Updates on $\mathrm{H} \rightarrow \mathrm{\gamma Y}$ Vertex ID Optimization

Julia Gonski (Dr. Pasquale Musella)
CMS Hgg Sub-group
19 July 2013

From last time...

- Goal: determine Higgs to gamma gamma vertex position within $\mathbf{1 c m}$ for mass resolution improvement
- Retrain Boosted Decision Tree (BDT) for new 14 TeV pile up conditions
- Develop time of flight (tof) discriminant to improve vertex ID efficiency

BDT 14 TeV re-training

- Pile up simulated as Gaussian centered around mean of 50 PU events
- ROC comparison: background rejection vs. signal efficiency

BDT 14 TeV re-training: VBF focus

- VBF: special case for one or more jets missing detector, false p_{T} offset
- Train VBF events using $\sum_{i}\left|\vec{p}_{T}^{i}\right|^{2}$. as a discriminant

TOF Discriminant Computation

- Detector assumes that all vertices are in the center of the detector (O)
- Calibration required to account for z displacement for each vertex

$$
T O F=\frac{\text { travelled }- \text { no } \min a l}{c}
$$

- For comparison to other vertices, compute difference between TOF for each photon

$$
\Delta T O F=T O F(\gamma 1)-T O F(\gamma 2)
$$

γ_{1}

TOF Discriminant Calculation, cont.

Next steps

- Finish incorporation of TOF discriminant: better choice of metric?
- Check performance ROC curves
- Optimize based on Δ eta between two photons: include as discriminant in BDT training
- Train for increased pile up (~100 events?)

Backup

Analysis Code: Off-center calibration

```
float VertexOptimizationAnalysis::getExtraTravelTime(TVector3 &posSC, TVector3 &posVertex){
    float travelled = sqrt( pow(posSC.X()-posVertex.X(), 2) +
            pow(posSC.Y()-posVertex.Y(), 2) +
            pow(posSC.Z()-posVertex.Z(), 2) ); l/from true vertex
    float nominal = sqrt(pow(posSC.X(), 2) +
        pow(posSC.Y(), 2) +
    pow(posSC.Z(), 2) ); //from origin of detector
    return (travelled-nominal)/100./speedOfLight*1.e9;
        //returns calibration time in nanoseconds
}
float VertexOptimizationAnalysis::getDeltaTof(TVector3 \&posLead, TVector3 \&posSubLead, TVector3 \& posVertex)\{
return getExtraTravelTime(posLead,posVertex) - getExtraTravelTime(posSubLead,posVertex); //computes difference in travel time between two photons

\section*{Analysis code: vertex loop}
```

TVector3 caloPosLead = (* (TVector3*) I.pho_calopos-
>At(I.dipho_leadind[diphoton_id])); //photon 1

```

TVector3 caloPosSubLead = ( * (TVector3*)
I.pho_calopos->At( I.dipho_subleadind[diphoton_id] ) ) ; //photon2

TVector3 closestVertex = ( * (TVector3*)l.vtx_std_xyz->At(closest_id) ); //correct vertex
deltaTof = getDeltaTof(caloPosLead, caloPosSubLead, closestVertex); //between 2 photons of correct vertex
deltaTof += getTimeResol(timeResVal_); //add smearing factor for time resolution
for(int vi=0; vi<l.vtx_std_n; ++vi) \{
... //other analysis code
TVector3 currentVertex = ( * (TVector3*)I.vtx_std_xyz->At(vi) );
tofCorrTdiff_ = deltaTof - getDeltaTof(caloPosLead, caloPosSubLead, currentVertex);
//compute difference in diphoton tof between correct and current
I.FillTreeContainer("vtxOpt");
\}

\section*{Higgs production}


\section*{Variable Definitions}
- sumpt2: \(\sum_{i}\left|\vec{p}_{T}^{i}\right|^{2}\).
- ptbal: \(-\sum_{i}\left(\bar{p}_{T}^{i} \cdot \frac{\frac{\bar{H}_{T}^{7}}{\left|\bar{p}_{T}^{T}\right|}}{\text {. }}\right.\).
- ptasym: \(\left(\right.\) ptot \(\left.x-p_{\mathrm{T}}^{\gamma \gamma}\right) /\left(\right.\) ptotx \(\left.+p_{\mathrm{T}}^{\gamma \gamma}\right)\).```

