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why study flow?

an important probe of the interaction region of collisions

Spatial anisotropy Momentum anisotropy

Quantified by anisotropic flow 

may signal the formation of quark gluon plasma

combining flow and two particle interferometry  -  3D picture of the emitting source
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Photon Flow

Besides photons from hadron decays, direct photons are emitted at every stage of the system evolution

Since photons interact only weakly with strongly coupled medium - Carry undistorted information of the system

direct-photon production in nucleus-nucleus collisions 

prompt photons

             
fragmentation photons 

 
thermal photons

hard interactions of partons (quark- antiquark-annihilation and quark-gluon 
compton scattering)

fragmentation of hard scattered quarks or gluons

emitted by the hot thermalized medium through scattering of particles 
during the QGP phase and hadronic interactions in the hot hadron gas phase
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Flow Harmonics

Fourier expansion of azimuthal distribution
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26 Introduction

From this expression it is obvious that in most general case each type of anisotropy can
be defined with its own symmetry plane, the so called participant plane  

n

. Therefore
the complete anisotropic flow analysis requires in the most general case the measurement
of both v

n

and its symmetry plane  
n

. By generalizing the derivation of results (1.51)
one can show straightforwardly that:

v

n

= hcos(n('� 
n

))i , (1.62)

and that for a normalized distribution r('), v

0

= 1.
As introduced here, anisotropic flow is a physical observable and can be related to

the geometry of colliding heavy-ions. This geometry is determined event-by-event by
the positions of the participating nucleons in the initial overlap area. Before proceeding
further with its description, we stop for the moment in order to describe one model of
the geometry in a heavy-ion collisions, the so-called Glauber model, in its Monte Carlo
incarnation.

Glauber Monte Carlo Model

By the Glauber model [43] we refer in general to the models used to relate experimental
heavy-ion data to the geometric quantities characterizing the collision of two heavy-ions,
like impact parameter b, inelastic total nucleus-nucleus cross-section �

inel

, number of
participating nucleons N

part

and number of binary collisions N

coll

, none of which can be
measured directly. Originally, the Glauber model was developed in the 50’s to address
high-energy scattering of composite particles, providing for the first time a systematic
treatment and description based on quantum mechanical scattering theory. Today, the
Glauber model is used regularly in all heavy-ion experiments to determine the collision
geometry, in particular the centrality of the collision. To get the centrality classes of an
heavy-ion data sample, one measures per-event the charged particle multiplicity distri-
bution dN/dM . Once the total integral of the distribution is known, centrality classes
are defined by binning the distribution on the basis of the fraction of the total inte-
gral7 [44]. Having obtained centrality classes, all physical observables can be reported
as a function of centrality classes.

In the Glauber model the collision of two nuclei is seen as the superposition of
consecutive individual interactions of the constituent nucleons. Starting from such a
picture, it is natural to expect that the geometry of heavy-ion collision will be strongly
related to the geometric quantities b, N

part

and N

coll

, that we now define. The impact
parameter b is a vector connecting the centers of two colliding heavy-ions. The number
of participating nucleons, N

part

, is a total number of nucleons which undergo at least one
inelastic nucleon-nucleon collision (in literature such nucleons are also called wounded
nucleons, while on the other hand the nucleons which do not participate in collisions are

7As an example, centrality class 10%–20% is defined by the boundaries n
10

and n
20

which satisfy:
R n

10

1
dN
dM dM

R
0

1
dN
dM dM

= 0.1 and

R n
20

1
dN
dM dM

R
0

1
dN
dM dM

= 0.2 . (1.63)

With such definition, the head-on collisions (i.e. “most central” collisions) correspond to centrality class
0%–5% [44].

nth order flow harmonic
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The result (1.51), however, is of little use in the measurement of v

n

. Namely, the
orientation of impact parameter vector b (the vector connecting the centers of two
colliding nuclei) changes event-by-event in heavy-ion collisions, which in turn yields a
random reaction plane angle  

R

(the plane spanned by the impact parameter and the
beam axis z, see Fig. 1.4). Due to these random fluctuations it is useless to measure

x

y

ΨR

z

b

φ

y x' '

Figure 1.4: Schematic view of a non-central nucleus-nucleus collision in the transverse
plane.

azimuthal angles ' needed in Eq. (1.51) in a fixed coordinate system in the laboratory.
Namely, in such a coordinate system the initial non-trivial event-wise anisotropy will
average out to zero when the averaging is extended to all events. As an example,
in such a coordinate system one would get with equal probability the initial ellipsoidal
anisotropy of the created volume elongated event-by-event along x or y axis, which would
yield an event-by-event contribution to harmonic v

2

with positive or negative signature,
respectively, which trivially cancel out in an average over all events. Measuring azimuthal
angles of created particles with respect to the reaction plane angle  

R

would lead to
the desired non-trivial result for v

n

in Eq. (1.51). Therefore, if we would be able to
measure for each event precisely the reaction plane angle  

R

, than it would be trivial
to set up for each event the coordinate system for which the orientation of x-axis would
coincide with  

R

measured in that event, so that Eq. (1.51) would become applicable.
However, so far nobody has devised a precise experimental technique to measure the
orientation  

R

of the reaction plane event-by-event. The way to circumvent this issue
is to use observables which are sensitive only to flow harmonics v

n

, but do not require
the knowledge of reaction plane orientation event-by-event. Such observables can be
constructed, but more on that later.

In addition to the created volume’s spatial anisotropy originating solely from the
idealized collision geometry, there are also the anisotropies stemming from the fluctu-
ations in the initial positions of participating nucleons within the created volume [38].

and a(b) is semimajor(semiminor) axis. With this parameterization all harmonics vn can be calculated
analytically in a closed form. In particular, we have obtained:

vn = 2⇡b(�1)n
✓

a� b

a + b

◆ n

2

. (1.54)
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With such definition, the head-on collisions (i.e. “most central” collisions) correspond to centrality class
0%–5% [44].

Cumulant Method
Two and Multi-particle correlations

the ‘‘integrated’’ flow, as defined above, whereas most of the
recent analyses concentrate on the differential flow of iden-
tified particles, in particular, kaons !24,42", # mesons !21",
$ hyperons !25,43", and antiprotons !44".
In recent papers !45,46", we have shown for the first time

that nonflow correlations can be removed systematically not
only for integrated flow, but also in analyses of differential
flow. However, a limitation of this method when measuring
vn is the interference with higher harmonics (v2n , v3n , etc.%.
This interference may hinder the measurement of directed
flow when elliptic flow is larger, which is likely to be the
case at RHIC energies !47".
Here we present an improvement of this method, which is

free from this limitation, and in many respects simpler. In
particular, it no longer involves the event flow vector on
which most analyses are based !17,18,45". As in our previous
method, we perform a cumulant expansion of multiparticle
azimuthal correlations, which eliminates order by order non-
flow correlations, and can be used even if the detector does
not have full azimuthal coverage.
In Sec. II, we show how to construct the cumulants of

multiparticle azimuthal correlations by means of a generating
function. These cumulants allow us to reconstruct the inte-
grated flow from the measured correlations. The method is
extended to differential flow in Sec. III. The relation with
other methods is discussed in Sec. IV. Results of Monte
Carlo simulations are presented in Sec. V. The most technical
points are left to appendices: the construction of cumulants is
explained in detail in Appendix A; interpolation formulas
used to obtain the cumulants from the generating function
are given in Appendix B; acceptance corrections, which ex-
tend the validity of the method to detectors with partial azi-
muthal coverage, are derived in Appendix C; finally, statisti-
cal errors on the flow values deduced from the cumulants are
evaluated in Appendix D.
The essential improvement on our previous method is the

use of a new generating function, defined in Sec. II B, which
corrects the limitations encountered in Ref. !45". These im-
provements are discussed in detail in Sec. IV and in Appen-
dix A; they are seen clearly in the simulations presented in
Sec. V. In addition, the detailed discussions of acceptance
corrections &Appendix C% and statistical errors &Appendix D%
are completely new, although they also apply to our previous
method. Apart from these differences, most of the material
discussed in Secs. II and III can be found in Ref. !45", al-
though the present derivation is more transparent.

II. INTEGRATED FLOW

In Sec. II A, we illustrate with a few examples the prin-
ciple of the cumulant expansion of multiparticle azimuthal
correlations, and show how it can be used to perform flow
measurements with a better sensitivity than the previous
methods. Then we explain, in Sec. II B, how to perform this
expansion in practice, by means of a generating function. In
Sec. II C, we derive the relations between the cumulants and
the flow vn , integrated over some phase-space region. Using
cumulants to various orders, one thus obtains different esti-
mates for vn . The uncertainties associated with each esti-

mate due to nonflow correlations and limited statistics, and
the resulting optimal choice, are examined in Sec. II D. Fi-
nally, we discuss in Sec. II E the generalization of the previ-
ous subsections to different, optimal particle weights.

A. Cumulants of multiparticle azimuthal correlations

We denote by ' j , with j!1, . . . ,M , the azimuthal angles
of the particles seen in an event with multiplicity M, mea-
sured with respect to a fixed direction in the detector &this
was denoted by ' j in Ref. !45"%. In this paper, we shall be
concerned with multiparticle azimuthal correlations, which
we write generally in the form (exp!in('1"•••"'k#'k"1
#•••#'k"l)"), where n is the Fourier harmonic under study
(n!1 for directed flow, n!2 for elliptic flow%, and the
brackets indicate an average that is performed in two steps:
first, one averages over all possible combinations of k"l
particles detected in the same event; then, one averages over
all events.
Correlations between k"l particles can be generally de-

composed into a sum of terms involving correlations be-
tween a smaller number of particles. Consider for instance
the measured two-particle azimuthal correlation
(ein('1#'2)). It can be written as

(ein('1#'2))!(ein'1)(e#in'2)"((ein('1#'2))), &2%

where ((ein('1#'2))) is by definition the second-order cumu-
lant. To understand the physical meaning of this quantity, we
first consider a detector whose acceptance is isotropic, i.e.,
which does not depend on ' . Such a detector will be called
a ‘‘perfect’’ detector. Then, the average (ein' j) vanishes by
symmetry !since ' j is measured in the laboratory, not with
respect to the reaction plane, (ein' j) does not correspond to
the flow vn defined in Eq. &1%": the first term on the right-
hand side &rhs% of Eq. &2% vanishes and the cumulant reduces
to the measured two-particle correlation.
The relevance of the cumulant appears when considering

the more realistic case of a detector with uneven acceptance.
Then, the first term on the rhs of Eq. &2% can be nonvanish-
ing. But the cumulant vanishes if '1 and '2 are uncorre-
lated. Thus the cumulant ((ein('1#'2))) isolates the physical
correlation, and disentangles it from trivial detector effects.
There are several physical contributions to the correlation

((ein('1#'2))), which separate into flow and nonflow &or di-
rect% correlations. When the source is isotropic &no flow%,
only direct correlations remain. They scale with the multi-
plicity M as 1/M !32,33", as can be easily understood when
considering correlations between the decay products of a
resonance: when a * meson decays into two pions, momen-
tum conservation induces an angular correlation of order
unity between the decay pions; besides, the probability that
two arbitrary pions seen in the detector result from the same
* decay scales with the total number of pions as 1/M . All in
all, the correlation between two arbitrary pions is of order
1/M . If the source is not isotropic, flow, which is by defini-
tion a correlation between emitted particles and the reaction
plane, generates azimuthal correlations between any two out-
going particles, and gives a contribution vn

2 to the second-
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2nd order Cumulant

Calculate correlation between angle and reaction plane
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tified particles, in particular, kaons !24,42", # mesons !21",
$ hyperons !25,43", and antiprotons !44".
In recent papers !45,46", we have shown for the first time

that nonflow correlations can be removed systematically not
only for integrated flow, but also in analyses of differential
flow. However, a limitation of this method when measuring
vn is the interference with higher harmonics (v2n , v3n , etc.%.
This interference may hinder the measurement of directed
flow when elliptic flow is larger, which is likely to be the
case at RHIC energies !47".
Here we present an improvement of this method, which is

free from this limitation, and in many respects simpler. In
particular, it no longer involves the event flow vector on
which most analyses are based !17,18,45". As in our previous
method, we perform a cumulant expansion of multiparticle
azimuthal correlations, which eliminates order by order non-
flow correlations, and can be used even if the detector does
not have full azimuthal coverage.
In Sec. II, we show how to construct the cumulants of

multiparticle azimuthal correlations by means of a generating
function. These cumulants allow us to reconstruct the inte-
grated flow from the measured correlations. The method is
extended to differential flow in Sec. III. The relation with
other methods is discussed in Sec. IV. Results of Monte
Carlo simulations are presented in Sec. V. The most technical
points are left to appendices: the construction of cumulants is
explained in detail in Appendix A; interpolation formulas
used to obtain the cumulants from the generating function
are given in Appendix B; acceptance corrections, which ex-
tend the validity of the method to detectors with partial azi-
muthal coverage, are derived in Appendix C; finally, statisti-
cal errors on the flow values deduced from the cumulants are
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use of a new generating function, defined in Sec. II B, which
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method. Apart from these differences, most of the material
discussed in Secs. II and III can be found in Ref. !45", al-
though the present derivation is more transparent.

II. INTEGRATED FLOW

In Sec. II A, we illustrate with a few examples the prin-
ciple of the cumulant expansion of multiparticle azimuthal
correlations, and show how it can be used to perform flow
measurements with a better sensitivity than the previous
methods. Then we explain, in Sec. II B, how to perform this
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of the particles seen in an event with multiplicity M, mea-
sured with respect to a fixed direction in the detector &this
was denoted by ' j in Ref. !45"%. In this paper, we shall be
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brackets indicate an average that is performed in two steps:
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where ((ein('1#'2))) is by definition the second-order cumu-
lant. To understand the physical meaning of this quantity, we
first consider a detector whose acceptance is isotropic, i.e.,
which does not depend on ' . Such a detector will be called
a ‘‘perfect’’ detector. Then, the average (ein' j) vanishes by
symmetry !since ' j is measured in the laboratory, not with
respect to the reaction plane, (ein' j) does not correspond to
the flow vn defined in Eq. &1%": the first term on the right-
hand side &rhs% of Eq. &2% vanishes and the cumulant reduces
to the measured two-particle correlation.
The relevance of the cumulant appears when considering

the more realistic case of a detector with uneven acceptance.
Then, the first term on the rhs of Eq. &2% can be nonvanish-
ing. But the cumulant vanishes if '1 and '2 are uncorre-
lated. Thus the cumulant ((ein('1#'2))) isolates the physical
correlation, and disentangles it from trivial detector effects.
There are several physical contributions to the correlation

((ein('1#'2))), which separate into flow and nonflow &or di-
rect% correlations. When the source is isotropic &no flow%,
only direct correlations remain. They scale with the multi-
plicity M as 1/M !32,33", as can be easily understood when
considering correlations between the decay products of a
resonance: when a * meson decays into two pions, momen-
tum conservation induces an angular correlation of order
unity between the decay pions; besides, the probability that
two arbitrary pions seen in the detector result from the same
* decay scales with the total number of pions as 1/M . All in
all, the correlation between two arbitrary pions is of order
1/M . If the source is not isotropic, flow, which is by defini-
tion a correlation between emitted particles and the reaction
plane, generates azimuthal correlations between any two out-
going particles, and gives a contribution vn

2 to the second-

BORGHINI, DINH, AND OLLITRAULT PHYSICAL REVIEW C 64 054901

054901-2

order cumulant, as will be explained in Sec. II C. One can
measure the flow using the second-order cumulant if this
contribution dominates over the nonflow contribution, i.e., if
vn!1/!M !32,33". This is the domain of validity of standard
flow analyses, which are based on two-particle correlations.
Our main point is that through the construction of higher-

order cumulants, one can separate flow and nonflow correla-
tions. To illustrate how this works, we consider for simplicity
a perfect detector. Then, we decompose the measured four-
particle correlation as follows:

#exp! in$%1"%2#%3#%4&"'$#ein(%1#%3)'#ein(%2#%4)'

"#ein(%1#%4)'#ein(%2#%3)'

"##exp! in$%1"%2#%3

#%4&"''. $3&

If the particles are correlated pairwise, there are two possible
combinations leading to a nonvanishing value for the left-
hand side: the pairs can be either $1,3& and $2,4&, or $1,4& and
$2,3&. This yields the first two terms in the right-hand side.
The remaining term ##exp! in(%1"%2#%3#%4)"'', which
is by definition the fourth-order cumulant, is thus insensitive
to two-particle nonflow correlations. However, it may still be
influenced by higher-order nonflow correlations: if, for in-
stance, a resonance decays into four particles, the resulting
correlations between the reaction products do not factorize as
in Eq. $3&. We call such correlations ‘‘direct’’ four-particle
correlations. Fortunately, their contribution to the fourth-
order cumulant is very small: it scales with the multiplicity
as 1/M 3 !45", while the measured correlation #exp! in(%1
"%2#%3#%4)"' is generally much larger, of order 1/M 2

!the two-particle correlation terms in the rhs of Eq. $3& are of
order 1/M , as explained above". On the other hand, flow
yields a contribution #vn

4 to the cumulant, as we shall see in
Sec. II C. Therefore, the cumulant is dominated by the flow
as soon as vn!1/M 3/4. This is a major improvement on two-
particle correlations, which are limited by the much stronger
constraint vn!1/!M .
Equation $3& can be rewritten as

#exp! in$%1"%2#%3#%4&"'$2#ein(%1#%3)'2

"##exp! in$%1"%2#%3

#%4&"'', $4&

where we have used the symmetry between %1 and %2 $resp.
%3 and %4). However, Eqs. $3& and $4& only hold for a per-
fect detector, therefore they are of little practical use. It is in
fact possible to build an expression for the fourth-order cu-
mulant that eliminates both detector effects and nonflow cor-
relations, but this expression is very long. This is the reason
why we introduce a generating function of cumulants in Sec.
II B. It will enable us to construct easily cumulants of arbi-
trary orders for arbitrary detectors.
More generally, the cumulant ##exp!in(%1"•••"%k

#%k"1#•••#%k"l)"'', which involves k"l particles, is of
order M 1#k#l when there is no flow. It eliminates all non-

flow correlations up to order k"l#1. Only direct correla-
tions between k"l particles remain. Cumulants with k(l
vanish for a perfect detector and are physically irrelevant.
The interesting cumulants are the ‘‘diagonal’’ ones, with k
$l , as in Eqs. $2& and $4&. The contribution of flow to these
cumulants, proportional to vn

2k , will be evaluated precisely in
Sec. II C. When this contribution dominates over the non-
flow contribution, the measured cumulant yields an estimate
of the value of vn , which we denote by vn)2k*, where k
%0 is in principle arbitrary.

B. Generating function

Cumulants can be expressed elegantly, and without as-
suming a perfect detector as in Eq. $4&, using the formalism
of generating functions. For each event, we define the real-
valued function Gn(z), which depends on the complex vari-
able z$x"iy ,

Gn$z &$+
j$1

M ! 1"
z*ein% j"ze#in% j

M "
$+

j$1

M ! 1"
2x cos$n% j&"2y sin$n% j&

M " , $5&

where z*,x#iy denotes the complex conjugate. This gen-
erating function can then be averaged over events with the
same multiplicity M. We denote this statistical average by
#Gn(z)' . Its expansion in power series generates measured
azimuthal correlations to all orders,

#Gn$z &'$1"
z
M # -

j$1

M

e#in% j$ "
z*
M # -

j$1

M

ein% j$
"

z2

M 2# -
j&k

e#in(% j"%k)$ "
z*2

M 2 # -j&k
ein(% j"%k)$

"
zz*
M 2 # -

j(k
ein(% j#%k)$ "•••

$1"z#e#in%1'"z*#ein%1'

"
M#1
M ! z22 #e#in(%1"%2)'"

z*2

2 #ein(%1"%2)'

"zz*#ein(%1#%2)' ""••• , $6&

where the averages #ein%1', #ein(%1#%2)' , etc. are the same as
defined in Sec. II A. More generally, expanding #Gn(z)' to
order z*kzl yields, up to a numerical coefficient, the
(k"l)-particle correlation #exp!in(%1"•••"%k#%k"1#•••
#%k"l)"'. The generating function #Gn(z)' thus contains all
the information on measured multiparticle azimuthal correla-
tions.
If the detector is perfect, the statistical average #Gn(z)'

does not depend on the phase of z; it only depends on %z%
$!x2"y2. To see this, one may note that changing z into
zein. in the generating function $5& amounts to shifting all
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More on Cumulants

fined by Eq. !11" are related to vn . From the measured
cn#2k$, one thus obtains an estimate of vn , which is denoted
by vn#2k$. The lowest-order estimates are

vn#2$2%cn#2$, !17a"

vn#4$4%!cn#4$, !17b"

vn#6$6%cn#6$/4. !17c"

When the detector acceptance is far from isotropic, as is the
case of the PHENIX detector at RHIC &31', which covers
approximately half the range in azimuth, these relations no
longer hold. The issue of acceptance corrections, discussed
in detail in Appendix C, is more subtle than might be thought
first, for the following reason: when there is some flow, the
probability that a particle be detected depends on the orien-
tation of the reaction plane (R if the detector only has partial
azimuthal coverage. Hence, if a fixed number of particles are
emitted, the number of particles seen in the detector depends
on (R . Reciprocally, for a fixed value of the multiplicity M
seen in the detector, the probability distribution of (R is not
uniform, which creates an important bias in the flow analy-
sis. In the calculations of Appendix C1, we assume the cen-
trality selection is done by an independent detector !for in-
stance, a zero-degree calorimeter" which has !at least
approximately" full azimuthal coverage, so that the distribu-
tion of (R is uniform for the sample of events used in the
flow analysis.
Under this assumption, one can derive general relations

between the cumulants and the flow. It turns out that, in
general, cn#2k$ depends not only on vn , but also on other
harmonics vp with p)n . In order to obtain the correspond-
ing relations, we introduce the acceptance function A(*),
which is the probability that a particle with azimuthal angle
* be detected. The Fourier coefficients of this acceptance
function are

ap%!
0

2+
e!ip*A!*"

d*

2+
. !18"

The relations between the cumulants cn#2k$ and the esti-
mates vp#2k$ involve these coefficients. They are derived in
Appendix C1, to leading order in vp . The results for directed
flow and elliptic flow are given by Eqs. !C6" and !C7", re-
spectively.

D. Errors

We now examine the orders of magnitude of systematic
errors, arising from unknown nonflow correlations, and sta-
tistical errors, due to the finite number of events available.
More precisely, we estimate the difference ,vn#2k$ between
the true integrated flow vn and its values reconstructed from
the cumulants, vn#2k$, defined in Eqs. !17". We show which
value of 2k minimizes the total uncertainty.
As explained in Sec. II A, nonflow 2k-particle correla-

tions give a contribution of order M 1!2k to the cumulant
cn#2k$. This is to be compared with the contribution of flow
derived in Sec. II C, of order vn

2k . We may thus write

vn#2k$2k!vn
2k"O!M 1!2k", !19"

which is an estimate of the systematic error ,vn#2k$ due to
nonflow correlations. Obviously, flow can be measured only
if vn

2k#M 1!2k. For large orders k#1, this condition be-
comes

vn#1/M , !20"

which is a necessary condition for the flow to be measurable
&45'. We believe there is no way to extract a flow of order
1/M or smaller.
In this paper, we always assume that condition !20" is

fulfilled. If this is the case, the systematic error on vn given
by Eq. !19", ,vn#2k$-(Mvn)1!2k, becomes smaller and
smaller as k increases: thus one should construct cumulants
of orders as high as possible.
One must also take into account the statistical error, due

to the finite number of events Nevts available. The order of
magnitude of statistical errors can easily be understood. The
cumulant cn#2k$ involves correlations between 2k particles
belonging to the same event. There are roughly M 2k ways
!for large enough M ) to choose 2k particles among the M
particles detected, and one averages over all possible combi-
nations. Since this is done for all Nevts events, there is a total
of M 2kNevts subsets of 2k particles involved in the evaluation
of the cumulants. The resulting statistical error is therefore

vn#2k$2k!vn
2k"O" 1

!M 2kNevts
# . !21"

Unlike the systematic error, the statistical error generally in-
creases with increasing cumulant order 2k !it may in fact
decrease in some cases, but only slightly, see Appendix D2".
Therefore, the order 2k that gives the best compromise is the
one for which both statistical and systematic errors are of the
same magnitude. Equating the right-hand sides of Eqs. !19"
and !21", one obtains the optimal cumulant order &45'

2kopt$2$
lnNevts
lnM . !22"

In most of the practical cases, the fourth-order cumulant
(2k"4), that is, removing two-particle nonflow correlations,
is to be preferred.
Statistical errors are discussed more thoroughly in Appen-

dix D2. There, we derive exact formulas for the standard
deviations of the cumulants, and for their mutual correla-
tions. Two regimes can be distinguished, depending on the
value of the dimensionless parameter .%vn!M , which has
been used previously as a measure of the reaction plane reso-
lution &20'. If .%1, the standard deviations agree with the
simple estimate !21", and different estimates vn#2k$ and
vn#2l$ with k)l are uncorrelated. If .#1, on the other
hand, they are strongly correlated and the standard statistical
error becomes

,!vn#2k$"stat"
1

!2MNevts
, !23"
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Using generating function we build these cumulants

angles by the same quantity ! j→! j!" . Now, the probabil-
ity for an event to occur is unchanged under a global rota-
tion; therefore #Gn(z)$ is unchanged under this rotation,
hence the result. In this case, the only terms that remain in
the power-series expansion are the isotropic terms, propor-
tional to zkz*k, which involve only relative angles.
The generating function provides us with a way to obtain

a compact expression for cumulants of arbitrary orders. We
define the generating function of the cumulants Cn(z) by

Cn%z &'M (#Gn%z &$1/M!1) . %7&

The expansion of this function in power series of z and z*
defines the cumulants as

Cn%z &'*
k ,l

z*kzl

k!l! ##exp( in%!1"•••"!k!!k"1!•••
!!k"l&)$$. %8&

One easily checks that if the particles are uncorrelated, all
the cumulants vanish beyond order one, i.e., for k"l+2.
Indeed, if all the ! j in Eq. %5& are independent from each
other, the mean value of the product is the product of the
mean values, so that

#Gn%z &$#! 1"
z*#ein!$"z#e!in!$

M "M . %9&

The generating function of cumulants, Eq. %7&, then reduces
to

Cn%z &#z*#ein!$"z#e!in!$ . %10&

Comparing with Eq. %8&, cumulants of order 2 and higher
vanish when particles are uncorrelated, as expected.
The cumulant ##ein(!1!!2)$$ obtained when expanding

Eqs. %7& and %8& to order zz* coincides with the second-order
cumulant defined in Eq. %2& in the limit of large M %see
Appendix A&. Expanding Cn(z) to order z2z*2, one obtains
an expression for the cumulant ##ein(!1"!2!!3!!4)$$ that
reduces to Eq. %4& for a perfect detector. But the expression
derived from Eqs. %7& and %8& is still valid with an imperfect
detector, while Eq. %4& is not.
As mentioned in Sec. II A, cumulants with k,l vanish for

a perfect detector, since the generating function Cn(z) in Eq.
%8& depends only on #z#. The interesting cumulants are the
diagonal terms with k#l , which are related to the flow. We
denote them by cn-2k.,

cn-2k.'##ein(!1"•••"!k!!k"1!•••!!2k)$$. %11&

In practice, expanding the generating function Cn(z) analyti-
cally is rather tedious beyond order 2. The simplest way to
extract cn-2k. is to tabulate the generating function %7&, and
then compute numerically the coefficients of its power-series
expansion, using interpolation formulas that can be found in
Appendix B1.
Finally, we have assumed here that the multiplicity M is

exactly the same for all events involved in the analysis. In
practice, one performs the flow analysis for a class of events

belonging to the same centrality interval, and M fluctuates
from one event to the other. That explains our introducing
the factor 1/M in the definition of the generating function
%5&, as explained in more detail in Appendix A. The average
over events #Gn(z)$ then involves an average over M, and M
must be replaced by its average value #M $ in the definition
of the cumulants, Eq. %7&. This, however, leads to errors,
especially when the acceptance is bad %see Appendix A&.
This point will also be illustrated by the simulations pre-
sented in Sec. V. In order to avoid these effects, one may use
only a randomly selected subset of the detected particles,
with a fixed multiplicity M, to construct the generating func-
tion.

C. Contribution of flow to the cumulants

Let us evaluate the contribution of flow to the cumulants
cn-2k.. For simplicity, we assume that the detector is per-
fect. The generalization to an uneven acceptance is per-
formed in Appendix C1 . Under this assumption, one easily
calculates the generating function #Gn(z)$ and, from it, the
values of the cumulants.
Let us call /R the azimuthal angle of the reaction plane of

a given event. The average over events can be performed in
two steps: one first estimates the average over all events with
the same /R ; then one averages over /R . We denote by
#x#/R$ the average of a quantity x for fixed /R . With this
notation, the definition of vn , Eq. %1&, gives

#ein! j#/R$#vnein/R. %12&

Neglecting, for simplicity, nonflow correlations between par-
ticles, we obtain from Eq. %5&

#Gn%z &#/R$#! 1"
zvne!in/R"z*vnein/R

M "M . %13&

One must then average over /R :

#Gn%z &$#$
0

20

#Gn%z &#/R$
d/R

20
. %14&

Inserting Eq. %13& in this expression, one obtains

#Gn%z &$# *
k#0

[M /2] M !
%M!2k &!%k! &2 ! vn

M " 2k#z#2k
%I0%2vn#z#&, %15&

where, in the last equation, we have assumed that M is large,
so that M !/(M!2k)!#M 2k and one may extend the sum
over k to infinity. I0 denotes the modified Bessel function of
the first kind. The result depends only on #z#, as expected
from the discussion in Sec. II C.
The generating function of the cumulants %7& now reads

Cn%z &%M %I0%2vn#z#&1/M!1 &%lnI0%2vn#z#&. %16&

This equation can be expanded in power series. Comparing
with Eq. %8&, the cumulants with k,l vanish, as expected for
a perfect detector, while the diagonal cumulants cn-2k. de-
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order cumulant, as will be explained in Sec. II C. One can
measure the flow using the second-order cumulant if this
contribution dominates over the nonflow contribution, i.e., if
vn!1/!M !32,33". This is the domain of validity of standard
flow analyses, which are based on two-particle correlations.
Our main point is that through the construction of higher-

order cumulants, one can separate flow and nonflow correla-
tions. To illustrate how this works, we consider for simplicity
a perfect detector. Then, we decompose the measured four-
particle correlation as follows:

#exp! in$%1"%2#%3#%4&"'$#ein(%1#%3)'#ein(%2#%4)'

"#ein(%1#%4)'#ein(%2#%3)'

"##exp! in$%1"%2#%3

#%4&"''. $3&

If the particles are correlated pairwise, there are two possible
combinations leading to a nonvanishing value for the left-
hand side: the pairs can be either $1,3& and $2,4&, or $1,4& and
$2,3&. This yields the first two terms in the right-hand side.
The remaining term ##exp! in(%1"%2#%3#%4)"'', which
is by definition the fourth-order cumulant, is thus insensitive
to two-particle nonflow correlations. However, it may still be
influenced by higher-order nonflow correlations: if, for in-
stance, a resonance decays into four particles, the resulting
correlations between the reaction products do not factorize as
in Eq. $3&. We call such correlations ‘‘direct’’ four-particle
correlations. Fortunately, their contribution to the fourth-
order cumulant is very small: it scales with the multiplicity
as 1/M 3 !45", while the measured correlation #exp! in(%1
"%2#%3#%4)"' is generally much larger, of order 1/M 2

!the two-particle correlation terms in the rhs of Eq. $3& are of
order 1/M , as explained above". On the other hand, flow
yields a contribution #vn

4 to the cumulant, as we shall see in
Sec. II C. Therefore, the cumulant is dominated by the flow
as soon as vn!1/M 3/4. This is a major improvement on two-
particle correlations, which are limited by the much stronger
constraint vn!1/!M .
Equation $3& can be rewritten as

#exp! in$%1"%2#%3#%4&"'$2#ein(%1#%3)'2

"##exp! in$%1"%2#%3

#%4&"'', $4&

where we have used the symmetry between %1 and %2 $resp.
%3 and %4). However, Eqs. $3& and $4& only hold for a per-
fect detector, therefore they are of little practical use. It is in
fact possible to build an expression for the fourth-order cu-
mulant that eliminates both detector effects and nonflow cor-
relations, but this expression is very long. This is the reason
why we introduce a generating function of cumulants in Sec.
II B. It will enable us to construct easily cumulants of arbi-
trary orders for arbitrary detectors.
More generally, the cumulant ##exp!in(%1"•••"%k

#%k"1#•••#%k"l)"'', which involves k"l particles, is of
order M 1#k#l when there is no flow. It eliminates all non-

flow correlations up to order k"l#1. Only direct correla-
tions between k"l particles remain. Cumulants with k(l
vanish for a perfect detector and are physically irrelevant.
The interesting cumulants are the ‘‘diagonal’’ ones, with k
$l , as in Eqs. $2& and $4&. The contribution of flow to these
cumulants, proportional to vn

2k , will be evaluated precisely in
Sec. II C. When this contribution dominates over the non-
flow contribution, the measured cumulant yields an estimate
of the value of vn , which we denote by vn)2k*, where k
%0 is in principle arbitrary.

B. Generating function

Cumulants can be expressed elegantly, and without as-
suming a perfect detector as in Eq. $4&, using the formalism
of generating functions. For each event, we define the real-
valued function Gn(z), which depends on the complex vari-
able z$x"iy ,

Gn$z &$+
j$1

M ! 1"
z*ein% j"ze#in% j

M "
$+

j$1

M ! 1"
2x cos$n% j&"2y sin$n% j&

M " , $5&

where z*,x#iy denotes the complex conjugate. This gen-
erating function can then be averaged over events with the
same multiplicity M. We denote this statistical average by
#Gn(z)' . Its expansion in power series generates measured
azimuthal correlations to all orders,

#Gn$z &'$1"
z
M # -

j$1

M

e#in% j$ "
z*
M # -

j$1

M

ein% j$
"

z2

M 2# -
j&k

e#in(% j"%k)$ "
z*2

M 2 # -j&k
ein(% j"%k)$

"
zz*
M 2 # -

j(k
ein(% j#%k)$ "•••

$1"z#e#in%1'"z*#ein%1'

"
M#1
M ! z22 #e#in(%1"%2)'"

z*2

2 #ein(%1"%2)'

"zz*#ein(%1#%2)' ""••• , $6&

where the averages #ein%1', #ein(%1#%2)' , etc. are the same as
defined in Sec. II A. More generally, expanding #Gn(z)' to
order z*kzl yields, up to a numerical coefficient, the
(k"l)-particle correlation #exp!in(%1"•••"%k#%k"1#•••
#%k"l)"'. The generating function #Gn(z)' thus contains all
the information on measured multiparticle azimuthal correla-
tions.
If the detector is perfect, the statistical average #Gn(z)'

does not depend on the phase of z; it only depends on %z%
$!x2"y2. To see this, one may note that changing z into
zein. in the generating function $5& amounts to shifting all
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Start with Generating function over an event

Average over all events

Deduce cumulants

Use interpolation formula to deduce flow
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Figure 2.1: Parameter of PMD

cells of the sensitive volume of the detector. Charged hadrons usually a↵ect

only one cell and produce a signal resembling those of minimum ionizing

particles (MIPs). The thickness of the converter is 3X0 optimized such that

the conversion probability of photons is Maximum and the transverse shower

spread is minimum. A charged particle detector of similar granularity placed

in front of the converter to act as veto to discriminate between charged

hadrons and photons.

The PMD will use gas as sensitive medium and choice consideration that

1. signal from charged particles is confined preferably to one cell

2. low-energy � e� prevented from traveling to nearby cells

Both reson leads to spreading of the signals to regions much beyond the

actual shower region Some attempts have been made and our past developed

8

Photon Multiplicity Detector

The charged hadron passing through PMD in general deposits energy like MIP in both planes

Photon do not deposits any energy in CPV but gives large number of hits in the Preshower plane cells

So the cell number and signal strength are used for photon hadron discrimination

  Cell depth : 0.5 cm
  Cell cross-section : 0.23 cm2
  Total no. of cells : 76800×2 (as installed)
 Coverage : 2.3 to 3.9 in 
 Sensitive medium : Gas (Ar+CO2 in the ratio 70:30) 
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Data Analyzed

Pb-Pb LHC10h 2.76 TeV 

p-Pb LHC12g 5.02 TeV

Analysis Details

|z vertex| < 10 cm

n = (2.3,3.9)

PMDncell > 2

PMDAdc = 472
9



Integrate flow for PbPb
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Integrated flow for p-Pb
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Summary and action items

Integrated flow by cumulants in Pb-Pb and p-Pb to be calculated with higher statistics

Compare results with event plane method result for same data set

Compare with MC production data
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when you have eliminated the 
impossible, whatever remains, however 

improbable, must be the truth
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