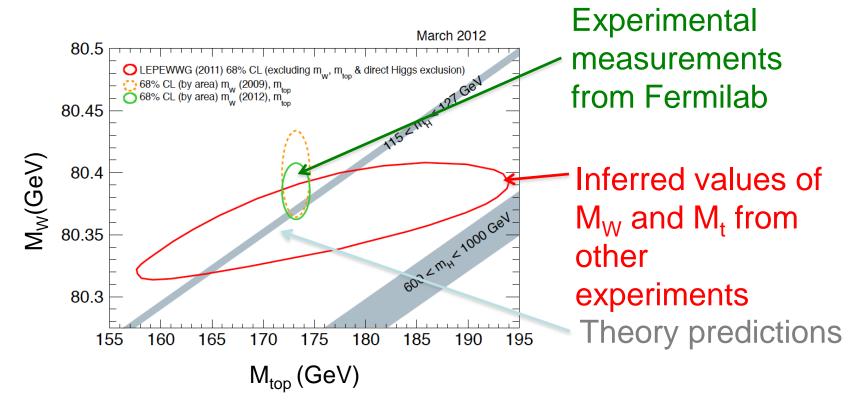

The Higgs Frontier: The Way Forward

S. Dawson Princeton April 26, 2013

The Higgs Frontier

- What have we found ?
 Is it *THE* Higgs?
- What's next ?
 - Are there more Higgs particles?
 - Is there a next energy scale?

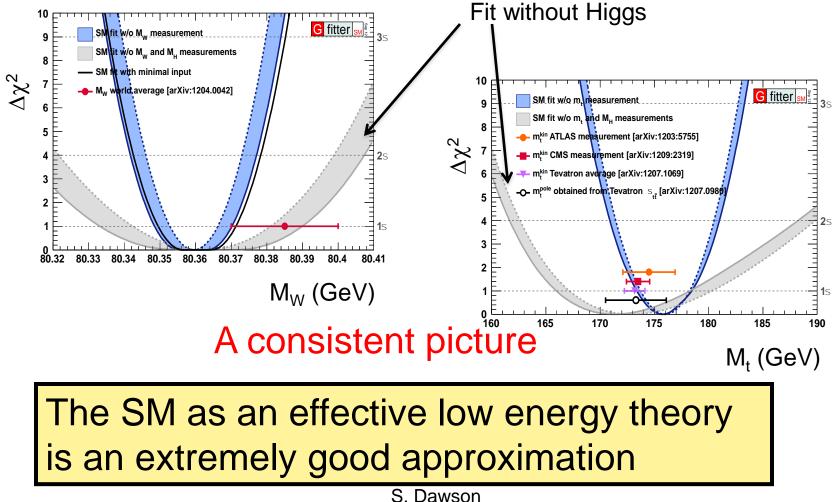
What are the important measurements/calculations to help us answer these questions?


Please join the effort: snowmass2013.org

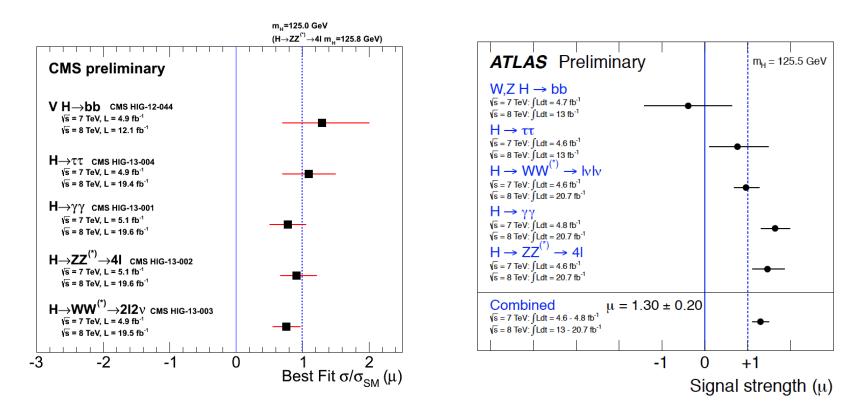
Needed Something like a Higgs

- Electroweak symmetry breaking needs to explain:
 - Non-zero mass of W and Z gauge bosons
 - Non-zero mass of fermions
 - Unitarity conservation at 1 TeV
- Precision electroweak data is consistent with SM

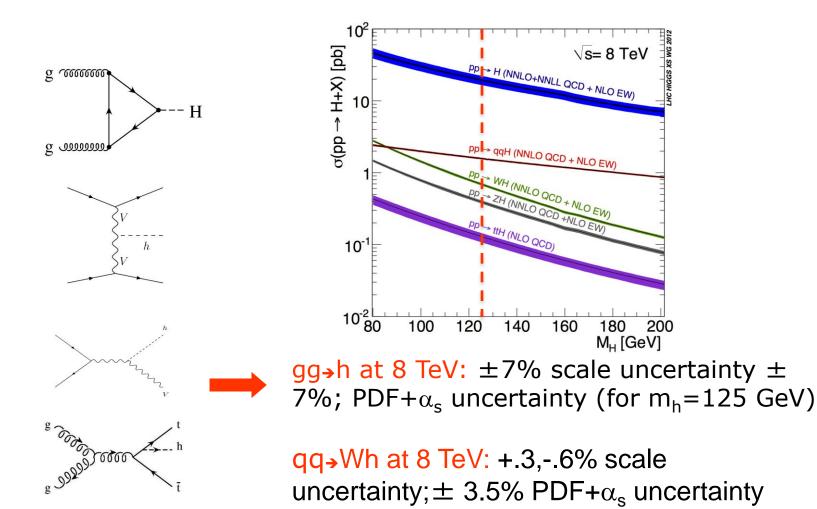
So the fact that the observed Higgs-like particle looks *SM-like* is no surprise


The 6 billion dollar plot

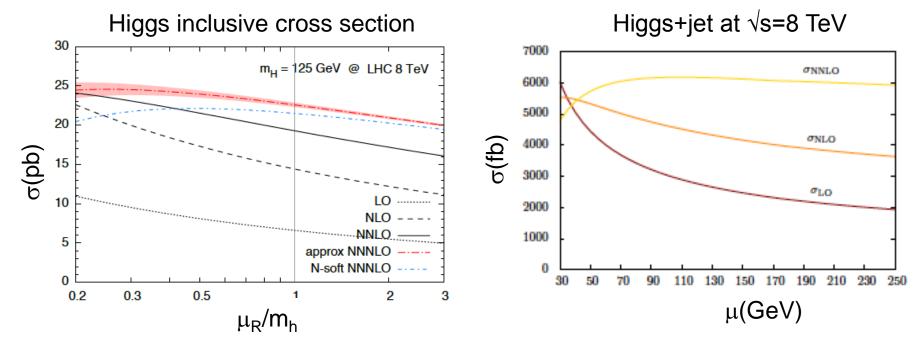
Self-consistency of the theory told us the Higgs couldn't be too heavy


S. Dawson

After Discovery

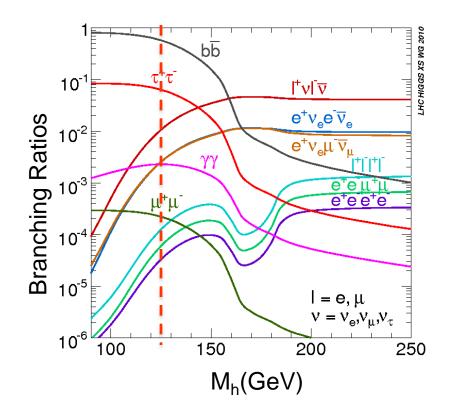

5

Higgs Rates look SM-like


What goes into denominators?

Precision Calculations

H+jet @NNLO, H@NNNLO


· Will decrease errors from scale uncertainty and jet binning

Rates are increased

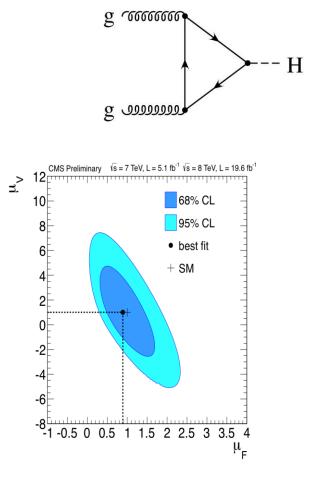
S. Dawson

Uncertainties: Branching Ratios

 $\delta\Gamma/\Gamma$ bb $\pm 3\%$ $\tau\tau$ ± 5.7 $\gamma\gamma$ $\pm 5\%$ $\gamma\gamma$ $\pm 5\%$ WW $\pm 4\%$ Γ_{tot} $\pm 4\%$ Assumes no
invisible width

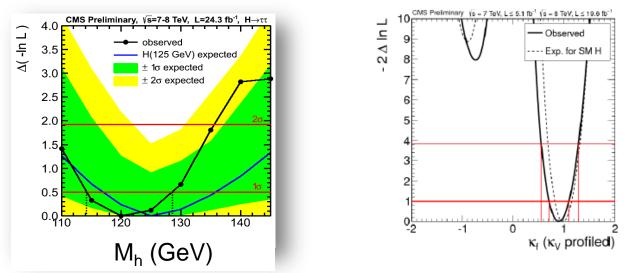
Theory Predictions

Parametric uncertainties (mostly m_b) and uncertainties from unknown higher order EW corrections


Uncertainties on BR Predictions

- Example: h→bb
 - Error budget:
 - Theory (missing higher order corrections: QCD ~.1%, EW~1-2%)
 - Parametric errors from $\Delta m_b \sim 1.1\%$, $\Delta \alpha_s \sim 1\%$
 - Theory/parametric uncertainties roughly same size
 - Improve experimental value of $m_b=4.49 \pm .06 \text{ GeV}$
 - Use PDG central value, compromise on errors
 - Error on $\delta\Gamma_{bb}$ matters for 300 fb⁻¹ extraction of hbb coupling (~6.9% at CMS) [Olsen] and for ILC extractions (~2.7% at 250 GeV)[van Kooten]

What we know


- ttH coupling exists
 - Indirectly from gg \rightarrow h, h $\rightarrow\gamma\gamma$
- WWh, ZZh couplings exist
 - Rate appears to be SM-like
 - h→ZZ*→4 leptons

 $CMS: \sigma/\sigma_{SM} = \mu = 0.92 \pm 0.28$ $ATLAS: \sigma/\sigma_{SM} = \mu = 1.7^{+0.5}_{-0.4}$

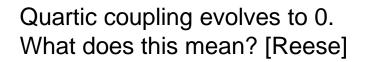
What we know

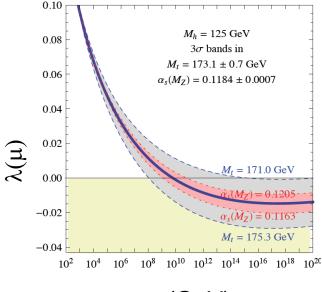
- Higgs couples to fermions (2.8 σ in $\tau^+\tau^-$)
 - Fermion couplings are non-universal
 - We see $\tau\tau$, not $\mu\mu$

No more fermiophobic models

What we know


• The Higgs sector is perturbative


$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 \qquad \lambda = \frac{M_h^2}{2v^2}$$
$$\lambda \sim .13, \mu \sim 90 \ GeV$$


- We can sensibly calculate to high scales
- Is M_h=125 GeV special?

Is M_h=125 GeV Special?

 M_h =125 GeV requires M(stop)~10 TeV or large A_t in the MSSM [Shih]

μ (GeV)

[Draper et al,1112.3068; Degrassi, 1205.6497]

Multi- Prong Approach to Future

- Measure everything in sight
 - There are a lot more Higgs channels to measure
 - Corollary: Calculate as precisely as possible
- Look for more Higgs candidates
 Look for non-standard Higgs production/decays
- Use effective field theory to limit deviations
 Look for new particles connected with EWSB
- Make connections
 - Dark matter, intensity frontier

Explore NP-Higgs Connections

- Many possibilities:
 - Supersymmetry (squarks in loop)
 - Color octet scalars [Kribs]
 - More scalars (neutral or charged) [Thomas]
 - New operators involving Higgs particle
 - New fermions (top partners)
 - Higgs produced in NP particle decays[Haas, Kribs, Thomas]

How far can Higgs production get from the SM prediction?

What is the Higgs telling us?

Example 1: 2HDMs

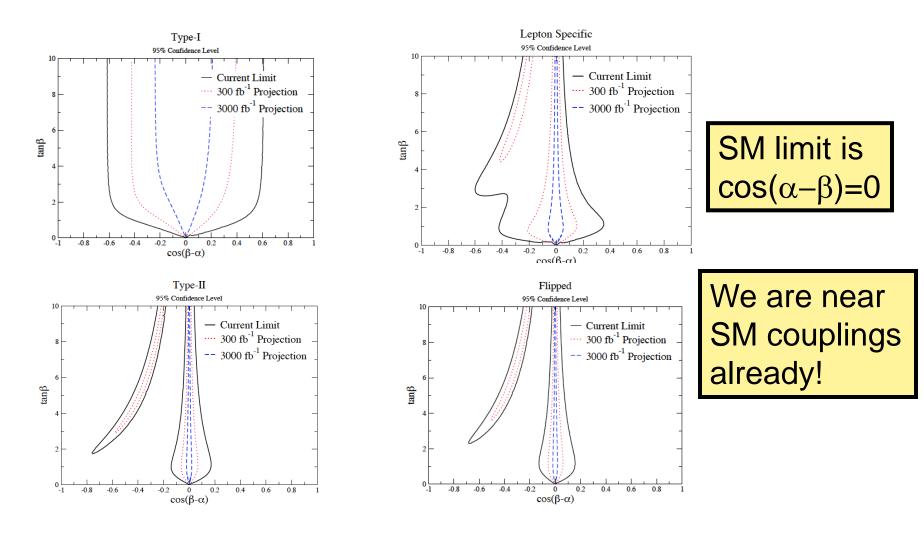
- Many models have extended Higgs sectors
 - Two Higgs doublet models can be used as effective theories for many of these models
 - 5 Higgs bosons: h, H, A, H[±]
 - 4 types of 2HDM models which avoid tree level FCNCs
 - Classified in terms of tan $\beta = v_2/v_1$, α , m_h

$$\sin 2\alpha = -\sin 2\beta \left(\frac{M_H^2 + m_h^2}{M_H^2 - m_h^2}\right)$$

- Predictive models (MSSM is special case)

More than one 2HDM

• Couplings to h:


 $L \sim -\Sigma_i g_{hii} \frac{m_i}{v} \overline{f}_i f_i h - \Sigma_{i=W,Z} g_{hVV} \frac{2M_V^2}{v} V_\mu V^\mu h$

	Ι	II	Lepton- Specific	Flipped
g_{hVV}	$\sin(\beta - \alpha)$	$\sin(eta-lpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
$g_{htar{t}}$	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\cos\alpha}{\sin\beta}$
$g_{hb\overline{b}}$	$\frac{\cos\alpha}{\sin\beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos\alpha}{\sin\beta}$	$-\frac{\sin\alpha}{\cos\beta}$
$g_{h au^+ au^-}$	$\frac{\cos\alpha}{\sin\beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos\alpha}{\sin\beta}$

	∧
Type	I is MSSM-like

S. Dawson

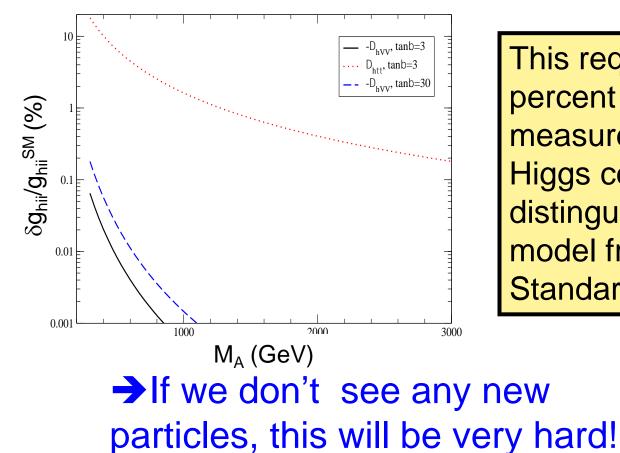
Updated 2HDM fits

S. Dawson

Decoupling Limit: Type II 2HDMs

Assume M_{H_+} , $M_A >> M_Z$

$$\alpha \Delta T \sim \mathcal{O}\left(\frac{M_Z^2}{M_A^2}\right)$$
$$\Delta S \sim \frac{1}{12\pi} \cos^2(\beta - \alpha) \left[\log\left(\frac{M_A^2}{M_h^2}\right) - \frac{5}{6}\right]$$


Coupling shifts are small: $g_{hii} \equiv g_{hii}^{SM} \left(1 + \frac{\delta g_{hii}}{q_{hii}^{SM}} \right)$

$$\frac{\delta g_{hVV}}{g_{hVV}^{SM}} = -\frac{2M_Z^4 \cot^2 \beta}{M_A^4}$$
$$\frac{\delta g_{ht\bar{t}}}{g_{ht\bar{t}}^{SM}} = -\frac{2M_Z^2 \cot^2 \beta}{M_A^2}$$
$$\frac{\delta g_{hb\bar{b}}}{g_{hb\bar{b}}^{SM}} = \frac{2M_Z^2}{M_A^2}$$

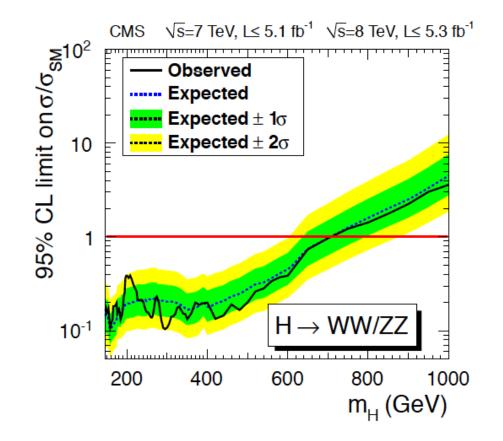
Higgs physics is new precision electroweak physics

The world looks SM-Like

Higgs Couplings in Type-II 2HDM

This requires subpercent level measurements of Higgs couplings to distinguish the 2HDM model from the Standard Model

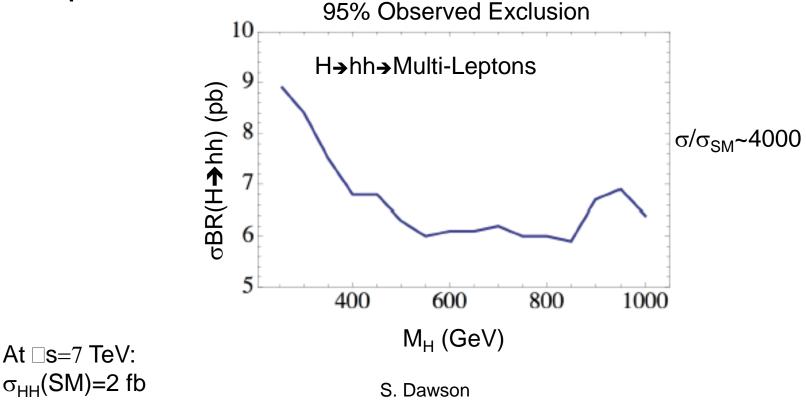
Higgs Coupling Measurements


- Higgs coupling extracted from global fit
 - Measure $\sigma \bullet BR$ $L \sim g_{hii} f_i \overline{f}_i h$

$$g_{hii} \equiv \left(1 + \frac{\delta g_{hii}}{g_{hii}^{SM}}\right) g_{hii}^{SM}$$

	LHC (300 fb ⁻¹ /exp)	LHC (3 ab ⁻¹ /exp)	ILC 250 (250 fb ⁻¹)			
$rac{\delta g_{hWW}}{g_{hWW}^{SM}}$	2.7-5.7%	1.0 - 4.5%	4.3%			
$\frac{\delta g_{h\tau\tau}}{g_{h\tau\tau}^{SM}}$	5.1 - 8.5%	2.0-5.4%	3.5%			
Assume systematics ~1/√L						

Complementary Approach


Look for new particles of 2HDM (H,A,H[±])

$$g_{HVV} = \cos(\beta - \alpha)$$
$$g_{Ht\bar{t}} = \left(\frac{\sin\alpha}{\sin\beta}\right)$$

New Decay Channels Possible

- H→hh [Thomas]
- First limit on di-Higgs production from CMS multilepton search

Does Naturalness matter? The case for new TeV Scale particles

- Calculate top quark contribution in SM with a high scale cutoff, Λ , λ_{H} , $\delta m_{H}^{2} \sim -\frac{3\lambda_{t}^{2}}{8\pi^{2}}\Lambda^{2}$
- Cancel with new particle contribution:
 - Stop in SUSY models
 - Top partner in composite/Little Higgs models

Logical proposition: forget about naturalness and use dimensional regularization for $\delta m_{\rm H}$

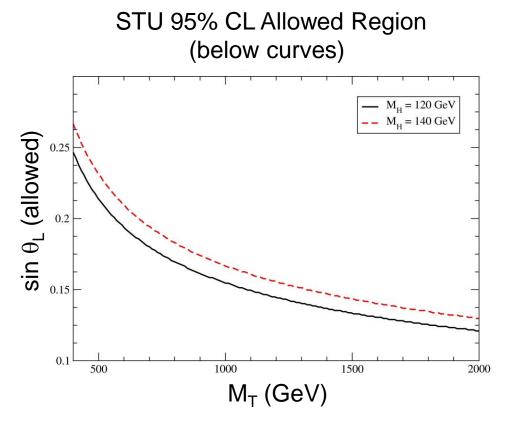
Consequences of Naturalness

- If we accept naturalness as a fundamental requirement, then there must be new light particles at the TeV scale
- Example: top partners $\delta M_h^2 \sim \left(\dots\right) (M_T^2 m_t^2) \log\left(\frac{M_T^2}{m_t^2}\right)$
 - Quadratic contribution to Higgs mass cancels with SM
 - This requirement fixes couplings
 - New TThh vertex has implications for hh production

Example 2: Top Seesaw, Little Higgs, Composite Higgs.....

- Special cases of models with weak singlet vector like charge 2/3 quark, U_L, which mixes with SM-like third generation q_L~(u_L,d_L), u_R, d_R
- Generic mass matrix

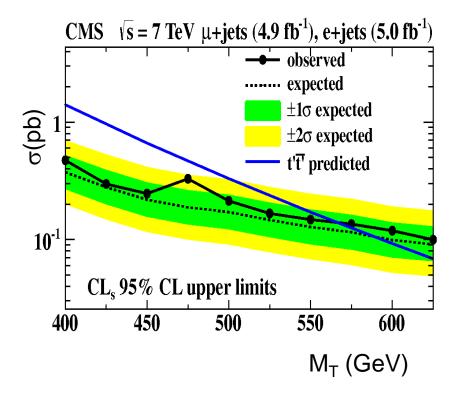
$$L_{M} = -a\overline{q}_{L}\tilde{H}u_{R} - b\overline{q}_{L}\tilde{H}U_{R} - c\overline{U}_{L}u_{R} - d\overline{U}_{L}U_{R} + hc$$


• Physical top is mixture of (u, U)

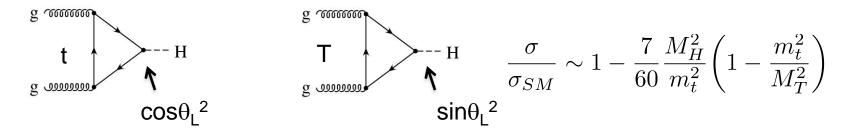
$$\begin{pmatrix} t_L \\ T_L \end{pmatrix} = \begin{pmatrix} c_L & -s_L \\ s_L & c_L \end{pmatrix} \begin{pmatrix} u_L \\ U_L \end{pmatrix}$$

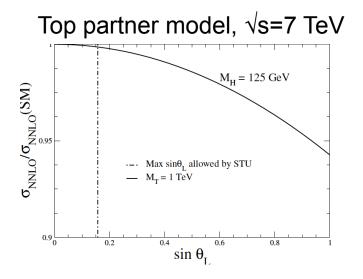
T is charge 2/3 top partner

2 parameters:
$$M_T$$
, θ_L


Top Mixing with Top Partner

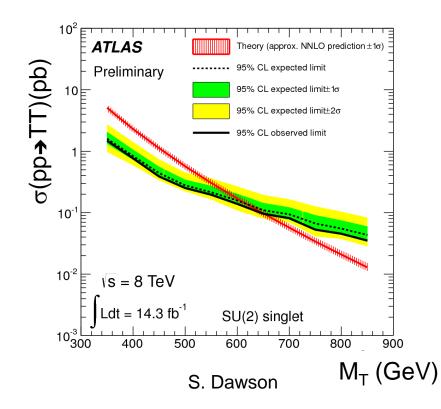
As Higgs mass gets larger, allowed parameter space shrinks


Experimental Limit


- Assumes $BR(T \rightarrow bW)=1$
- Here, additional suppression of $(sin\theta_L)^4$

Higgs Production and Top Partners

Production suppressed (but not observably so)



Example of model where new physics will be observed by top partner production, not by measuring Higgs properties

Higgs Production and Top Partners

• T**∍**th

Branching ratio can be O(30%)

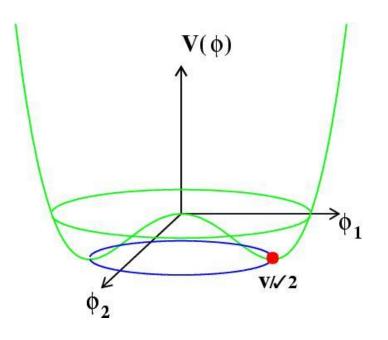
 $Tth :\sim \sin(2\theta_L)^2$

Recap: 2 Examples

• 2HDMs, Top Partner models

These models have parameter spaces restricted by experimental Higgs measurements

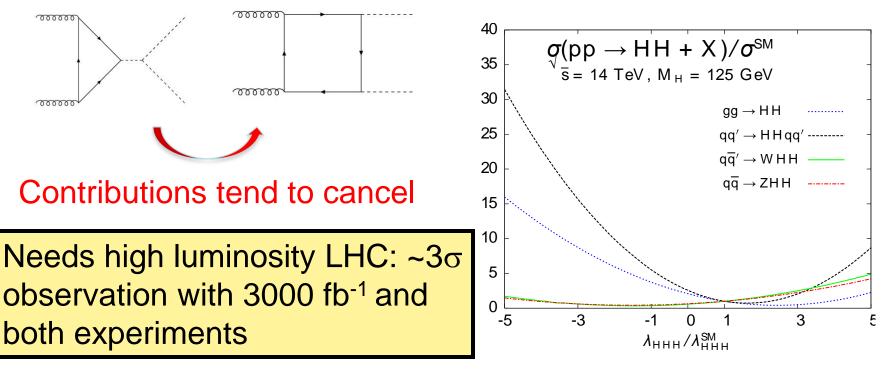
Knowledge about NP from coupling constant measurements requires 1-10% percentage accuracy


BUT....all of these models have new particles not present in the SM

Reconstruct the Higgs potential

$$V = \frac{m_h^2}{2}h^2 + \lambda_3 vh^3 + \frac{\lambda_4}{4}h^4$$
$$SM: \quad \lambda_3 = \lambda_4 = \frac{m_h^2}{2v^2}$$

Fundamental test of model


 $\Box \lambda_3 \sim .13$ is perturbative

Double Higgs Production

- Sensitive to hhh coupling, $\lambda_{hhh} = 3M_h^2/v$
 - SM has small rates: At 14 TeV $\sigma(gg \rightarrow hh) = 34 \ fb$

 $\sigma(qq' \to qq'hh) = 2 \ fb$

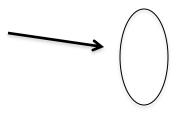
Double Higgs Production

 If fermion masses arise from electroweak symmetry breaking, they have the form

$$O_{LE} = \frac{\alpha_s}{24\pi} G^A_{\mu\nu} G^{A,\mu\nu} \log\left(\frac{H^+ H}{v^2}\right) = \frac{\alpha_s}{12\pi} G^A_{\mu\nu} G^{A,\mu\nu} \left(\frac{H}{v} - \frac{H^2}{2v^2}\right)$$

• An effective theory could generate

$$O_{eff} = \frac{\alpha_s}{4\pi} C_1 G^A_{\mu\nu} G^{A,\mu\nu} \left| \frac{H^+ H}{\nu^2} \right|^2 = \frac{\alpha_s}{4\pi} C_1 G^A_{\mu\nu} G^{A,\mu\nu} \left(\frac{H}{\nu} + \frac{H^2}{2\nu^2} \right)$$

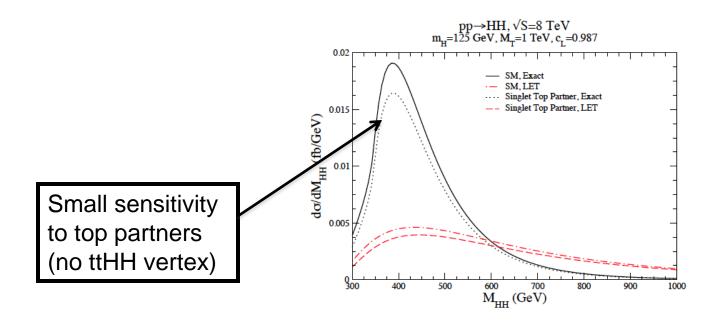

- Measuring single and double Higgs production is window into source of EWSB
- Non-renormalizable ttHH coupling in composite models

Double Higgs Production from Colored Octet Scalars

 Single Higgs production can be SM-like, while double Higgs production greatly enhanced [Kribs]

 $\underset{\text{rate/}\sigma_{\text{SM}}}{\overset{\text{Single Higgs}}{\overset{\text{Higgs}}{\overset{\text{Single Higgs}}{\overset{\text{Single Higgs$

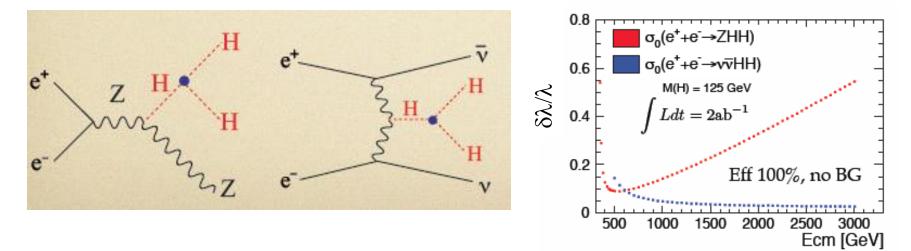
Huge enhancements of double Higgs rate



[Reese] Quartic coupling gets large in this class of models

Scalar octet mass (GeV)

S. Dawson

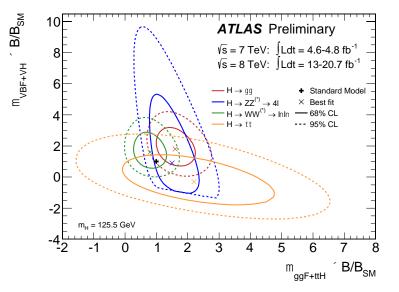

Double Higgs Production from Top Partners

Parameters chosen to give SM (within 15%) single Higgs rate and to be consistent with precision EW

Double Higgs Production in e⁺e⁻

• At \sqrt{s} =500 GeV, rate for Zhh is larger (σ ~.22 fb)

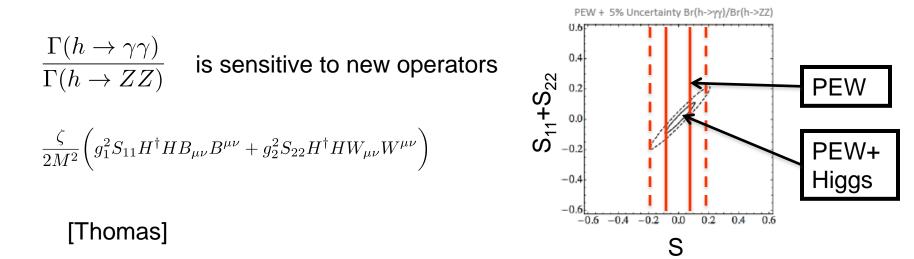
Including background and efficiencies at $\sqrt{s}=500$ GeV:


$$\frac{\delta\lambda}{\lambda} = 53\%$$

This improves at $\sqrt{s=1}$ TeV

Measure ratios of BRs

- Avoids large theory uncertainty on σ_{ggF} (necessary to claim new physics)
- Eventually get 5% measurement
- ATLAS current limit:


$$\frac{BR(h \to \gamma\gamma)}{BR(h \to ZZ^*)} \frac{BR(h \to ZZ^*)}{BR(h \to \gamma\gamma)} \mid_{SM} = 1.1^{+0.4}_{-0.3}$$

[Cranmer]

Effective Field Theories & Higgs

- Suppose we don't find any new particles
 - SM is a valid effective theory up to some scale
 - Look at contributions from dimension-6 operators
 - Higgs physics is the new precision EW physics

Conclusions

- We are in the era of precision Higgs physics
 - Calculations + experiment
 - Theory may be limiting factor in precision coupling extraction
- Higgs production is a window to high scale physics
 - Need to look at big picture—new physics in the Higgs sector is typically associated with new particles (more Higgs particles, SUSY particles, top partners...)
 - 2 Higgs production can discriminate between models

The SM is an extremely good effective theory

Look at the Big Picture

• Higgs measurements and new physics searches are all part of the same exploration of physics

Thanks to the organizers!