ALICE India Meeting

Photon Flow in PMD

Divyash Pant
IIT Bombay

Under the guidance of
Prof. Raghava Varma

Outine

To flow or not to flow
Detector
Analysis details

- Data set
- Cuts
Integrated flow in Pb-Pb
Integrated flow in p-Pb

why study flow?

Spatial anisotropy \qquad Momentum anisotropy

Quantified by anisotropic flow

an important probe of the interaction region of collisions
may signal the formation of quark gluon plasma
combining flow and two particle interferometry - 3D picture of the emitting source

Photon Flow

Besides photons from hadron decays, direct photons are emitted at every stage of the system evolution

Since photons interact only weakly with strongly coupled medium - Carry undistorted information of the system
direct-photon production in nucleus-nucleus collisions
prompt photons hard interactions of partons (quark- antiquark-annihilation and quark-gluon compton scattering)
fragmentation photons \longrightarrow fragmentation of hard scattered quarks or gluons
thermal photons \qquad emitted by the hot thermalized medium through scattering of particles during the QGP phase and hadronic interactions in the hot hadron gas phase

Flow Harmonics

Fourier expansion of azimuthal distribution

$$
E \frac{d^{3} N}{d^{3} P}=\frac{1}{2 \pi} \frac{d^{2} N}{p_{t} d p_{t} d y}\left(1+\sum_{n=1}^{\infty} 2 v_{n} \cos \left[n\left(\phi-\psi_{n}\right)\right]\right)
$$

$$
v_{n}=\left\langle\cos \left(n\left(\varphi-\Psi_{n}\right)\right)\right\rangle \quad \text { nth order flow harmonic }
$$

Methods

Event Plane

Calculate correlation between angle and reaction plane

$$
v_{n}=\left\langle\cos \left(n\left(\varphi-\Psi_{n}\right)\right)\right\rangle
$$

Cumulant Method

Two and Multi-particle correlations

$$
\begin{aligned}
& \left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle \\
& \left\langle\exp \left[i n\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right)\right]\right\rangle \\
& \left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle=\left\langle e^{i n \phi_{1}}\right\rangle\left\langle e^{-i n \phi_{2}}\right\rangle+\left\langle\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle\right\rangle \\
& \quad \downarrow \text { 2nd order Cumulant }
\end{aligned}
$$

More on Cumulants

Using generating function we build these cumulants
$G_{n}(z)=\prod_{j=1}^{M}\left(1+\frac{z^{*} e^{i n \phi_{j}}+z e^{-i n \phi_{j}}}{M}\right) \quad$ Start with Generating function over an event

Average over all events
$M\left(\left\langle G_{n}(z)\right\rangle^{1 / M}-1\right)=|z|^{2}\left\langle\left\langle e^{i n\left(\phi_{j}-\phi_{k}\right.}\right\rangle\right\rangle+\cdots$
$M\left(\left\langle G_{n}(z)\right\rangle^{1 / M}-1\right)=\ln I_{0}\left(2 v_{n}|z|\right)$.
$v_{n}\{2\}^{2} \equiv c_{n}\{2\}$,
$v_{n}\{4\}^{4} \equiv-c_{n}\{4\}$,

$$
c_{n}\{2 k\} \equiv\left\langle\left\langle e^{i n\left(\phi_{1}+\cdots+\phi_{k}-\phi_{k+1}-\cdots-\phi_{2 k}\right)}\right\rangle\right\rangle
$$

$$
v_{n}\{6\}^{6} \equiv c_{n}\{6\} / 4
$$

Photon Multiplicity Detector

The charged hadron passing through PMD in general deposits energy like MIP in both planes
Photon do not deposits any energy in CPV but gives large number of hits in the Preshower plane cells
So the cell number and signal strength are used for photon hadron discrimination

Cell depth : 0.5 cm
Cell cross-section : 0.23 cm 2
Total no. of cells : 76800×2 (as installed)
Coverage : 2.3 to 3.9 in
Sensitive medium : Gas (Ar+CO2 in the ratio 70:30)

Analysis Details

Data Analyzed

$\mid z$ vertex $\mid<10 \mathrm{~cm}$
$n=(2.3,3.9)$
PMDncell > 2
PMDAdc $=472$

Reference flow estimates from Q-cumulants

Integrated flow for p-Pb

Reference flow estimates from Q-cumulants

Summary and action items

Integrated flow by cumulanis in Pb-Pb and p-Pb to be calculated with higher statistics

Compare results with event plane method resulif for same data set

Compare with MC production data

when you have eliminated the

 impossible, whatever remains, however improbable, must be the truih