Electric Dipole Moments: A Theory Overview

Amherst Center for Fundamental Interactions

http://www.physics.umass.edu/acfi/

Workshop on Low-Energy Precision Physics, MITP Mainz October 2013

1

Questions for Week Three

- I. What are the most significant implications of present & prospective EDM searches ?
- II. What are the primary theoretical challenges& strategies for addressing them ?
- III. What do we learn from existing and planned experiments and what are the most compelling new directions ?

Outline

- I. Introduction & general considerations
- II. Connecting with the LHC, Flavor, & Cosmology
- III. Theoretical challenges
- *IV.* Theory-Experiment interface
- V. Outlook

Engel, R-M, van Kolck: 1303.2371, PPNP 71 (2013) 21

I. Introduction

EDM Experiments

PHYSICAL REVIEW

VOLUME 108, NUMBER 1

OCTOBER 1, 1957

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. SMITH,* E. M. PURCELL, AND N. F. RAMSEY Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts (Received May 17, 1957)

An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.

EDM Experiments

PHYSICAL REVIEW

VOLUME 108, NUMBER 1

OCTOBER 1, 1957

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. SMITH,* E. M. PURCELL, AND N. F. RAMSEY Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts (Received May 17, 1957)

An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
YbF	1.8 x 10 ⁻²¹ **	10 ⁻³²	10 ⁻²²
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent: 10.5 x 10⁻²⁸

(thanks: T. Chupp)

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10⁻²⁹
YbF	1.8 x 10 ⁻²¹ **	10 ⁻³²	10 -22
n	3.3 x 10 ⁻²⁶	10 -31	10 ⁻²⁶

* 95% CL ** e⁻ equivalent: 10.5 x 10⁻²⁸

(thanks: T. Chupp)

Mass Scale Sensitivity

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
YbF	1.8 x 10 ⁻²¹ **	10 ⁻³²	10 ⁻²²
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent: 10.5 x 10⁻²⁸ (thanks: T. Chupp)

Not shown: muon

Why Multiple Systems ?

Why Multiple Systems ?

Multiple sources & multiple scales

Effective Operators

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = rac{1}{\Lambda^2} \sum_i lpha_i^{(n)} O_i^{(6)}$$

13

+...

Wilson Coefficients: EDM & CEDM

 δ_{f} , δ_{q} appropriate for comparison with other d=6 Wilson coefficients

Wilson Coefficients: Summary

$\delta_{\!f}$	fermion EDM	(3)
$\widetilde{\delta}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$m{C}_{arphi$ ud	induced 4f	(1)

12 total + $\overline{\theta}$

light flavors only (e,u,d)

Issues for Theory

A. Connecting w/ LHC, flavor physics, & cosmology

B. Matching onto physics at lower scales

- QCD running (recent work)
- Hadronic matrix elements (large uncertainties)
- Nuclear matrix elements (large uncertainties)
- Atomic calculations

Issues at Theory - Exp Interface

A. What can existing measurements teach us about Wilson coefficients and/or underlying high scale parameters ?

B. Are there new experiments that could provide complementary information ?

II. Connecting w/ High Scale Interactions & Cosmology

BSM Origins

$\delta_{\!f}$	MSSM, RS, LRSM	1 & 2 loop
$\widetilde{\delta}_q$	MSSM, RS, LRSM	1 & 2 loop
$C_{\widetilde{G}}$	MSSM	2 loop
C _{quqd}	(MSSM d=8)	
C _{lequ, ledq}	(MSSM d=8)	
$m{C}_{arphi$ ud	LRSM	<i>tree (</i> θ_{LR})

12 total + $\overline{\theta}$

light flavors only (e,u,d)

EDM: γff CEDM: gff

Weinberg ggg:

Four fermion

udHH

BSM Origins

udHH

BSM Origins

23

Illustrative Results

MSSM Global Analysis

$$W_{\text{MSSM}} = \widehat{\mu} \widehat{H}_{u} \cdot \widehat{H}_{d} + W_{\text{yukawa}}$$

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} \underbrace{M_{3}}_{2} \widetilde{p} \widetilde{g} + \underbrace{M_{2}}_{2} \widetilde{V} \widetilde{W} + \underbrace{M_{3}}_{B} \widetilde{B} \widetilde{B} + c.c.}_{-(\widetilde{\mu} \mathbf{a}_{u})} \underbrace{\phi_{j}}_{Q} = \arg(\mu M_{j}b^{*})$$

$$-(\widetilde{\mu} \mathbf{a}_{u}) \widetilde{Q} H_{u} - \widetilde{\mu} \mathbf{a}_{d}) \widetilde{Q} H_{d} - \widetilde{\mu} \mathbf{a}_{e} \widetilde{L} H_{d} + c.c.$$

$$-\widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{2} \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{2} \widetilde{L} - \widetilde{u} \overline{\mathbf{m}}_{u}^{2} \widetilde{u}^{\dagger} - \widetilde{d} \mathbf{m}_{d}^{2} \widetilde{d}^{\dagger} - \widetilde{e} \mathbf{m}_{e}^{2} \widetilde{e}^{\dagger} - m_{H_{u}}^{2} H_{u}^{*} H_{u} - m_{H_{d}}^{2} H_{d}^{*} H_{d}$$

$$-(b) I_{u} H_{d} + c.c.)$$

Correlated Constraints

Li, Profumo, R-M '10

Present

Present: ¹⁹⁹Hg impact

26

MSSM Global Analysis

$$W_{\text{MSSM}} = \widehat{\mu} \widehat{H}_{u} \cdot \widehat{H}_{d} + W_{\text{yukawa}} \qquad \phi_{j} = \arg(\mu M_{j}b^{*})$$

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} \underbrace{M_{3}}_{2} \widetilde{g} \widetilde{g} + \underbrace{M_{2}}_{2} \widetilde{W} \widetilde{W} + \underbrace{M_{j}}_{B} \widetilde{B} \widetilde{B} + c.c.} \qquad \phi_{j} = \arg(\mu M_{j}b^{*})$$

$$-(\underbrace{ia_{u}}_{Q} \widetilde{\mu}_{u} - \underbrace{ia_{d}}_{Q} \widetilde{\mu}_{d} - \underbrace{ia_{e}}_{U} \widetilde{\mu}_{d} + c.c.} \qquad \phi_{A} = \arg(A_{f}M_{j})$$

$$-\widetilde{Q}^{\dagger}_{m} \mathbf{Q}^{2}_{Q} - \widetilde{L}^{\dagger}_{m} \mathbf{M}_{L}^{2} \widetilde{L} - \widetilde{u} \overline{m}_{u}^{2} \widetilde{u}^{\dagger}_{u} - \overline{d} \mathbf{M}_{d}^{2} \widetilde{d}^{\dagger}_{u} - \widetilde{e} \mathbf{M}_{e}^{2} \widetilde{e}^{\dagger}_{u} - m_{H_{u}}^{2} H_{u}^{*} H_{u} - m_{H_{d}}^{2} H_{d}^{*} H_{d}$$

$$-(b H_{u} H_{d} + c.c.)$$

Correlated Constraints

Li, Profumo, R-M '10

Present

Future d_n : 100 x present sensitivity

27

Zhang, An, Ji, Mohapatra '08

Caveat: χ PT calc of d_n

Zhang, An, Ji, Mohapatra '08

Recent Interest: EDMs & H \rightarrow \gamma \gamma

30

McKeen, Pospelov, Ritz '12 SM + singlet & vector-like leptons

Shu, Zhang '13 2HDM & connection with BAU

EDMs & Baryogenesis

- B violation (sphalerons)
- C & CP violation (BSM)
- Out-of-equilibrium or CPT violation (BSM)

EDMs & Baryogenesis

- B violation (sphalerons)
- C & CP violation (BSM)
- Out-of-equilibrium or CPT violation (BSM)

Electroweak baryogenesis

- Testable
- Was BAU produced ~ 10ps after Big Bang or earlier ?

EDMs & Baryogenesis

• B violation (sphalerons)

- C & CP violation (BSM)
- Out-of-equilibrium or CPT violation (BSM)

Electroweak baryogenesis

- Testable
- Was BAU produced ~ 10ps after **Big Bang or earlier ?**
 - Illustrative case: MSSM

Standard Model

BSM

EDMs & EW Baryogenesis: MSSM

One-loop EDMs preclude MSSM baryogenesis

EDMs & EW Baryogenesis: MSSM

One-loop EDMs preclude MSSM baryogenesis

Universal gaugino phases Arg(µM_ib^{*}) = Arg(µM_jb^{*})

Ritz CIPANP 09 + Cirigliano, R-M, Tulin, Lee '06
EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Flavored CPV & EWB

CPV & 2HDM

$$\mathcal{L} = -y_{ij}^u \bar{Q}^i (\epsilon H_u^{\dagger}) u_R^j - y_{ij}^d \bar{Q}^i H_u d_R^j$$
$$-\lambda_{ij}^u \bar{Q}^i H_d u_R^j - \lambda_{ij}^d \bar{Q}^i (\epsilon H_d^{\dagger}) d_R^j + h.c..$$

Liu, R-M, Shu '11; see also Tulin & Winslow '11; Cline et al '11

Viable EWB & CPV:

• EDMs are 2-loop

• CPV is flavor non-diag

Flavored CPV & EWB

CPV & 2HDM

III. Theoretical Interpretation: Challenges

Matching at Hadronic Scale

Running & Matching

 $Im C_{j}(\Lambda_{\chi}) = K_{jk} Im C_{k}(\Lambda)$

Operator	K_Q	Reference
Q_{qG}	3.30	[35]
$Q_{qV}, V = B, W$	1.53	[35]
$Q_{ ilde{G}}$	3.30	[35, 36]
$Q_{quqd}^{(1,8)}$		

Engel, R-M, van Kolck: 1303.2371, PPNP 71 (2013) 21

Running & Matching

 $Im C_{j}(\Lambda_{\chi}) = K_{jk} Im C_{k}(\Lambda)$

Operator	K_Q	Reference
Q_{qG}	3.30	[35]
$Q_{qV}, V = B, W$	1.53	[35]
$Q_{ ilde{G}}$	3.30	[35, 36]
$Q_{quqd}^{(1,8)}$		

Correct ?

Engel, R-M, van Kolck: 1303.2371, PPNP 71 (2013) 21

Running & Matching Hadronic

$$d_N = \alpha_N \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^2 \,\sum_k \beta_N^{(k)} \,(\operatorname{Im} C_k)$$
$$\bar{g}_{\pi}^{(i)} = \lambda_{(i)} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^2 \,\sum_k \gamma_{(i)}^{(k)} \,(\operatorname{Im} C_k)$$

$$\left(\frac{v}{\Lambda}\right)^2 \left[\beta_N^{qG} \left(\operatorname{Im} C_{qG}\right) + \beta_N^{q\gamma} \left(\operatorname{Im} C_{q\gamma}\right)\right] = e \,\tilde{\rho}_N^q \,\tilde{d}_q + \rho_N^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[e \,\tilde{\zeta}_N^q \,\tilde{\delta}_q + e \,\zeta_N^q \,\delta_q\right] \left(\frac{v}{\Lambda}\right)^2 \left[\gamma_{(i)}^{qG} \left(\operatorname{Im} C_{qG}\right) + \gamma_{(i)}^{q\gamma} \left(\operatorname{Im} C_{q\gamma}\right)\right] = \tilde{\omega}_{(i)}^q \,\tilde{d}_q + \omega_{(i)}^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[\tilde{\eta}_{(i)}^q \,\tilde{\delta}_q + \eta_{(i)}^q \,\delta_q\right]$$

How well can we compute the β , ρ , ζ , ... ?

46

Param	Coeff	Best value ^a	Range	
$\bar{ heta}$	$lpha_n lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)	
Im C _{qG}	$egin{array}{l} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{array}$	4×10^{-4} 8×10^{-4}	$(1 - 10) \times 10^{-4}$ $(2 - 18) \times 10^{-4}$	
\tilde{d}_q	$e ilde{ ho}_n^u \\ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)	
$ ilde{\delta}_q$	$e \tilde{\zeta}_n^u$ $e \tilde{\zeta}_n^d$	8.2×10^{-9} 16.3 × 10 ⁻⁹	$(2 - 20) \times 10^{-9}$ $(4 - 40) \times 10^{-9}$	
$\operatorname{Im} C_{q\gamma}$	$egin{array}{l} eta_n^{u\gamma} \ eta_n^{d\gamma} \ eta_n^{d\gamma} \end{array}$	0.4×10^{-3} -1.6 × 10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}	
d_q	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1	
δ_q	ζ_n^u ζ_n^d	$\begin{array}{c} 8.2 \times 10^{-9} \\ -33 \times 10^{-9} \end{array}$	$(4 - 12) \times 10^{-9}$ -(16 - 50) × 10 ⁻⁹	
$C_{\tilde{G}}$	$\beta_n^{\tilde{G}}$	2×10^{-7}	$(0.2-40) imes 10^{-7}$	
Im C _{øud}	$\beta_n^{\varphi u d}$	$3 imes 10^{-8}$	$(1 - 10) \times 10^{-8}$	
$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	$40 imes 10^{-7}$	$(10 - 80) \times 10^{-7}$	
$\operatorname{Im} C_{eq}^{(-)}$	$g_{S}^{(0)}$	12.7	11-14.5	
$\operatorname{Im} C_{eq}^{(+)}$	g _S ⁽¹⁾	0.9	0.6–1.2	

Engel, R-M, van Kolck:

Param	Coeff	Best value ^a	Range	
$\bar{ heta}$	$\alpha_n \\ \alpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)	
Im C _{qG}	$egin{smallmatrix} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{split}$	$\begin{array}{l} 4\times 10^{-4} \\ 8\times 10^{-4} \end{array}$	$(1 - 10) \times 10^{-4}$ $(2 - 18) \times 10^{-4}$	
\tilde{d}_q	$e ilde{ ho}_n^u \\ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)	
$\tilde{\delta}_q$	$e \tilde{\zeta}_n^u \\ e \tilde{\zeta}_n^d$	8.2×10^{-9} 16.3×10^{-9}	$\begin{array}{c} (2-20)\times 10^{-9} \\ (4-40)\times 10^{-9} \end{array}$	
$\operatorname{Im} C_{q\gamma}$	$egin{array}{l} eta_n^{u\gamma} \ eta_n^{d\gamma} \ eta_n^{d\gamma} \end{array}$	0.4×10^{-3} -1.6 × 10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}	
d_q	${ ho}_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1	
δ_q	ζ_n^u ζ_n^d	$\begin{array}{c} 8.2 \times 10^{-9} \\ -33 \times 10^{-9} \end{array}$	$\begin{array}{l}(4-12)\times 10^{-9}\\-(16-50)\times 10^{-9}\end{array}$	
C _Ĝ	$\beta_n^{\tilde{G}}$	$2 imes 10^{-7}$	$(0.2-40) imes 10^{-7}$	
Im C _{øud}	$\beta_n^{\varphi u d}$	$3 imes 10^{-8}$	$(1 - 10) \times 10^{-8}$	
$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	40×10^{-7}	$(10 - 80) \times 10^{-7}$	
$\operatorname{Im} C_{eq}^{(-)}$	$g_{S}^{(0)}$	12.7	11–14.5	
$\operatorname{Im} C_{eq}^{(+)}$	g _S ⁽¹⁾	0.9	0.6–1.2	

Engel, R-M, van Kolck:

Shintani et al

$q\gamma q$	$-0.066 { ilde d}^e 0.199 { ilde d}^e_+$
BSA	$-0.120 ilde{d}^e + 0.108 ilde{d}^e_+$
S(k)	$1.538 \tilde{d}^e$
acm $(\times \mu^{\text{acm}})$	$0.775 { ilde d}^e + 2.396 { ilde d}^e_+$
our CEDM	$(1.35 + 0.78 \mu^{ m acm}) \tilde{d}_{-}^e - (0.09 - 2.40 \mu^{ m acm}) \tilde{d}_{+}^e$
total	$1.16 ilde{d}^e 0.69 ilde{d}^e_+$
sum rules [15]	$-0.13 ilde{d}^e$

DSE: Pitschmann et al, 1209.4352, PRC 87 (2013) 015205

Why Multiple Systems ?

Multiple sources & multiple scales

Exploit complementary sensitivity to search for & identify CPV

Diamagnetic Systems: Schiff Moments

Atomic effect from nuclear finite size: Schiff moment Neutral atoms: nuclear EDM invisible to external probe

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Diamagnetic Systems

Nuclear Moments

Diamagnetic Systems

Nuclear Moments

Diamagnetic Systems: Schiff Moments

Atomic effect from nuclear finite size: Schiff moment

Schiff moment, MQM,...

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Diamagnetic Systems: Schiff Moments

Atomic effect from nuclear finite size: Schiff moment

EDMs of diamagnetic atoms (¹⁹⁹Hg)

60

Nuclear Schiff Moment

Nuclear Enhancements

Schiff moment, MQM,...

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment

Nuclear Enhancements: Octupole Deformation

Opposite parity states mixed by H^{TVPV}

"Nuclear amplifier"

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (²²⁵Ra)

Thanks: J. Engel 62

Running & Matching Nuclear

$$S = a_0 g \bar{g}_{\pi}^{(0)} + a_1 g \bar{g}_{\pi}^{(1)} + a_2 g \bar{g}_{\pi}^{(2)}$$
Nuclear many-body
computations
$$\bar{g}_{\pi}^{(i)} = \lambda_{(i)} \bar{\theta} + \left(\frac{v}{\Lambda}\right)^2 \sum_{k} \gamma_{(i)}^{(k)} (\operatorname{Im} C_k)$$

Non-perturbative hadronic computations

Nuclear Matrix Elements

Nucl.	Best value			
	<i>a</i> 0	<i>a</i> ₁	<i>a</i> ₂	
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 -0.008 -1.5	± 0.02 -0.006 6.0	0.02 -0.009 -4.0	
Range				
<i>a</i> ₀	<i>a</i> ₁		<i>a</i> ₂	
0.005-0.05 -0.005-(-0.05) -1-(-6)	$\begin{array}{cccc} 0.005-0.05 & -0.03-(+0.09) & 0.01-0.00000000000000000000000000000000$		0.01-0.06 -0.005-(-0.1) -3-(-15)	

Schiff Screening & Corrections

Inoue

IV. Theory-Experiment Interface

$$d_f = -(1.13 \times 10^{-3} \, e \, \mathrm{fm}) \left(\frac{v}{\Lambda}\right)^2 \, Y_f \, \delta_f$$

$$C_{S}^{(0)} = -g_{S}^{(0)} \left(\frac{v}{\Lambda}\right)^{2} \operatorname{Im} C_{eq}^{(-)}$$

TI, YbF, ThO...

$$d_f = -(1.13 \times 10^{-3} \, e \, \text{fm}) \left(\frac{v}{\Lambda}\right)^2 \, Y_f \underbrace{\delta_f}$$

$$C_{S}^{(0)} = -g_{S}^{(0)} \left(\frac{v}{\Lambda}\right)^{2} \left(\lim C_{eq}^{(-)}\right)$$

TI, YbF, ThO....

$$d_f = -(1.13 \times 10^{-3} \, e \, \text{fm}) \left(\frac{v}{\Lambda}\right)^2 \, Y_f \underbrace{\delta_f}$$

TI, YbF, ThO...

$$C_{S}^{(0)} = -g_{S}^{(0)} \left(\frac{v}{\Lambda}\right)^{2} \left(\operatorname{Im} C_{eq}^{(-)}\right)$$

~ 100 x greater sensitivity to $C_{\rm eq}$ than to $\delta_{\rm e}$

Paramagnetic Global Fit

Diagmagetic atoms and nucleons

T.C. & M. Ramsey-Musolf - in preparation

	θ_{QCD}	d_n^{0}	d_n^{1}	C _T	g_{π}^{0}	g_{π}^{1}	
neutron	Х	1	-1				
Xe, Hg, TlF	Х			Х	Х	Х	Schiff
Ra, Rn	X			Х	Х	X	Moment
proton	X	1	+1				
d, ³ H, ³ He	X				X	X	

$$S = g_{\pi NN} (a_0 \bar{g}_{CP}^0 + a_1 \bar{g}_{CP}^1 + a_2 \bar{g}_{CP}^2)$$

$$l_n \approx \bar{d}_n + (1.44 \times 10^{-14} g_{\pi}^{(0)} - 8.3 \times 10^{-16} g_{\pi}^{(1)}) e - cm$$

$$\bar{g}_{CP}^0 \approx 0.027 \ \theta_{QCD}$$

10/6/13

72

10/6/13

73

Questions for Week Three

- I. What are the most significant implications of present & prospective EDM searches ?
- II. What are the primary theoretical challenges& strategies for addressing them ?
- III. What do we learn from existing and planned experiments and what are the most compelling new directions ?

Thanks !

- MITP Faculty & Staff
- T. Chupp

Further reading:

- EDM: 1303.2371, hep-ph/0504231
- Project X: 1306.5009