

Charged particle anisotropic flow (v_2, v_3, v_4) in Pb-Pb collisions at midrapidity measured by ALICE

Ranbir Singh (for the ALICE Collaboration) University of Jammu, Jammu

OUTLINE :

- Motivation
- ALICE experiment
- Flow Method used
- ➢ Results
- Summary

MOTIVATION

The measurement of the anisotropic flow allows to study :

the initial conditions

the equation of state

transport properties of the system created

 $\bigotimes^{\mathbf{Z}}$

Anisotropic flow is quantified by the Fourier coefficients v_n in the azimuthal distribution of the produced particles: $v_n = \langle \cos(n(f - Y_n)) \rangle$

- Without fluctuations odd harmonics are zero and $\Upsilon_n = \Upsilon_R$ where Υ_R is the reaction plane angle defined as :
- Fluctuations in the spatial positions of the participating nucleons results in non-zero odd harmonics

ALICE – A Schematic View

DATA Sample: 2010 Pb+Pb Vs_{NN} = 2.76 TeV Events analysed ~ 10 M

A large η -gap between TPC and event plane detectors ensures the suppression of non-flow correlations.

SPD

- Charged particle tracking
- ✓ -2. < η < 2.</p>
- Full azimuth (0 < φ < 2π)

TPC

- Charged particle tracking
- ✓ -0.8 < η < 0.8
- ✓ Full azimuth ($0 < \phi < 2\pi$)

VZERO

- ✓ Centrality selection
- Event plane determination
- ✓ -3.7 < η < -1.7, 2.8 < η < 5.1
- ✓ Full azimuth ($0 < \phi < 2\pi$)

PMD

- ✓ Event plane determination
- ✓ 2.3 < η < 3.9</p>
- ✓ Full azimuth ($0 < \phi < 2\pi$)

FMD

- Charged particle multiplicity
- ✓ -3.7 < η < -1.7, 1.7 < η < 5
- ✓ Full azimuth ($0 < \phi < 2\pi$)

QA Plots :

Fig. 7: Ψ_2 distributions, uncorrected, after corrections.

METHODS : Event Plane and Cumulants

Event plane method :

The event plane angle :

Estimate of v_n :

$$Y_{n} = \frac{1}{n} \tan^{-1} \frac{\overset{\circ}{a} w_{i} \sin(nf_{i})}{\overset{i}{\overset{\circ}{a}} w_{i} \cos(nf_{i})}$$
$$\{EP\} = \frac{v_{n}^{obs}}{R_{n}}$$

Resolution calculated using three sub-event method.

 \mathcal{V}_n

$$R_{A,n} = \sqrt{\frac{\left\langle \cos(n(\Upsilon_{A} - \Upsilon_{B})) \right\rangle \left\langle \cos(n(\Upsilon_{A} - \Upsilon_{C})) \right\rangle}{\left\langle \cos(n(\Upsilon_{B} - \Upsilon_{C})) \right\rangle}}$$

Poskanzer and Voloshin, Phys. Rev. C 58, 1671 (1998).

Cumulants : For the detectors with uniform acceptance 2nd and 4th order cumulants are given by

$$c_{n} \{2\} \circ \left\langle \left\langle e^{in(f_{1}^{-} f_{2}^{-})} \right\rangle \right\rangle = v_{n}^{2} + d_{2}^{2}$$

$$c_{n} \{4\} \circ \left\langle \left\langle e^{in(f_{1}^{+} f_{2}^{-} f_{3}^{-} f_{4}^{-})} \right\rangle \right\rangle - 2 \left\langle \left\langle e^{in(f_{1}^{-} f_{2}^{-})} \right\rangle \right\rangle^{2}$$

$$= v_{n}^{4} + 4 v_{n}^{2} d_{2}^{2} + 2 d_{2}^{2} - 2 (v_{n}^{2} + d_{2}^{-})^{2}$$

$$= -v_{n}^{4}$$

 d_2 - contribution from the non-flow correlations, $d_2 \sim 1/M$ Borghini, Dhin and Ollitrault, Phys. Rev. C 64, 054901 (2001).

PMD Event Plane Resolution

$\begin{array}{c} 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.7 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.7 \\$

VZERO Event Plane Resolution

RESULTS : $v_n(n=2-4)$ vs p_T for different centralities

- $v_n(p_T)$ peaks at about 3-4 GeV/c and depends weakly on p_T above 8 GeV/c.
- v_2 is higher than v_3 and v_4 for all centralities except 0-5%.
- Observed non-zero v₃ refers to the fluctuating initial conditions.

Ratio plots for $v_2(p_T)$:

Ratio plots for $v_3(p_T)$:

Ratio plots for $v_4(p_T)$:

RESULTS : v_n(n=2-4) vs p_T (0.2 - 20 GeV/c)

A comparison with the results from other experiments at RHIC and LHC

ALICE Collaboration arXiv:1205.5761

CMS Collaboration arXiv:1204.1409

ATLAS Collaboration Phys. Lett. B 707, 330-348(2012)

STAR Collaboration Phys. Rev. C 72, 014904 (2005)

- v_n results from different LHC experiments show nice agreement.
- v₂ measured at LHC (Vs_{NN}=2.76TeV) has a similar magnitude to that at RHIC (Vs_{NN}=200GeV).

Systematic checks :

Standard Cuts : nHits > 70; dcaXY < 3.0 cm and dcaZ < 3.0 cm and |zVertex| < 10 cm

Cuts variation in nHits: 1) > 60, 2) > 75, 3) > 80, 4) > 85 and 5) > 90

Cuts variation in dcaXY : 1) < 4.0 2) < 2.5, 3) < 2.0, 4) < 1.5, 5) < 1.0 and 6) < 0.5

Cuts variation in dcaZ : 1) < 4.0 2) < 2.5, 3) < 2.0, 4) < 1.5, 5) < 1.0 and 6) < 0.5

For detailed study and ratio plots : https://aliceinfo.cern.ch/Notes/node/144

```
RESULTS : v<sub>n</sub> (n=2, 3) vs η
```


Comparison of v_2 vs. η with CMS v_2 {EP}

 $p_{\rm T}$ cut is same (0.3 < $p_{\rm T}$ < 3.0 GeV/c) both for $v_2\{\text{EP,PMD}\}$ and CMS results

CMS results : arXiv:1204.1409

Comparison of v_2 vs. η with ATLAS v_2 {EP}

 $p_{\rm T}$ cut is same (0.5 < $p_{\rm T}$ < 0.7 GeV/c) both for $v_2\{\text{EP},\text{PMD}\}$ and ATLAS results

ATLAS results : Phys.Lett.B 707 (2012) 330-348

RESULTS : v₂ vs p_T (Comparison with Hydro results)

Hydrodynamic model calculations are done with different sets of initial conditions : Glauber and Color Glass Condensate (CGC)

Roy, Mohanty and Chaudhary, arxiv:1210.1700.

Another hydro study using a hybrid model VISHNU predicts $\eta/S \approx 0.20-0.24$ at LHC energies.

- VISHNU (2+1)d viscous hydrodynamic with the microscopic hadronic transport model UrQMD
- Initial conditions from MC-Glauber and MC-KLN

Song, Bass and Heinz, Phys.Rev.C83:054912,2011

RESULTS : $v_2 v_5 p_T$ (Comparison with other models)

A comparison with transport models and hydro results.

NexSpherio and AMPT results are in good agreement with STAR data.

 AMPT and Therminator shows a good agrrement with ALICE data in low pT (<2GeV) range.

- High p_T (≥7-8 GeV/c) region is dominated by the hadron production from jet-fragmentation
- For p_T > 10 GeV/c, v₂(p_T) in agreement with WHDG model calculations W. A. Horowitz and M. Gyulassy, J. Phys. G 38, 124114 (2011).

RESULTS : Elliptic flow fluctuations

Fluctuations at forward rapidity are similar to fluctuations at mid-rapidity.

At midrapidity fluctuations at LHC are consistent to that at RHIC*

* STAR collaboration, Phys. Rev. C86 (2012) 0.

RESULTS : ν_n (n=2, 3) vs η

- v₂ has strong centrality dependence
- v₃ shows weaker centrality dependence (expected for flow fluctuations)
- Difference between v₂{2} and v₂{4} gives an estimate of flow fluctuations and it has weak dependence on rapidity

SUMMARY:

- Charged particle v_n is measured in Pb-Pb collisions at Vs_{NN} =2.76 TeV with the ALICE detector over a broad range of pseudorapidity, |η|<5 and of transverse momentum, 0.2 < p_T < 20 GeV/c.</p>
- \succ Observed non-zero v₃ arises due to fluctuating initial conditions.
- \succ v₂(p_T) at LHC energies is comparable to that at RHIC energies.
- At low p_T , comparison of $v_2(p_T)$ with the hydro calculations suggest low value of the shear viscosity to entropy ratio (η/S).
- > At high p_T , $v_2(p_T)$ agrees with the WHDG model which accounts for the path length dependence of the parton energy loss.
- Elliptic flow fluctuations, R_{v(2-4)}, measured over a wide range of rapidity and have similar magnitude at forward and mid-rapidity.
- Strong centrality dependence of $v_2(\eta)$ is observed, while $v_3(\eta)$ has weaker dependence on centrality.