zemach contribution (in the limit mp → ∞) is

−0.183 meV. In Ref. [97], the Zemach corrections is given

as δ(Zemach) × EF = −71.80 × 10
−4EF, for RZ = 1.022 fm.

This leads to a coefficient −0.1602 meVfm
−1

, in excellent

agreement with our value −0.16036 meVfm
−1

.

The effect of the vacuum polarization on the 2s hyper-

fine structure energy shift as a function of the Zemach

and charge radius have been calculated for the same set

of values as the main contribution. The data can be de-
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In order to check the dependence of the hyperfine

structure on the Zemach radius and on the proton fi-

nite size, I have performed a series of calculations for

a dipolar distribution for both the charge and magnetic

moment distribution. We can then study the dependence

of the HFS beyond the first order corresponding to the

Zemach correction. I calculated the hyperfine energy

splitting ∆EHFS (RZ,R) = EHFS(R) + EBW
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(R,RM) numer-

ically. I also evaluate with and without self-consistent

inclusion of the Uëhling potential in the calculation, to

obtain all-order Uëhling contribution to the HFS energy.

We calculated the correction ∆EHFS (RZ,R) for several

value of RZ between 0.8 fm and 1.15 fm, and proton sizes

ranging from 0.3 fm to 1.2 fm, by steps of 0.05 fm, which

represents 285 values. The results show that the cor-

rection to the HFS energy due to charge and magnetic

moment distribution is not quite independent of R as

one would expect from Eq. (98), in which the finite size

contribution depends only on RZ. We fitted the hyper-

fine structure splitting of the 2s level, E2s
HFS

(RZ,R) by a

function of R and RZ, which gives:
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The constant term should be close to the sum of the Fermi

energy 22.80541 meV and of the Breit term [96]. the HFS

correction calculated with a point-nucleus Dirac wave-

function for which I find 22.807995 meV. When setting

the speed of light to infinity in the program I recover

exactly the Fermi energy. The Breit contribution is thus

0.002595 meV, to be compared to 0.0026 meV in Ref. [40]

(Table II, line 3) and 0.00258 meV in Ref. [70]. Mar-

tynenko [40] evaluates this correction, which he names

“Proton structure corrections of order α5
and α6

”, to be

−0.1535 meV, following [35]. He finds the coefficient

for the Zemach’s radius to be −0.16018 meVf
−1

, in very

good agreement with the present all-order calculation

−0.16034 meVf
−1

. Borie’s value [70] −0.16037 meVf
−1

is

even closer. The difference between Borie’s value and

Eq. (100) is represented in Fig. 11 as a function of the

charge and Zemach radii. The maximum difference is

around 1 µeV.

In Ref. [35], the charge and magnetic moment dis-

tributions are written down in the dipole form, which

corresponds to (13),

GE
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q2
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=

GM
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q2
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1 + κp
=

Λ4
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Λ2 + q2

�2 , (101)

with Λ = 848.5MeV. This leads to R = 0.806 fm as in

Ref. [2] and RZ = 1.017 fm using this definition for

the form factor in Eq. (17). Moreover there are re-

coil corrections included. Pachucki [35] finds that the

pure Zemach contribution (in the limit mp → ∞) is

−0.183 meV. In Ref. [97], the Zemach corrections is given

as δ(Zemach) × EF = −71.80 × 10
−4EF, for RZ = 1.022 fm.

This leads to a coefficient −0.1602 meVfm
−1

, in excellent

agreement with our value −0.16036 meVfm
−1

.

The effect of the vacuum polarization on the 2s hyper-

fine structure energy shift as a function of the Zemach

and charge radius have been calculated for the same set

of values as the main contribution. The data can be de-
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where Ξn is a new function defined by

Ξn (x) =

� ∞

1

dzΓ (0, xz)
1

zn

�
1

z
+

1

2z3

� √
z2 − 1 (89)

Some properties of Ξn are given in Appendix A.

6.2 Hyperfine structure of the 2s level

In order to check the dependence of the hyperfine struc-

ture in the Zemach radius, we have performed a series

of calculations for the different nuclear models we have

presented in Sec. 2. The calculation are done for different

pairs of R and RM, such that RZ remains constant. We can

then study the dependence of the HFS beyond the first or-

der corresponding to the Zemach correction. We calculate

EHFS (RZ,R) = EHFS(R)+E
BW

HFS
(RM)−EHFS(0). We also eval-

uate with and without the Uëhling potential to obtain all-

order Uëhling contribution to the HFS energy. Values for

the 2s level and RZ = 1.045fm for two different type of dis-

tributions are presented in Table 5. We calculated the cor-

rection EHFS (RZ,R) for several value of RZ between 0.4 fm

and 1.2 fm. The correction, divided by RZ, is plotted on

Fig. 10. The figure shows clearly that the correction to the

HFS energy due to charge and magnetic moment distri-

bution is not quite independent of R as one would expect

from Eq. 69, in which the finite size contribution depends

only on RZ. For each value of RZ, the EHFS (RZ,R) can be

approximated by RZ (a (RZ) + b (RZ)) R
2
. We checked that

a (RZ) is a linear function of Z and RZ a quadratic function

of RZ. We thus fitted EHFS (RZ,R) /RZ by a function of R

and RZ, which gives:

E
2s

HFS
(RZ,R)

RZ

= −0.00168747R
2
R

2

Z
+ 0.00483539R

2
RZ

− 0.00464802R
2 + 0.000899461RRZ

− 0.00166526R − 0.000562326R
2

Z

+ 0.00160609RZ − 0.16045 meV fm
−1.

(90)

Martynenko [35] evaluate this correction “Proton struc-

ture corrections of order α5
and α6

” to be −0.1535 meV,

following [30]. In Ref. [30], The charge and magnetic mo-

ment distributions are written down in the dipole form,

which corresponds to (14),

GE

�
q

2
�
=

GM

�
q

2

�

1 + κp

=
Λ4

�
Λ2 + q2

�2 , (91)

with Λ = 848.5MeV. This leads to R = 0.806 fm as in Ref.

[2] and RZ = 1.017 fm using this definition for the form

factor in Eq. (18). Moreover there are recoil corrections

included. Pachucki [30] finds that the pure Zemach con-

tribution (in the limit mp → ∞) is −0.183 meV. In Ref.

[86], the Zemach corrections is given as δ(Zemach)×EF =
−71.80 × 10

−4
EF, for RZ = 1.022 fm. This leads to a coeffi-

cient −0.1602 meVfm
−1

, in excellent agreement with our

value −0.16045 meVfm
−1

.
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Fig. 10. Finite charge and magnetic moment distribution energy

shift for the 2s state as a function of the charge R and Zemach

radius RZ for the Gaussian ( RZ = 1.045fm) and exponential

model, divided by RZ. The lines correspond to the function in

Eq. (90).

The effect of the vacuum polarization on the 2s hy-

perfine structure energy shift as a function of the Zemach

and charge radius have been calculated for the same set

of values as the main contribution. A set of value can be

found in the last column of Table 5 for RZ = 1.045fm. The

data can be described as a function of RZ and R as

E
2s,VP

HFS
(RZ,R) = −0.000025339R

2 + 0.000154707R
2

Z

− 0.00203434RZ + 0.0744207meV.
(92)

It correspond to the diagrams presented in Fig. 12. The

size-independent term 0.07442 meV corresponds to the

sum of the two contributions represented by the two top

diagrams in Fig. 12) and correspond to∆E
HFS

1loop-after-loop VP
=

0.0746 meV in Ref. [35]. The term ∆E
HFS

1γ,VP
= 0.0481 meV

correspond to a vacuum polarization loop in the HFS po-

tential [82,30,35].

A summary of all known contributions from previous

work and the present one as presented in Table 6 for

the part independent of charge and magnetic moment

distribution, and in Table for the part depending on the

charge and Zemach’s radiii.

6.3 Hyperfine structure of the 2pj level

Calculations of the 2p level hyperfine structure for muonic

hydrogen have been provided in [30,34]. More recently

Martynenko has made a detailed calculation [84] to the

same level of accuracy as in Ref. [35] for the 2s level.

We have used the same technique as in the previous

section, to evaluate the effect of the charge and magnetic

moment distribution on the 2p1/2 and 2p3/2 states. The

results for the former are presented in Fig. 13. The fitted
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where EF is the well known HFS Fermi energy. Trans-

forming Eq. (97) using r → r + u, etc. Zemach obtains
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A. Hyperfine structure of the 2s level

In order to check the dependence of the hyperfine

structure on the Zemach radius and on the proton fi-

nite size, I have performed a series of calculations for

a dipolar distribution for both the charge and magnetic

moment distribution. We can then study the dependence

of the HFS beyond the first order corresponding to the

Zemach correction. I calculated the hyperfine energy

splitting ∆EHFS (RZ,R) = EHFS(R) + EBW

HFS
(R,RM) numer-

ically. I also evaluate with and without self-consistent

inclusion of the Uëhling potential in the calculation, to

obtain all-order Uëhling contribution to the HFS energy.

We calculated the correction ∆EHFS (RZ,R) for several

value of RZ between 0.8 fm and 1.15 fm, and proton sizes

ranging from 0.3 fm to 1.2 fm, by steps of 0.05 fm, which

represents 285 values. The results show that the cor-

rection to the HFS energy due to charge and magnetic

moment distribution is not quite independent of R as

one would expect from Eq. (98), in which the finite size

contribution depends only on RZ. We fitted the hyper-

fine structure splitting of the 2s level, E2s
HFS

(RZ,R) by a

function of R and RZ, which gives:

E2s
HFS

(RZ,R) = 22.807995

− 0.0022324349R2 + 0.00072910794R3

− 0.000065912957R4 − 0.16034434RZ

− 0.00057179529RRZ

− 0.00069518048R2RZ

− 0.00018463878R3RZ

+ 0.0010566454R2

Z

+ 0.00096830453RR2

Z

+ 0.00037883473R2R2

Z

− 0.00048210961R3

Z

− 0.00041573690RR3

Z

+ 0.00018238754R4

Z
meV.

(100)

The constant term should be close to the sum of the Fermi

energy 22.80541 meV and of the Breit term [96]. the HFS

correction calculated with a point-nucleus Dirac wave-

function for which I find 22.807995 meV. When setting

the speed of light to infinity in the program I recover

exactly the Fermi energy. The Breit contribution is thus

0.002595 meV, to be compared to 0.0026 meV in Ref. [40]

(Table II, line 3) and 0.00258 meV in Ref. [70]. Mar-

tynenko [40] evaluates this correction, which he names

“Proton structure corrections of order α5
and α6

”, to be

−0.1535 meV, following [35]. He finds the coefficient

for the Zemach’s radius to be −0.16018 meVf
−1

, in very

good agreement with the present all-order calculation

−0.16034 meVf
−1

. Borie’s value [70] −0.16037 meVf
−1

is

even closer. The difference between Borie’s value and

Eq. (100) is represented in Fig. 11 as a function of the

charge and Zemach radii. The maximum difference is

around 1 µeV.

In Ref. [35], the charge and magnetic moment dis-

tributions are written down in the dipole form, which

corresponds to (13),

GE
�
q2
�
=

GM
�
q2

�

1 + κp
=

Λ4

�
Λ2 + q2

�2 , (101)

with Λ = 848.5MeV. This leads to R = 0.806 fm as in

Ref. [2] and RZ = 1.017 fm using this definition for

the form factor in Eq. (17). Moreover there are re-

coil corrections included. Pachucki [35] finds that the

pure Zemach contribution (in the limit mp → ∞) is

−0.183 meV. In Ref. [97], the Zemach corrections is given

as δ(Zemach) × EF = −71.80 × 10
−4EF, for RZ = 1.022 fm.

This leads to a coefficient −0.1602 meVfm
−1

, in excellent

agreement with our value −0.16036 meVfm
−1

.

The effect of the vacuum polarization on the 2s hyper-

fine structure energy shift as a function of the Zemach

and charge radius have been calculated for the same set

of values as the main contribution. The data can be de-

16

FIG. 12. Feynman diagrams corresponding to the evaluation

of the hyperfine structure using wavefunctions obtained with

the Uehling potential in the Dirac equation. The grey squares

correspond to the hyperfine interaction.

and Carroll et al. [100]

ECar.,fs
2p1/2

− ECar.,fs
2s1/2

(R) = 206.0604 − 5.2794R2

+ 0.0546R3
meV.

(111)

B. Transitions between hyperfine sublevels

The energies of the two transitions observed experi-

mentally in muonic hydrogen are given by

EF=2

2p3/2
− EF=1

2s1/2
= E2p1/2 − E2s1/2 + E2p3/2 − E2p1/2

+
3

8
E2p3/2

HFS
− 1

4
E2s

HFS
,

(112)

and

EF=1

2p3/2
− EF=0

2s1/2
= E2p1/2 − E2s1/2 + E2p3/2 − E2p1/2

− 5

8
E2p3/2

HFS
+

3

4
E2s

HFS
+ δEF=1

HFS
.

(113)

Here we use the results from [99] for the 2p states:

E2p1/2

HFS
= 7.964364 meV

E2p3/2

HFS
= 3.392588 meV

δEF=1

HFS
= 0.14456 meV.

(114)

Using the results presented above we get

EF=2

2p3/2
− EF=1

2s1/2
(RZ,R) = 209.9465616 − 5.2273353R2

+ 0.036783284R3

− 0.0011425674R4

+ 0.00044096683R5

− 0.000066623155R6

+ 0.040533092RZ

+ 0.00018596008RRZ

+ 0.00026754376R2RZ

+ 0.000063748539R3RZ

− 0.00020892783R2

Z

− 0.00032967277RR2

Z

− 0.00014609447R2R2

Z

+ 0.000057775798R3

Z

+ 0.00014693531RR3

Z

− 0.000030280142R4

Z
meV.

(115)

This can be compared with the result from

U. Jentschura [101]

∆EJents.,F=2

2p3/2
− ∆EJents.,F=1

2s1/2
= 209.9974(48)

− 5.2262R2
meV,

(116)

using the 2s hyperfine structure of Ref. [40].

For the other transition I obtain

EF=1

2p3/2
− EF=0

2s1/2
(RZ,R) = 229.6634776 − 5.2294935R2

+ 0.037645166R3

− 0.0012165791R4

+ 0.00044096683R5

− 0.000066623155R6

− 0.12159928RZ

− 0.00055788025RRZ

− 0.00080263129R2RZ

− 0.00019124562R3RZ

+ 0.00062678350R2

Z

+ 0.00098901832RR2

Z

+ 0.00043828342R2R2

Z

− 0.00017332740R3

Z

− 0.00044080593RR3

Z

+ 0.000090840426R4

Z
meV.

(117)

Using Eq. (115), the Zemach radius from Ref. [40]

and the transition energy from Ref. [12], I obtain a

charge radius for the proton of 0.85248(45) fm in place

of 0.84184(69) fm in Ref. [12] and 0.8775(51) fm in the

Full calculation beyond Zemach

Nonperturbative evaluation of some QED 
contributions to the muonic hydrogen n=2 
Lamb shift and hyperfine structure, P. 
Indelicato. Phys. Rev. A 87, 022501 (2013).
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Hyperfine structure FS corrections

68

Would need to be evaluated as well
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Results

70

Simultaneous solution of these two equations with the two line energies
Rc = 0.84100(63) fm and Rz=1.086(40) fm
Assuming a dipole model, this gives Rm: 0.879(50) fm
Mainz results: Rc = 0.879 fm, Rm = 0.777 fm and Rz = 1.047 fm

• Using the second line measured during the experiment we can improve the charge 
radius and get a value for the Zemach’s radius.
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Extracting the magnetic radius

71

• We can extract the magnetic radius by using the dipole model to be consistent 
withe the calculations.

Simultaneous solution of the two equations with the two line energies
Rc = 0.84100(63) fm and Rz=1.086(40) fm
Assuming a dipole model, this gives Rm: 0.879(50) fm
Mainz results: Rc = 0.879 fm, Rm = 0.777 fm and Rz = 1.047 fm

A magnetic radius larger than the charge radius leads to large discrepancies when applied to 
electron proton scattering data
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Summary of results: charge radius

72

A. Antognini, F. Nez, K. 
Schuhmann, et al., Science 
339, 417 (2013).

A. Antognini, F. Kottmann, F. Biraben, et al., 
Annals of Physics 331, 127 (2013).
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Summary of results: Zemach radius

73

A. Antognini, F. Kottmann, F. Biraben, et al., 
Annals of Physics 331, 127 (2013).
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Summary of present status

74

High-precision measurement of the proton elastic form factor ratio at low, X. Zhan, 
et al Physics Letters B 705, 59-64 (2011).

Jefferson Lab

Mainz
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New 2013: deuterium charge radius

75

Deuteron charge radius [fm]
2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

CODATA-2010

CODATA D + e-d

e-d scatt.

n-p scatt.
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New 2013: deuterium charge radius

76

Deuteron charge radius [fm]
2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

H  +  iso H/D(1S-2S)µ

CODATA-2010

CODATA D + e-d

e-d scatt.

n-p scatt.

mardi 1 octobre 2013



Mainz	  MITP	  Oct.	  2013

New 2013: deuterium charge radius

77

Deuteron charge radius [fm]
2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

PRELIMINARYD  2013µ

H  +  iso H/D(1S-2S)µ

CODATA-2010

CODATA D + e-d

e-d scatt.

n-p scatt.
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New 2013: deuterium charge radius

77

Deuteron charge radius [fm]
2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

PRELIMINARYD  2013µ

H  +  iso H/D(1S-2S)µ

CODATA-2010

CODATA D + e-d

e-d scatt.

n-p scatt.

It is not possible to extract the magnetic moment distribution 
radius: uncalculated µD 2S hyperfine structure polarization 
correction. 
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Other measurements

78

How to get the radius from hydrogen and electron-proton scattering
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Hydrogen spectroscopy

79

ns,nd
3s

Two lines needed:
Rydberg constant
Proton radius

2 466 061 413 187 103±46Hz
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Hydrogen+Deuterium

80

Analysis by F. Biraben!"#$
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Hydrogen+Deuterium

81

• Needed: new measurements with independent systematic errors and get an 
independent Rydberg constant value:

–  2S-4P in H (Garching)
– 2S-nS,D in H (J. Flowers, NPL)
– 1S-3S (Garching, Paris)
– transitions between Rydberg states of heavy H-like ion (NIST)
– 1S-2S and 1S hfs in µe   (A. Antognini, PSI)
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Electron-Proton scattering

82

Normalization!
Physical model?

M.O. Distler, 
Trento, 2012
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Electron-Proton scattering

83

M.O. Distler, Trento, 2012
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Possible origin of the discrepancy

84

Systematic errors or new physics?
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Possible sources of discrepancy (µP)

85

• Frequency shift: unlikely - several redundant measurements at 708 nm (Fabry-
Perot, two-photon transition in Rb) and 6µm (water lines)

• µ e- p molecules or p p µ molecules. Not possible - Why Three-Body Physics Does 
Not Solve the Proton-Radius Puzzle, J.-P. Karr and L. Hilico. Phys. Rev. Lett. 109, 
103401 (2012).

• Experimental problems, e.g., a small air leak in the hydrogen target: we see 
characteristic µN and µO x-rays
– Less than 1% of all created µP atoms see any N2 molecules
– Less than 0.1% of all µP in 2S state see any N2 molecule during laser time

• µP theory: many checks, no effect seems large enough to explain a 0.3 meV 
energy shift, probably not even proton polarization (30 times too small)
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Possible origin for the discrepancy

86

• Electron-proton elastic scattering data analysis
• Under-estimated systematic errors in some hydrogen measurements

–  possible, but many different kind of experiments (microwave, 1s-3s, 2s-ns 
and 2s-nd)

• Proton structure
• New physics

– Constraints: 
• g-2 of the muon (3σ ),
• g-2 of the electron (Harvard)+fine structure constant from atomic recoil (LKB)
• Hydrogen
• Precision highly charged ions experiments at GSI (if long range interaction)
• ...
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Unsolved problems in the muon corner...

87

Reevaluation of the hadronic contributions to the muon g-2 and to $\alpha (M^{2}_{Z})$", M. Davier,  A. Hoecker,  B. Malaescu and 
Z. Zhang. The European Physical Journal C - Particles and Fields 71, 1-13 (2011).
Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant, T. Aoyama,  M. 
Hayakawa,  T. Kinoshita and M. Nio. Phys. Rev. Lett. 109, 111807 (2012).
Complete Tenth-Order QED Contribution to the Muon g-2, T. Aoyama,  M. Hayakawa,  T. Kinoshita and M. Nio. Phys. Rev. Lett. 
109, 111808 (2012).

Example: muon g-2, discrepancy not solved after 
improved QED calculation

For electrons:
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A new polarization term ?

88

Toward a resolution of the proton size puzzle, G.A. Miller,  A.W. 
Thomas,  J.D. Carroll and J. Rafelski. Phys. Rev. A 84, 020101 (2011).

0.31 meV for µH and 9Hz for hydrogen 
(with model dependent parametrization)

No other work supports such a large effect
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Mainz	  MITP	  Oct.	  2013

Where could it come from?

89

• Proton Size Anomaly, V. Barger,  C.-W. Chiang,  W.-Y. Keung et al. Phys. Rev. Lett. 
106, 153001 (2011):
A measurement of the Lamb shift in muonic hydrogen yields a charge radius of 
the proton that is smaller than the CODATA value by about 5 standard deviations. 
We explore the possibility that new scalar, pseudoscalar, vector, and tensor 
flavor-conserving nonuniversal interactions may be responsible for the 
discrepancy. We consider exotic particles that, among leptons, couple 
preferentially to muons and mediate an attractive nucleon-muon interaction. We 
find that the many constraints from low energy data disfavor new spin-0, spin-1, 
and spin-2 particles as an explanation.

• Lamb shift in muonic hydrogen--II. Analysis of the discrepancy of theory and 
experiment, U.D. Jentschura. Annals of Physics 326, 516-533 (2011).
No unstable vector boson, no millicharged particles, 
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Where could it come from?

90

• New physics and the proton radius problem, C.E. Carlson and B.C. Rislow. 
Physical Review D 86, 035013 (2012): 

– Particles that couple to muons and hadrons but not electrons
– For the scalar-pseudoscalar model, masses between 100 to 200 MeV are not allowed.
– For the vector model, masses below about 200 MeV are not allowed. The strength of the 

couplings for both models approach that of electrodynamics for particle masses of about 2 
GeV.

– New physics with fine-tuned couplings may be entertained as a possible explanation for the 
Lamb shift discrepancy.

• New Parity-Violating Muonic Forces and the Proton Charge Radius, B. Batell,  D. 
McKeen and M. Pospelov. Phys. Rev. Lett. 107, 011803 (2011).

– We identify a class of models with gauged right-handed muon number, which contains new 
vector and scalar force carriers at the100 MeV scale or lighter, that is consistent with 
observations.

– Such forces would lead to an enhancement by several orders-of-magnitude of the parity-
violating asymmetries in the scattering of low-energy muons on nuclei.
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Where could it come from?

91

Muonic hydrogen and MeV forces, D. Tucker-Smith et I. Yavin. Physical Review D 83, 
101702 (2011).

We explore the possibility that a new interaction between muons and protons is 
responsible for the discrepancy between the CODATA value of the proton-radius and the 
value deduced from the measurement of the Lamb shift in muonic hydrogen. We show 
that a new force carrier with roughly MeV-mass can account for the observed energy-
shift as well as the discrepancy in the muon anomalous magnetic moment. However, 
measurements in other systems constrain the couplings to electrons and neutrons to be 
suppressed relative to the couplings to muons and protons, which seems challenging 
from a theoretical point of view. One can nevertheless make predictions for energy 
shifts in muonic deuterium, muonic helium, and true muonium under the assumption that 
the new particle couples dominantly to muons and protons.
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Where could it come from?

92

Muonic hydrogen and MeV forces, D. Tucker-Smith et I. Yavin. Physical Review D 83, 
101702 (2011).

Compatible with muon g-2
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Where could it come from?

93

Nonidentical protons, T. Mart et A. Sulaksono. Phys. Rev. C 87, 025807 (2013).

We have calculated the proton charge radius by assuming that the real proton radius is not 
unique and the radii are randomly distributed in a certain range. This is performed by averaging 
the elastic electron-proton differential cross section over the form factor cutoff. By using a 
dipole form factor and fitting the middle value of the cutoff to the low-Q2 Mainz data, we found 
the lowest χ2/N for a cutoff  = 0.8203 ± 0.0003 GeV, which corresponds to a proton charge 
radius rE= 0.8333± 0.0004 fm. The result is compatible with the recent precision measurement 
of the Lamb shift in muonic hydrogen as well as recent calculations using more sophisticated 
techniques. Our result indicates that the relative variation of the form factor cutoff should be 
around 21.5%. Based on this result we have investigated effects of the nucleon radius variation 
on the symmetric nuclear matter (SNM) and the neutron star matter (NSM) by considering the 
excluded volume effect in our calculation. The mass-radius relation of a neutron star is found to 
be sensitive to this variation. The nucleon effective mass in the SNM and the equation of state of 
both the SNM and the NSM exhibit a similar sensitivity.

mardi 1 octobre 2013



Mainz	  MITP	  Oct.	  2013

Where could it come from?

94

No radial excitations in low energy QCD. II. The shrinking radius of hadrons, T. Friedmann. 
The European Physical Journal C 73, 2299 (2013).
 We discuss the implications of our prior results obtained in our companion paper (Eur. Phys. J. 
C (2013 ) ). Inescapably, they lead to three laws governing the size of hadrons, including in 
particular protons and neutrons that make up the bulk of ordinary matter: (a) there are no 
radial excitations in low-energy QCD; (b) the size of a hadron is largest in its ground state; (c) 
the hadron’s size shrinks when its orbital excitation increases. The second and third laws follow
from the first law. It follows that the path from confinement to asymptotic freedom is a Regge 
trajectory. It also follows that the top quark is a free, albeit short-lived, quark.

 Note added Nine months after this paper was originally posted to arXiv [32, 33], an experiment 
studying muonic hydrogen [34], repeated more recently [35], observed a smaller size of the 
proton than previously expected, consistent with our predictions. It is possible that this is a 
manifestation of our three laws, and may be a QCD, rather than QED, effect.
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Where could it come from?

95

•PROTON RADIUS PUZZLE AND LARGE EXTRA DIMENSIONS, L.B. Wang et W.T. Ni. Modern 
Physics Letters A 28, 1350094 (2013).

We propose a theoretical scenario to solve the proton radius puzzle which recently arises from 
the muonic hydrogen experiment. In this framework, 4 + n dimensional theory is incorporated 
with modified gravity. The extra gravitational interaction between the proton and muon at very 
short range provides an energy shift which accounts for the discrepancy between spectroscopic 
results from muonic and electronic hydrogen experiments. Assuming the modified gravity is a 
small perturbation to the existing electromagnetic interaction, we find the puzzle can be solved 
with stringent constraint on the range of the new force. Our result not only provides a possible 
solution to the proton radius puzzle but also suggest a direction to test new physics at very 
small length scale.
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Where could it come from?

96

Can Large Extra Dimensions Solve the Proton Radius Puzzle?
Zhigang Li, Xuelei Chen (http://arxiv.org/abs/1303.5146v1)

The proton charge radius extracted from the recent muonic hydrogen spectroscopy [Antognini 
et al. 2013; Pohl et al. 2010] differs from the CODATA 2010 recommended value [Mohr et al. 2012] 
by more than 4%. This discrepancy, dubbed as the "Proton Radius Puzzle", is a big challenge to 
the Standard Model of particle physics, and has triggered a number of works on the quantum 
electrodynamic calculations recently. The proton radius puzzle may indicate the presence of an 
extra correction which enlarges the 2S-2P energy gap in muonic hydrogen. Here we explore the 
possibility of large extra dimensions which could modify the Newtonian gravity at small scales 
and lower the 2S state energy while leaving the 2P state nearly unchanged. We find that such 
effect could be produced by four or more large extra dimensions which are allowed by the 
current constraints from low energy physics.
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What’s next
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Muonic Helium: experiment set up October 8th, 2013
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Muonic He spectroscopy
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812 nm 
pHe = 40 bars

Nuclear Physics A278 (1977) p. 381

 but signal never 
reproduced 

(10 bars, 40 bars) 

2P1/2

2P3/2

2S1/2

finite size 
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35 THz

812 
nm

898 nm

2S1/2

F=1

F=0
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96 THz

F=1
F=0

2P1/2

2P3/2

F=1
F=2

35 THz

923 nm

849 nm

964 nm

863 nm
958 nm

µ4He+ µ3He+

2011-2013→   muonic helium spectroscopy (4 mbar) 

• µHe+ spectroscopy + He+ spectroscopy  →  QED test (Zα)

• improve He spectroscopy
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Muonic He spectroscopy
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Improve statistics...

100

16% more from the beam time: reliquefying He
Better disk laser
Much more intensity (no Raman shift)

Moving in on October 3rd
beam time until December 19th
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Conclusions

• We have performed a 12.5 ppm measurement of the Lamb-shift in muonic 
hydrogen

• The deduced proton radius using a Dipole model is 6.9 standard deviations away 
from the hydrogen and electron-proton elastic scattering data

• Better modeling of the proton form-factor and polarization required to confirm 
or reduce the disagreement

• Experiment confirmed with 2nd µH line
• 3 µD lines observed and being analyzed
• No explanation of the discrepancy yet, but possibilities

– QCD
– Problems with hydrogen experiments
– New physics

• Muonic He in 2013 (check of theory, different laser wavelength-in the red) 
predictions of measurable effects from new physics!!
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CREMA 2011
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