

D* Hadron Correlations in pPb Collisions at 5.02 TeV

Sonia Rajput¹, Sandro Bejelogrilic ²

University of Jammu, India Utrect University, Netherland

HF Meet, Mumbai 2013

Outline

- Motivation
- Introduction
- D* reconstruction
- Hadron Selection
- D*-hadron Δ φ Δη correlations in pPb data at 5.02 TeV
- Summary & Outlook

Motivation: Heavy Quarks as Probe of QGP

• p+p data:

- \rightarrow baseline of heavy ion measurements
- \rightarrow test of pQCD calculation: mc ~ 1.3 GeV, mb ~ 4.8 GeV >> T_c, $\Lambda_{OCD} \rightarrow$ less affected than light quarks
- Due to their large mass heavy quarks are primarily produced by gluon fusion in early stage of collision.
 - →production rates calculable by pQCD (M. Gyulassy and Z. Lin, PRC 51, 2177 (1995)

• Heavy ion data:

they travel through the created medium interacting with its constituents
Studying energy loss of heavy quarks
independent way to extract properties of the medium.

Motivation for Analysis

□ Study Heavy Flavor pair production and the charm fragmentation in pPb collisions at 5.02 TeV

Estimate the fraction of hadrons that are coming from Heavy Flavor in the near and away side peak

Correlations are done with:

- Charged Hadrons
- Charged Kaons
- > Reconstructed K⁰s

Introduction

□ The reconstructed D* is used as "trigger" to look for azimuthal correlations with hadrons.

Data samples used : 78 M events.

- > LHC13b pass2
- > LHC13c pass1

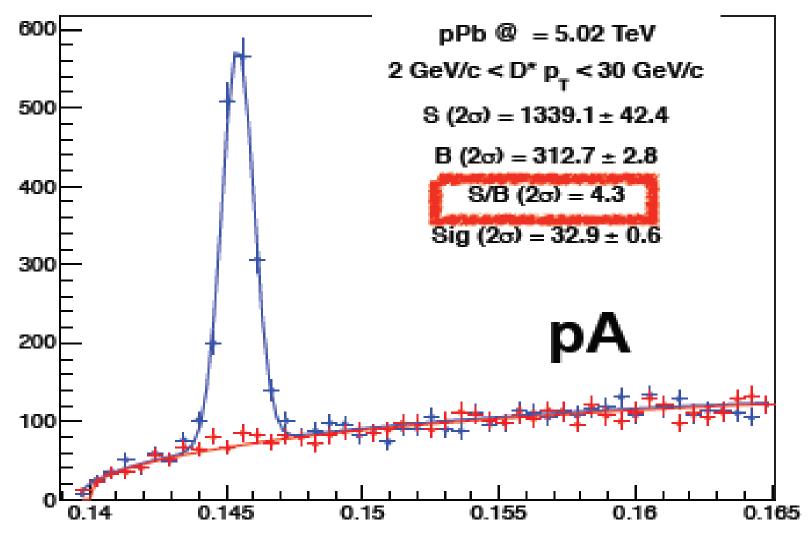
 \Box D* mesons selected within 2 sigmas

Background estimated from D0 side bands (4-8 sigmas)

Analysis Strategy

□ D* reconstructed using invariant mass method

Azimuthal angular correlation between D* and charged hadrons


□ Identify background of ∆ distribution using side-bands

D* Reconstruction

- □ D*[±] reconstructed in its hadronic decay channel: D*[±] → D⁰ (kπ)π[±]
- □ Reconstruction based on D⁰ secondary vertex identification
- Combinatorial background reduced with topological selections and particle identification.

Invariant mass spectrum for D* meson

Kππ - Kπ invariant mass distribution

^{4/23/13}

D* - charged hadron correlations

•Steps:

- 1. Select D^{*} (Mass region ($\mu \pm 2\sigma$)) & obtain $\Delta \Phi$ by other hadrons.
- 1. Background removing is done by SIDE BAND TECHINIQUE (taking background from side bands of D^{*} spectra).

SIDE BAND TECHNIQUE

- Side Band Technique provides functionality to do Sideband Subtraction quickly and easily.
- For Invariant Mass spectra we define background in three parts in terms of sigma.
- \Box For left side we define -8 σ to -4 σ and we call it left side band.
- For middle (where we have signal+bkg) we define the range -2σ to+ 2σ
- For right side we define the range +4σ to +8σ and call it right side band.
- \gg WB_L+WB_R B₀ =0
- > Where W is the scaling factor $W=B_0/(B_L + B_R)$

Now using this side band technique we will remove background and identify signal

How to use SB Technique

- Obtain D*- Hadron Correlation in
- \Box S1. $\pm 2\sigma$ region (S+B)
- \Box S2. –(8 σ 4 σ) Left Side Band (B)
- \Box S3. +(4 σ 8 σ) Right Side Band (B)
- □ S4. Add background from Left + Right with scaling.
- □ S5. Subtract S4 from S1.

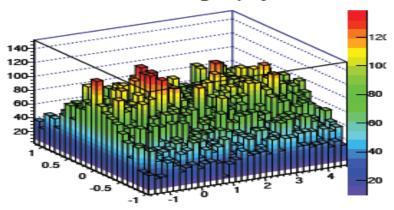
Hadron Selection

> Hadrons : AOD Tracks with :

TPC refit

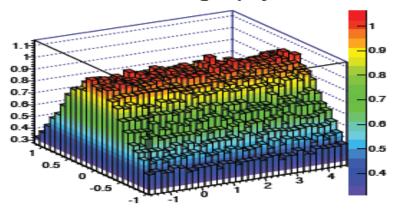
□ ITS refit

□ Min 80 TPC clusters


□ Min 2 hits in ITS

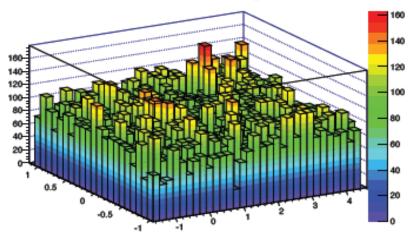
 \Box pT > 0.3 GeV/c

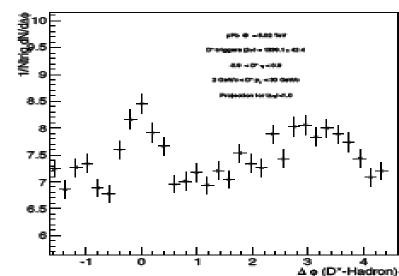
□ SPD::kAny


Correlations D* pt Integrated , Assoc. pt> 0.3 GeV/c

Correlations for signal projection

Single Event

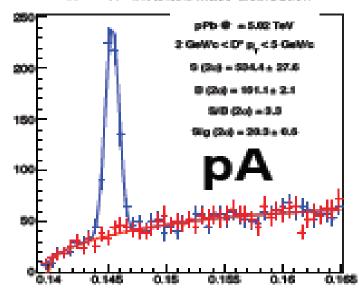

Correlations for signal projection

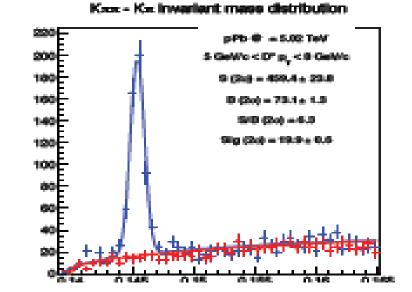


Mixed Event

After correction

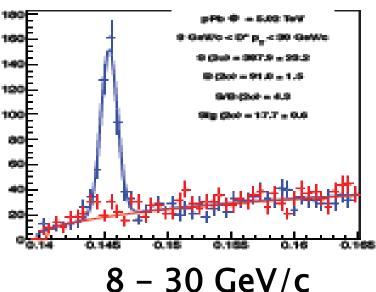
SEsubtracted_Mixing

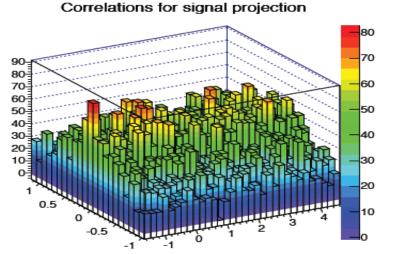




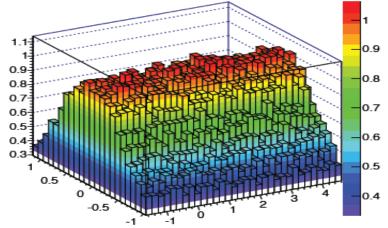
Azimuthal correlation

D* RECONSTRUCTED FOR DIFFERENT pt BINS


Kas - Ka invariant mass distribution

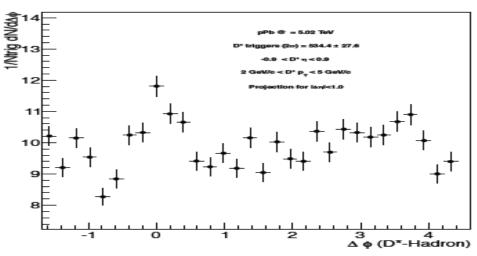

2 - 5 GeV/c

Kass - Kas invariant mass distribution

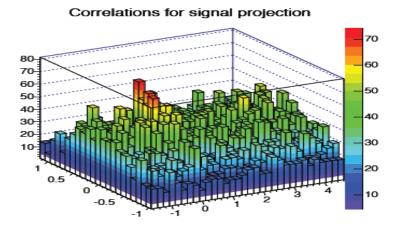


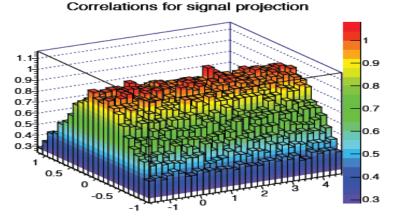
5-8GeV/c

D* Hadron Correlations :2GeV/c< pt <5GeV/c , Assoc. pt> 0.3 GeV/c


Correlations for signal projection

Single Event


Mixed Event

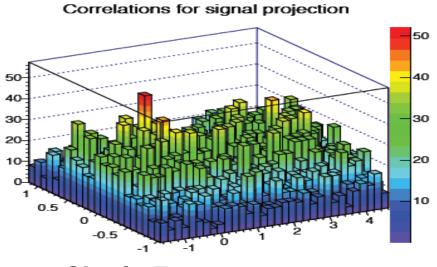

Azimuthal correlation

HF Meet, Mumbai 2013

D* Hadron Correlations : 5GeV/c< D* pt <8GeV/c , Assoc. pt>

Single Event

Azimuthal correlation

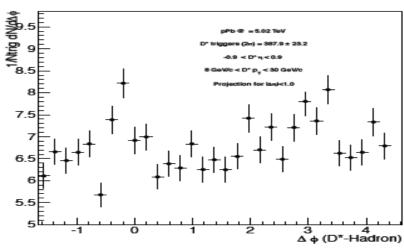

$\begin{cases} \begin{tabular}{c} & p^{p_{b} \oplus = 6.02 \text{ TeV}} \\ D^{*} \text{ triggers } (2\sigma) = 450.4 \pm 22.9 \\ & -0 = CD^{*} + c.0 \\ & 0 = CD^{*} + c$

Mixed Event

HF Meet, Mumbai 2013

D* Hadron Correlations :

8GeV/c< D* pt <30GeV/c , Assoc. pt> 0.3 GeV/c


1.1 1 1.2 0.9 1-0.8 0.8 0.7 0.6 0.6 0.4 0.5 0.4 0.5 0 0.3 0.5

-1

Correlations for signal projection

Single Event

Mixed Event

Azimuthal correlation

HF Meet, Mumbai 2013

Summary & Outlook

- D*-hadron correlations in the available pPb data sample
- 78 M events available at the moment (LHC13b pass2 & LHC13c pass1)
- \Box Correlations are clearly visible for D* p_{T} integrated
- Correlations are also shown for D* $\rm p_{T}$ bins :2-5, 5-8, 8-30
- **C** Extraction of the relevant correlation parameters to be done after applying necessary corrections plus cut optimization for D* selection

Backup slides

HF Meet, Mumbai 2013

Extraction of Heavy Flavor Signal

- Electron: measuring first inclusive electrons:
- Background subtracted method: using background cocktail composed of electron sources measured at PHENIX: photonic and non-photonic sources:
 - → Conversion of photons from hadron decays in material
 - → Dalitz decays of light mesons ($\pi 0$, η , ω , η' , ϕ)
 - \rightarrow Ke3 : K[±] $\rightarrow \pi^0 e^{\pm} v_e$
 - → vector meson decays: ρ , ω , ϕ → $e^+ e^-$
 - \rightarrow heavy quarkonia decay
- Converter subtract method: adds material of known thickness around beam pipe, measures conversion electrons by extra yield produced. Used at lower p_T.

Both cocktail and converter methods agree

- Muon: measuring first inclusive muons:
- **Background subtracted method**: backround removed trough hadronic cocktail subtraction. Backgrounds include:
 - decay muons: resulting from light hadron decay.
 - Punchtrough hadrons: hadrons that are not absorbed in steel absorber, look identical to muons.

HF Meet, Mumbai 2013