Charged particle anisotropic flow ($\mathrm{v}_{2}, \mathrm{v}_{\mathbf{3}}, \mathrm{v}_{4}$) in $\mathrm{Pb}-\mathrm{Pb}$ collisions at midrapidity measured by ALICE

Ranbir Singh (for the ALICE Collaboration) University of Jammu, Jammu

OUTLINE :

> Motivation
$>$ ALICE experiment
> Flow Method used
$>$ Results
$>$ Summary

The measurement of the anisotropic flow allows to study :

the initial conditions

the equation of state

transport properties of the system created

Anisotropic flow is quantified by the Fourier coefficients v_{n} in the azimuthal distribution of the produced particles: $v_{n}=\left\langle\cos \left(n\left(\quad{ }_{n}\right)\right)\right\rangle$
> Without fluctuations odd harmonics are zero and where ${ }_{R}$ is the reaction plane angle defined as :
> Fluctuations in the spatial positions of the participating nucleons results in non-zero odd harmonics

2

ALICE - A Schematic View

QA Plots :
\# Events in each centrality

Eta Vs Phi

NCell distribution

$X-Y$ distribution of $Y_{\text {like }}$ cluster
$\times 10^{3}$ 240

Fig. 7: Ψ_{2} distributions, uncorrected, after corrections.

METHODS : Event Plane and Cumulants

Event plane method :

The event plane angle :

$$
{ }_{n}=\frac{1}{n} \tan { }^{1} \frac{w_{i} \sin \left(n_{i}\right)}{w_{i} \cos \left(n_{i}\right)}
$$

Estimate of v_{n} :

$$
v_{n}\{E P\}=\frac{v_{n}^{\text {obs }}}{R_{n}}
$$

Resolution calculated using three sub-event method.

$$
R_{A, n}=\sqrt{\frac{\left\langle\operatorname { c o s } (n ({ } _ { A } { } _ { B }) \rangle \left\langle\cos \left(n\left(\begin{array}{lll}
A & & \\
C
\end{array}\right)\right\rangle\right.\right.}{\left\langle\cos \left(n\left(\begin{array}{ll}
B &
\end{array}\right)\right\rangle\right.}}
$$

Poskanzer and Voloshin, Phys.Rev.C 58,1671 (1998).
Cumulants : For the detectors with uniform acceptance $2^{\text {nd }}$ and $4^{\text {th }}$ order cumulants are given by

$$
\begin{aligned}
& \left.c_{n}\{2\} \quad\left\langle\left\langle e^{i n(1} 2\right)\right\rangle\right\rangle=v_{n}^{2}+{ }_{2} \\
& c_{n}\{4\} \quad\left\langle\left\langle e^{i n(1+2} \begin{array}{lll}
4 & 4
\end{array}\right\rangle\right\rangle \quad 2\left\langle\left\langle e^{\operatorname{in}(1-2)}\right\rangle\right\rangle^{2} \\
& =v_{n}^{4}+4 v_{n}^{2} \quad 2+2_{2}^{2} \quad 2\left(v_{n}^{2}+{ }_{2}\right)^{2} \\
& =v_{n}^{4}
\end{aligned}
$$

PMD Event Plane Resolution

2_{2} - contribution from the non-flow correlations, $2_{2} \sim 1 / M$
Borghini, Dhin and Ollitrault, Phys. Rev. C 64, 054901 (2001).

RESULTS : $v_{n}(n=2-4)$ vs p_{T} for different centralities

- $v_{n}\left(p_{T}\right)$ peaks at about $3-4 \mathrm{GeV} / \mathrm{c}$ and depends weakly on p_{T} above $8 \mathrm{GeV} / \mathrm{c}$.
- v_{2} is higher than v_{3} and v_{4} for all centralities except $0-5 \%$.
- Observed non-zero v_{3} refers to the fluctuating initial conditions.

Ratio plots for $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$:

Ratio plots for $v_{3}\left(p_{T}\right)$:

Ratio plots for $\mathrm{v}_{4}\left(\mathrm{p}_{\mathrm{T}}\right)$:

RESULTS : $v_{n}(n=2-4)$ vs $p_{T}(0.2-20 \mathrm{GeV} / \mathrm{c})$

A comparison with the results from other experiments at RHIC and LHC

ALICE Collaboration arXiv:1205.5761

CMS Collaboration
arXiv:1204.1409

ATLAS Collaboration
Phys. Lett. B 707, 330-348(2012)
STAR Collaboration
Phys. Rev. C 72, 014904 (2005)

- v_{n} results from different LHC experiments show nice agreement.
- V_{2} measured at $\mathrm{LHC}\left(\mathrm{Vs}_{\mathrm{NN}}=2.76 \mathrm{TeV}\right)$ has a similar magnitude to that at RHIC $\left(\mathrm{Vs}_{\mathrm{NN}}=200 \mathrm{GeV}\right)$.

Systematic checks :

Standard Cuts : nHits > 70; dcaXY < 3.0 cm and dcaZ < 3.0 cm and \mid zVertex $\mid<10 \mathrm{~cm}$

Cuts variation in nHits: 1$)>60,2)>75,3)>80,4)>85$ and 5$)>90$
Cuts variation in dcaXY: 1) <4.02) $<2.5,3$) $<2.0,4$) $<1.5,5$) <1.0 and 6) <0.5

Cuts variation in dcaZ : 1) <4.02) $<2.5,3$) $<2.0,4$) $<1.5,5$) <1.0 and 6) <0.5

For detailed study and ratio plots : https://aliceinfo.cern.ch/Notes/node/144

RESULTS : $\mathbf{v}_{\mathrm{n}}(\mathrm{n}=\mathbf{2}, \mathbf{3})$ vs $\boldsymbol{\eta}$

Comparison of v_{2} vs. η with CMS $v_{2}\{E P\}$
p_{T} cut is same ($0.3<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$) both for $\mathrm{v}_{2}\{E P, P M D\}$ and CMS results

CMS results : arXiv:1204.1409

Comparison of v_{2} vs. η with ATLAS $v_{2}\{E P\}$

p_{T} cut is same ($0.5<p_{T}<0.7 \mathrm{GeV} / \mathrm{c}$) both for $\mathrm{v}_{2}\{E P, P M D\}$ and ATLAS results

ATLAS results : Phys.Lett.B 707 (2012) 330-348

RESULTS : $\mathbf{v}_{\mathbf{2}}$ vS p_{T} (Comparison with Hydro results)

Hydrodynamic model calculations are done with different sets of initial conditions: Glauber and Color Glass Condensate (CGC)

Roy, Mohanty and Chaudhary, arxiv:1210.1700.

For Glauber initial condition

- data prefers η / S between 0.0 to 0.12

For CGC initial condition

- data prefers η / S between 0.08 to 0.16

Another hydro study using a hybrid model VISHNU predicts $\eta / S \approx 0.20-0.24$ at LHC energies.

- VISHNU - $(2+1)$ d viscous hydrodynamic with the microscopic hadronic transport model UrQMD
- Initial conditions from MC-Glauber and MC-KLN

Song, Bass and Heinz, Phys.Rev.C83:054912,2011

RESULTS : v_{2} vs p_{T} (Comparison with other models)

A comparison with transport models and hydro results.

- NexSpherio and AMPT results are in good agreement with STAR data.
- AMPT and Therminator shows a good agrrement with ALICE data in low $\mathrm{pT}(<2 \mathrm{GeV})$ range.

RESULTS : v_{2} vs p_{T} (Comparison with WHDG model)

- High $p_{T}(\geq 7-8 \mathrm{GeV} / \mathrm{c})$ region is dominated by the hadron production from jet-fragmentation
- For $\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV} / \mathrm{c}, \mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ in agreement with WHDG model calculations W. A. Horowitz and M. Gyulassy, J. Phys. G 38, 124114 (2011).

RESULTS : Elliptic flow fluctuations

Estimate of the flow fluctuation :

$$
R_{v(24)}=\frac{v_{2}}{\left\langle v_{2}\right\rangle} \sqrt{\frac{v_{2}^{2}\{2\} \quad v_{2}^{2}\{4\}}{v_{2}^{2}\{2\}+v_{2}^{2}\{4\}}}
$$

Fluctuations at forward rapidity are similar to fluctuations at mid-rapidity.

At midrapidity fluctuations at LHC are consistent to that at RHIC*

* STAR collaboration, Phys. Rev. C86 (2012) 0.

RESULTS : $v_{n}(n=2,3)$ vs η

ALIDprei■28065

- v_{2} has strong centrality dependence
- v_{3} shows weaker centrality dependence (expected for flow fluctuations)
- Difference between $v_{2}\{2\}$ and $v_{2}\{4\}$ gives an estimate of flow fluctuations and it has weak dependence on rapidity
$>$ Charged particle v_{n} is measured in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\mathrm{Vs}_{\mathrm{NN}}=2.76 \mathrm{TeV}$ with the ALICE detector over a broad range of pseudorapidity, $|\eta|<5$ and of transverse momentum, $0.2<\mathrm{p}_{\mathrm{T}}<20 \mathrm{GeV} / \mathrm{c}$.
$>$ Observed non-zero v_{3} arises due to fluctuating initial conditions.
$>\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ at LHC energies is comparable to that at RHIC energies.
$>$ At low p_{T}, comparison of $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ with the hydro calculations suggest low value of the shear viscosity to entropy ratio (η / S).
$>$ At high $\mathrm{p}_{\mathrm{T}}, \mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ agrees with the WHDG model which accounts for the path length dependence of the parton energy loss.
$>$ Elliptic flow fluctuations, $\mathrm{R}_{\mathrm{v}(2-4)}$, measured over a wide range of rapidity and have similar magnitude at forward and mid-rapidity.
$>$ Strong centrality dependence of $v_{2}(\eta)$ is observed, while $v_{3}(\eta)$ has weaker dependence on centrality.

