

ACADEMIC TRAINING

Technology and applications of high field accelerator magnets

G. Ambrosio

Fermilab - Technical Division

Lesson 4:

Magnet assembly – II
 Shell-based structures

CERN June 2-6, 2008

Outline

- Magnet assembly II
 - Case studies: LARP TQS magnet assembly
 - Technological Quadrupole with Al-shell preloaded by using bladders-&-keys
 - Long magnets with shell-based structures
 - Long Racetrack
 - Long Quadrupole

Plan for next lessons

Magnet Assembly

Case study: LARP TQS Technological Quadrupole with Shell-based structure

TQ Magnetic Design

Coil layout:

- 2 layers
- 10 mm wide cable
- 1º keystone angle
- 27 strands 0.7 mm diam.

Parameter	Unit	Collars	Shell	
N of layers	-	2		
N of turns	-	136		
Coil area (Cu + nonCu)	cm ²	29.33		
4.2 K temperature				
Quench gradient	T/m	221	233	
Quench current	kA	13.3	13.4	
Peak field in the body at quench	Т	11.5	11.9	
Peak field in the end at quench	Т	11.9	11.4	
Inductance at quench	mH/m	4.6	4.9	
Stored energy at quench	kJ/m	406	439	
1.9 K temperature				
Quench gradient	T/m	238	251	
Quench current	kA	14.4	14.5	
Peak field in the body at quench	Т	12.4	12.9	
Peak field in the end at quench	Т	12.9	12.4	
Stored energy at quench	kJ/m	472	512	

 $J_c = 2400 \text{ A/mm}^2 \text{ at } 12\text{T}, 4.2\text{K}$

TQ Mechanical Designs

Two mechanical designs have been developed

Same coils & Aperture (= 90 mm) & Gradient (> 200 T/m)

TQC: using collars
Collar laminations from LHC-IR quads
1st time applied to Nb₃Sn coils

Skin Outer pole Inner pole piece Collar-Yoke Yoke Preload Gap Shim Collaring Yoke Key Control Collar Spacer FNAL design Coil Midplane Shim

TQS: using Al-shell
Pre-loaded by bladders and keys
1st time applied to shell-type coils

TQS Concept

- Low pre-stress during assembly
 - Azimuthal: bladders-&-keys + Al-shell
 - Ends: Aluminum rods

High pre-stress during cooldown

Reusable structural components

Easy assembly and disassembly

TQS Cross-section

Bladders-&-Keys Concept

Assembly

Bladders to create a interference and inserting keys to remove them

Cooldown:

 Thermal contraction differences to gain prestress

- increase in Lorentz body force = decrease in pole pre-stress
- No coil separation = No change in shell stress (zero net change in force)
- Coil separation = increase in shell stress

Courtesy: S. Caspi

Assembly, cool-down and excitation

ANSYS PLOT NO.

2D mechanical analysis: excitation

Courtesy: S. Caspi

Shell structure development

RD2 - 6 Tesla

RT1 - 12 Tesla

SM-01 - 12 Tesla

SQ01 short quad

RD3-b - 14.5 Tesla

HD1 - 16 Tesla

Concept developed by LBNL

Small Quadrupoles (SQ), TQS, and Long Racetrack are LARP R&D LR01 3.6 m long cc, 11.5 T

Supporting Structures

End load

- Full axial support
 - prevent pole-coil gaps

Limited axial support

Full axial support ~ 350 kN

TQS sub-assemblies

Shell and yoke sub-assembly
Yokes held temporarily with gap keys
Assembled using bladders and
dummy coils

Coil and pad sub-assembly Pads held by bolts

TQS Final assembly

Coil Island instrumented to monitor stresses

strain-gauges

Azimuthal pre-stress (bladder operation)

FEM analysis

Azimuthal stress in layer 1 (Bronze pole with friction)

TQS01/02 Strain/Stress at 4.4K

	Bronze - with axial support	Titanium- with axial support
Island Strain $\mu \mathbf{E}_{\theta}$	-1900	-750
Island Strain με _z	+760	-520
Island Stress σ_{θ}	-215	-129
Island Stress σ_z	+25	-105
Coil Strain με _θ	-3300	-3100
Coil Strain µE _z	+1000	+1000
Coil Stress* σ_{θ}	-150	-134
Coil Stress σ _z	+12	+30

^{*}Outer layer azimuthal stress with Ti pole: 180-190 MPa

TQS01c post test inspection

- Signs of high tensile strain in the pole gaps
 - Caused by the different contraction of coil and iron pads
 - under high pre-stress (no sliding)
 - Possible damage in the coil because of high tensile strain

High strain discoloration

Axial strain in turn 1 (ANSYS)

Possible high longitudinal strain after cooldown

TQS Results

- TQS01 (MJR)
 - 89% SSL at 4.5K
 - 200 T/m at 3.2K
- TQS01b (MJR)
 - 84% = 182 T/m at 4.5K
 - Reassembly w 2 new coils
- TQS01c (MJR)
 - 85% = 183 T/m at 4.5K
 - -80% = 192 T/m at 1.9 K
 - Reassembly w best used coils
- TQS02a (RRP 54/61 Ti pole)
 - -91% = 219 T/m at 4.5 K
 - 84% = 221 T/m at 1.9K
 - 4 new coils
 - No improvement at 1.9K
- TQS02b (RRP 54/61 Ti pole)
 - ~207 T/m at 4.5K
 - 200 T/m at 1.9K
 - Reassembly w 2 new coils
 - Damaged coil?

Magnet assembly:

- Al-shell w bladders&keys can provide prestress and support for these forces
- Very short assembly time

Further development

Next steps to demonstrate possible use of Al-shell with bladders-&-keys concept for accelerator magnets:

Long magnets:

→ Long Racetracks and quadrupoles (LQ) addressing long magnet issues

LRs have two flat racetrack coils, $B_{coil} > 11 \text{ T}$, 3.6 m long coils

- NO aperture

LQs have same features of TQs, $B_{coil} > 12 \text{ T}$, 3.5 m long coils

- 90m aperture, 200 T/m grad, NO coil alignment

Coil alignment:

→ High gradient quadrupoles (HQ) to explore performance limits

1 m long, 90-130 mm aperture, $\underline{G}_{nom} > 250 \text{ T/m}$, $\underline{B}_{coil} > 15 \text{ T}$

Others: helium containment (additional ss shell), heat transfer

LARP Long Racetrack

The goals of the Long Racetrack (LR) are:

- to fabricate and test long Nb₃Sn racetrack coils

 to test an Al-shell-based supporting structure (preloaded using <u>bladders and keys</u>)

Project coordination

Performed at BNL
Developed at LBNL

Fermilab

Results:

- 1st test: I_q = 90% ssl; 2nd test with segmented shell: I_q ~ 96% ssl

- Shell stress variation during 1st test → Shell should be segmented

Coil layout: two flat double-layer racetrack coils Technology developed at LBNL, modified at FNAL, successfully transferred to BNL

3D mechanical analysis Full length or segmented shell

- LRS01
 - High axial strain meas. in LRS01
 - Slippage shell-yoke
- LRS02 (with segmented shell)
 - Reduced axial strain

LARP Long Quadrupole

The goals of the Long Quadrupole (LQ) are:

- G > 200 T/m in 3.8m long quad with 90-mm aperture using Nb₃Sn coils
- to test both structures:

Al-shell-based structure (preloaded using <u>bladders-&-keys</u>)
Collar structure with support from yoke and welded skin

LQS01 is based on TQS magnets and LRS02

- 20 mm shell
- 4-split iron yoke
 - Gap keys and auxiliary bladders
 - Holes for tie rods
- Iron pads
 - Holes for coil end support and tie rods
- Iron masters
 - 2 bladders
 - 2 interference keys
- Stainless steel sheet between coil and pad laminations

LQS design 3D components

- 4 shell segments, 0.8 m long
- Yoke laminations, 50 mm thick with 3.3 m long tie rods
- Iron pad laminations, 50 mm thick with 3.3 m long tie rods
- Iron masters, 2 x 1.6 m long
- Stainless steel axial rods
 - 24.5 mm diameter
- Axial pre-load provided by additional plate and piston

Assembly: Yoke and pads lamination stacking

0.8m sections assembly:

- Alignment of laminations with bushings
- Insertion of tie rods
- Pre-tension of tie rods with piston

Assembly: Single shell-yoke sub-assembly

- Insertion of yoke stacks
 - Alignment by shell-yoke pins
- Insertion of dummy coil-pad sub-assembly with masters
- Shell pre-tensioning with bladders
- Insertion of gap keys
- Removal of coil-pad subassembly and masters

Assembly: Yoke/shell pair - assembly

- System of linear rails for assembly
- Pretension of tie rods with pistons
- Alignment by yoke-shell pins and yoke-yoke bushing

LQ Assembly: Final yoke-shell assembly

- Same operation as yoke-shell pair assembly
- Final status
 - Yoke laminations inserted in the shell segments and compressed together
 - Shell segments partially pre-tension by gap keys

 Yoke-shell sub-assembly ready for insertion of coilpad sub-assembly

Assembly:Insertion and pre-load of coil-pad sub-assembly

- Coil-pad sub-assembly placed on raft
- Sliding of coil-pad sub-assembly inside yoke-shell sub-assembly
- Insertion of masters and bladder pressurization

Shell structure with coil alignment

- Coil alignment goals:
 - Assure straightness of coils inside mechanical structure
 - Provide magnetic field alignment with respect to external reference points

Hybrid Design

Main features:

- Alignment features and reliability of collar style assembly
- Avoids possible distortions due to welding
- Limited coil stresses required during assembly
 - by using the bladders-&keys technology

Test of shell-based structure for long quadrupoles (3.8m) LQS01 test: Feb 09

Test of shell-based structure with alignment features (1m) 2nd test of HQ: TDB

Outline of the lessons

Acknowledgement

Fermilab

N. Andreev, E. Barzi, R. Bossert, G. Chlachidize

V.V. Kashikhin, F. Nobrega, I. Novitsky, A.V. Zlobin

BNL

M. Anerella, A. Ghosh, J. Schmalzle, P. Wanderer

LBNL

S. Caspi, D. Dietderich, P. Ferracin, H. Felice,

A. Lietzke, G.L. Sabbi,

Texas A&M University

A. McInturff, P. McIntyre

CERN

L. Rossi, E. Todesco