Nelder-Mead Simplex Method

Rebecca Glaudell CERN REU 2013 BE-ABP-CC3
with thanks to:
Rog̈elio Tomas Garcia
Javier Barranco Garcia

July 19, 2013

Nelder Mead Simplex Method is a simple minimization algorithm.

Start with an n -dimensional function you want to minimize.

Let's take Rosenbock's parabolic valley, a.k.a the banana function.

http://en.wikipedia.org/wiki/File:Rosenbrock_function.svg Image from Microsoft Clip Art

July 19, 2013

Initialize a simplex with $n+$ I random vertices.

Calculate the centroid of the simplex

Order the points from highest to lowest

626

You can change the reflection coefficient, α,

- Is it better than the best point? EXPANSION
- if so, keep looking in that direction and replace worst point
- Is it in the middle?
- replace the worst point
- Is it worse than the worst point? CONTRACTION
- move entire simplex closer to the best point

3 coefficients must be chosen: for reflection, expansion, and contraction.

An initial simplex must be chosen (or an initial point and 1-D increments).

There is no pre-evaluation of the search direction.

So let's improve it

Put your starting vertices in a matrix from low to high

"Step I: Initialize a simplex with $(n+1)$ random vertices $\left.x_{1}, x_{2}, \ldots, x_{n} \cdot\right)^{\prime}$

The diagonal defines your extra point, xs.

Calculate pseudo-gradients and refine reflection

Calculated reflected point as $R^{\prime}=B-\sigma_{\uparrow}^{*} G$ step size
If $\bmod (\mathrm{i}, 2)=0$

$$
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f(i-1)-f(x s)}{x_{i-1, i, i}-x s_{i}}
$$

Else

$$
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f(i+1)-f(x s)}{x_{i+1, i}-x s_{i}}
$$

End
End

Previously, G referred to a 'good' point. Presumably, they mean the vector ' g ' containing the pseudogradients.

Cookies

I. $\sqrt{\sim}$

Let

