ACADEMIC TRAINING

Technology and applications of
high field accelerator magnets

Lesson 3:

* Nb,Sn colil fabrication technology
 Magnet assembly - |

CERN June 2-6, 2008




(@ Outline

 Coil fabrication technology

 Magnet assembly - |

* Technological quadrupoles with collars

— Plan for next lessons
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Closer look at Nb,;Sn

Better performance (~50%) at
4.2 K than NbTi at 1.8 K aperture Quad

Larger temperature margin

“Why there are no Nb,Sn magnets

Because Nb,Sn is a brittle material —>

June 4, 2008

Development of Nb;Sn

magnets started in the 60’sT

Why not yet?

in any HE accelerator?”

BNL 76 mm

from Nb,;Sn Tape

W. B. Sampson,
MT-2 1967

"Nb,Sn accelerator magnet development around the world
M. J. Lamm; Applied Superconductivity, IEEE Transactions on
Volume 13, Issue 2, Part 2, June 2003 Page(s):1278 - 1283
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LARP baseline strand

- "Baseline Strand"- Specs.
 LARP Magnets will use OST production Wire
« Rod Re-Stack Process, RRP 54/61 Design
— 0.7mm diameter

Heat treatment — Sub-element (Filament) Diameter ~ 70 um e
optimization ~ — > Jc > 2400A/mm? at 12T 200
to balance critical — lc>500Aat12T \
current and stability —~ Copper Fraction 47 % :

— RRR of stabilizer Cu > 100
— Stability current I~ 1000 A

« Magnet Operating Current ~ 500 A (~ 12T)

For the strand I,>2 x I,

LARF DOE Review Jung 12-14, 2006 Matarials — Conductor Support - A Ghosh 4
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Effective filament size

o Key issue for high J¢c-NbsSn Strand

LARE

Lack of “Adiabatic” stability in currently available strands
(RRP 54/61 design)

After reaction strand is essentially a 54-filament conductor
with filament diameter d_; ~ sub-element diameter

LARP DOE Review Jung 12-14, 2006 Materials — Conductor Suppart - A Ghosh 5

June 4, 2008
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First pass:
Rectangular
cable

Annealing:
To remove
cabling tension

Second pass:
Keystoned
(trapezoidal)
cable
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Need to find a balance between compaction
= mechanical stability, higher eng. current density

and strand deformation
=» degradation of critical current and stability threshold &

Need to increase inter-
strand resistance

R, is too low
Large dynamic effects
=» Add ss core

- B e o - -.,r v. e
— : il e . o & b

Cable 939 over-compacted during the re-roll
operation leading to significant barrier damage.

— Cabling procedures being modified to avoid
June 4, 2008 G. this problem.
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‘@ Fabrication Technologies

~—




St
——

.
(@ Insulation .
¥ glass or ceramic

* Requirements: with non-organic

— No organic materials binder
— Strong enough to withstand mechanical stresses

— Should withstand heat-treatment temperature up to 700° C under
pressure (Wind-and-React only)

— Should be compatible with vacuum impregnation

* Options:
Pre-Preg Tape
. Sleeve
N braided on
the cable
+ No length limit + No overlap + No overlap
- needs overlap - limited max cable length + No length limit
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() winding

* Fixtures and tooling are similar
to NbTi coil winding
— Rotating table (short coils)
— Winding machine (long coils)
 All coil parts should withstand
the heat treatment
— Metal or ceramic
* Not for React-and-Wind
— LARP TQ: Al-bronze, Ti-Al-V

* The insulation is less strong
than Kapton _
— Slots in end parts to give flexibility B
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 Fermilab has introduced the
use of a ceramic binder* that
becomes a glue after curing
at 150° C for 30 min under
pressure

. . 0.35
— Easy handling of coils £, | StQuerkp
- e 0
— Possibility of measurements 4 45%,
i . $ 025 ™~ ~——
and inspection I 0%, \“\s\g\n o
E o2 20%«“49*9
o : c 015 0% g o ———
Optimization of tape overlap in order to S \e\"\f::—o—ﬂzﬂa
achieve the nominal insulation thickness | = 01 —o—s
under pressure ) | 2 s ‘ ‘ —
0 10 20 30 40 50 60 70

Pressure, MPa

*Developed by Composite Technology Development: http://www.ctd-materials.com/

D.R. Chichili, et al., “Investigation of cable insulation and thermo-mechanical properties of
epoxy impregnated Nb,Sn composite” IEEE Trans. Appl. Superc.Vo 10, No 1, March
2000 Pag: 1317 - 1320
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(@ Heat treatment - |

 This is a very critical step!
— Temperature control and uniformity
» Steps at ~210° C, 400-450° C, and 630-670° C
— No oxygen (argon or vacuum)
* Reaction fixture should accommodate:

— Coil volume increase 700
» Due to Nb;Sn formation " =l
— Different thermal expansions U 106 — \
» Reaction fixt. should provide:* __;-/ l\
- Nominal coil geometry o / ]g
- Easy extraction of reacted coil *—_ ——— -

* Most critical handling
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(@ Heat treatment - |l

+ Segmented tooling with base

and top plates
= Very high accuracy of coil
cavity size for any length

* The fixture can be
assembled / disassembled
around the coill

=» Minimize coil handling
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Heat treatment - ll|

 Coil azimuthal size:

— Size of curing mold is slightly smaller
than nominal dimension

— Size of reaction fixture is equal to
nominal dimensions

=> coil growths during HT, and fills the
reaction cavity with small pressure
« Coil longitudinal behavior:
— The coil CTE changes during the HT

— Al-bronze pole matches the coil CTE
after HT but leaves gaps at pole tips

= gaps between pole parts

— Ti (Ti-Al-V) has smaller CTE and
doesn’t leave gaps at pole tips

June 4, 2008
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(@ Impregnation

The reaction fixture can be sealed
by using a shell and O-rings
= Impregnation fixture

Goals:

— Fill all voids inside the coil in order to avoid &
stress concentration on the conductor

— The coil becomes a solid object for easy
and well controlled magnet assembly

LARP Solution: cTtb-101 K:

long pot life
very good penetration inside the coill

Compatible with ceramic binder with
good mechanical properties

i"-f ‘:'f
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(@ Instrumentation

Needs:

* Voltage taps during R&D for: 2
— Quench start localization 4

— Quench propagation "

- Strain gauges during R&D for: o7
— Monitoring stresses during assembly, D
cooldown and operation
 Spot heaters during R&D for: ’*If

— Initiating a “planned” quench

* Protection heater R&D and production:
— Distribute energy on the whole/magnet

LARP Solution: “Trace”

« Kapton foil with photo-etched ss traces for protection heaters
and wiring for voltage taps/ strainf gauges/ spot heaters =

« May cause/contribute to “bubbles” when quenching at 2K

June 4, 2008 G. Ambrosio - Technology and applic. of high field acc. magnets
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(@ Short Colls - Results
Or magnet

Technological Quadrupoles (1-m coils): assembly and

Quench performance 70-90% of SSL operation, or

: : L conductor ...
— Some degradation due to coil fabrication? y

« Other magnets using similar coil fabrication technology
reached SSL (BNL, FNAL, LBNL)

* Ti-Al-V is used for the first time, but coils with Al-bronze
didn’t show better performance

* The 2-in-1 reaction & impregnation fixture causes some
systematic deviations from nominal size

CMM measurement of LARP TQ coil => TQs: Matching coils
during magnet assembly

=>Next LARP magnets:
Single coil fixtures

| o | i ology and applic. of high field acc. magng .




What about long coils?

 Conductor:

— Need km-size strand piece length, and long cabling
runs (250 m for 4m long quad coils)

Insulation:
— Need technique for long coils

Reaction:
— Long oven

— The displacements due to differential expansions
scale with length

— Total friction force scales with length
Impregnation:

— Impregnation time increases with length
Handling:

— LARRP set criteria for Max strain: -0.15%< € <0.05%
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(@ LQ coll fabrication

e Scale-up issues:

Keep always under load

Pre-heat treat the fixture
Symmetric fixture (2 plates)
Reduce friction (mica)

June 4, 2008 G. Ambrosio - Technology and
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‘@ Long Colls - Results
« Best Long Racetrack (4m coils): 96% of SSL

So we can successfully make long Nb;Sn coils!

But the LR had flat coils without ceramic binder, and coils
were not heat treated in a closed cavity under pressure

We have to demonstrate long accelerator-quality Nb;Sn coils

 1st Long Mirror (2m coil): ~ SSL
~ Accelerator quality coil using PIT conductor
Cos-theta coil w wedges, end spacers ~ 98% SSL taking into

account simulated
» 2"d Long Mirror (4m coil): 87% SSL pplemperature increase
~ Accel. quality coil using RRP 114/128

2.0 % W
Performance improved by heating the
outer layer = instability

June 4, 2008 G. Ambrosio - Technology and applic. of high | Front view of mirror magnet
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Magnet Assembly

Case study:
LARP TQs
“Technological Quadrupoles”

June 4, 2008 G. Ambrosio - Technology and applic. of high field acc. magnets
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TQ Magnetic Design

~k
Parameter Unit Collars Shell
] N of layers - 2
o r, kN N of turns - 136
é I T E Coil area (Cu + nonCu) cm? 29.33
Lt RSSSSOMSD 4.2 K temperature
" ‘ Quench gradient T/m 221 233
/ | Quench current kA 13.3 13.4
}%;\/k / \ Peak field in the body at quench T 11.5 11.9
— % Peak field in the end at quench T 11.9 11.4
“%a ‘ Inductance at quench mH/m 4.6 4.9
l — —-oes *r Stored energy at quench kd/m 406 439
C . . 1.9 K temperature
OII IayOUt' Quench gradient T/m 238 251
Quench current kA 14.4 14.5
Peak field in the body at quench T 12.4 12.9
Peak field in the end at quench T 12.9 12.4
Stored energy at quench kd/m 472 512

J. = 2400 A/mm? at 12T, 4.2K

June 4, 2008 G. Ambrosio - Technology and applic. of high field acc. magnets 22



TQ Mechanical Designs

Two mechanical designs have been developed
Same coils & Aperture (= 90 mm) & Gradient (> 200 T/m)

TQC: using collars TQS: using Al-shell
Collar laminations from LHC-IR quads Pre-loaded by bladders and keys
15 time applied to Nb;Sn coils 15t time applied to shell-type coils
Skin ,ﬂ-"‘" :
Oitégzr pole \\ — Inner pole | Aluminum
P A \ 4 pads K shel
Yoke
\ - /‘ Collar-
Yoke / < S Iz’{r%iI(gad evs

Filler
Shim ~

Bladder

”

S/ /o“‘"i\‘\
ﬁi i
iR

4] 3
\\Q < . 2 layers
\ ) ; Collaring
Yoke ¢ Key
Control ‘vl Collar

Spacer
LBNL design

Coil assembly within voke and aluminum shell

Coil Midplane FNAL design

Shim
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(@ TOQC Concept

Outer pole

« Concept: prece
— Support by SS collars + yoke&skin

Collar-

\‘ ~ 4
— Assembly under a press Yoke ,{-#{‘& Vload
. . . Gap b i e Shim
- Collaring & skin welding ( L T
Collari
- Advantages: voe Koy
— Proven for accelerator-quality: Control ' Collar
pacer
 Coil alignment
« Cooling & heat removal ghim e

— Proven for scale-up

e R&D issues:

— Provide support and prestress (higher
forces than NbTi) within Nb,;Sn limits

e stress and strain

June 4, 2008 G. Ambrosio - Technology and ag
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TQC Mechanical Structure

Stress Relief Slot
/\ ninner pole * Control spacers
A

@ Preload

Shim o Shims between collar and yoke at

|’ | each midplane
; Collaring
Key

Control

Spacer Collar o A radial cut is made in each yoke

quadrant

Collars for:
€TQC 1stgeneration _ _
« Mechanical structure and coil pre-

2nd generation had slot  stress is studied and optimized
Instead of tip using FEM and mechanical models.

€ LHC-IR quads
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~W

W
Max/Min
Cail At Coil | Pole [ Control Skin | Skin
Stress | Pos. No.| Insert | Spacer| Collar | Yoke | 8mm | 12mm
300K | 140/65 | 3/1&2 | 250 50 420 170 230 150
43K | 150/80 | 3/1&2 | 230 150 470 270 400 270
Bmax | 145/20 2/3 50 50 460 280 450 300

Stresses in the coils during collaring < 70 MPa

June 4, 2008

G. Ambrosio - Technology and applic. of high field acc. magnets

26



TQC ends

« 3D FEA (LBNL and FNAL) of coil ends:

— separation between the pole tip and the first turn of the coil of 20 -
200 um when the magnet is powered
* depending on input parameters and end loading,

— effect of this separation on training behavior is not clear
« LBNL racetracks at LBNL showed correlation between gaps and training

 FNAL Nb3Sn and NbTi magnets, with minimal and no end loading, have not
exhibited excessive training quenches in the ends

= TQC magnets test the “minimal” axial end loading system: 14000 N

 End force applied by 4 preloaded screws (“bullets”) through 50-mm thick
stainless steel end plates

Skin
Bullets Yoke End Plat

14000 N i 19

Bullet Preload Plate

Collars
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Impregnated coils are assembled and
surrounded by layers of Kapton for ground
insulation

Collar packs are placed over the coils

Assembly is hung vertically over collaring press, |
and keys are inserted over several steps while
pressure is applied

Collaring of a mechanical g
model with LHC-IR collars

mbrosio - Technology and applic. of high field acc. magnets 28
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(@ TQC Collaring Development

 Four mechanical models have been assembled and tested in
order to develop collaring procedure for Nb;Sn coils

* FEM analysis with Nb;Sn coil plasticity

Stress in different longitudinal sections during =" | Stress strain plot showing plastic-elastic
keys insertion: uniform within +/- 5 MPa behavior of coil samples
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TQC Results

e TQC01 (MJR) 15 1 250
1z | | TQCO1b Quench History f;ifnglie%cm
< | aaaaa  pAdass — — — —1 200
< 11 i . =
§ JUUOCIES s aaaeni S oreretetta X“‘ &
5 9 1> o Expected Al 1150 5
« TQCO01b (MJR) < same 4.5K Iq 3
S 7 o
3 1500'amp e ]|
5 improvement A 1.9K, 20 Als ‘
over TQCO1 O Temp Dep. Studies
o 3 ‘ ‘ ‘ ‘ ‘ 50
TQCO02e (RRP 54/61) 6 1 2 3 4 s e 7o
Quench number
Magnet assembly:
 TQCO02a (RRP 54/61) e Collaring + Yoke&skin can
provide prestress and
support for these forces
 These collaring technique
cannot provide full prestress
June 4, 2008
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Outline of the lessons

D1

D2

D3

D4

D5
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