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THIS TALK

First, I’m going to explain some constraints on new 
physics scenarios that try to significantly alter Higgs 
properties. The motivation for dwelling on this is 
diminished given recent CMS updates on diphoton.

Then I’ll talk a bit about Higgs vacuum stability in the 
Standard Model.



LHC: WHERE WE STAND
I looked over my slides from my PCTS talk almost exactly one 
year ago and still agree with what I said then:

•No hint of strong dynamics. Technicolor, composite Higgs, 
Randall-Sundrum all look even less plausible than they did pre-Higgs.
•Higgs mass puts SUSY in an awkward spot
•“Natural SUSY”: the MSSM must be very tuned to fit a 125 GeV Higgs 
(despite many contrary claims in the literature in the last year). Models 
beyond the MSSM are typically awkward and/or complicated.
•Semi-split SUSY: solve most of the hierarchy problem, put scalars 
at ~10 to 1000 TeV. Increasingly plausible.
•Important to keep looking for small deviations from SM Higgs
•Keep looking for naturalness signatures (stops, etc.), 
but bounds are already becoming very strong...



HIGGS PROPERTIES

Looking increasingly Standard Model-like as more data 
comes in. Still room for 30 to 50% (large!) deviations!



HIGGS LOOP-LEVEL 
COUPLINGS

A lot of interest in this when both ATLAS and CMS 
showed a high diphoton rate. Recall: Higgs couplings to 
photons, gluons related to low-energy theorem.

Let’s say, for instance, that m̃D dominates, and is 1 TeV, with ⌅ = 0.1, Mmess = 100 TeV

(which is consistent with
�
F ⇥ 100 TeV as well), mY = 2 TeV, and mS = 150 GeV. Then

we have:

m̃2
S = �2970 GeV2 ⇧ mscalar =

⇥
1502 � 2970 GeV ⇤ 140 GeV. (2.4)

So, this model is easily compatible with the sort of splittings we’re interested in.

2.2 Couplings to Gauge Bosons and Gauginos

Now we will integrate out Y and Ȳ and study the induced couplings of S to gauge bosons.

To keep things simple, we will assume that the mass of the Y s is dominantly supersymmetric.

In that case, we expect to find an e⇤ective operator of the form:

c

mY

�
d2⇤SW�W

� + h.c. (2.5)

Let’s work out the coe⌃cient c and then compute the resulting decays.

To compute the coe⌃cient, let me try to flesh out JiJi’s statement that it’s related to a

beta function coe⌃cient. Suppose we have a Lagrangian

L = � 1

4g2
Ga

µ⇧G
aµ⇧ . (2.6)

Then in fact g is a running coupling. In particular, suppose that we have fields at a scale M ,

with µ < M < ⇥, so that the beta function coe⌃cient changes from b below M to b + �b

above M . Then taking account of that threshold,

1

g2(µ)
=

1

g2(⇥)
+

b

8⌃2
log

⇥

µ
+

�b

8⌃2
log

⇥

M
. (2.7)

Now, the trick is to allow the threshold M to have spatial variation, M ⌅ M + ⇥M(x), which

will lead to a spatially varying coupling at the scale µ:

1

g2(µ, x)
=

1

g2(µ)
+

�b

8⌃2
log

M

M(x)
=

1

g2(µ)
� �b

8⌃2

⇥M(x)

M
. (2.8)

In our case, we have fermions with massmY +⌅S(x) and scalars with mass-squared |mY + ⌅S(x)|2,
implying that to leading order for all the fields we integrate out, ⇥M(x)

M = ⇤S(x)
mY

. The contribu-

tion of the chiral multiplets Y, Ȳ to the beta function of SU(3) is that of one supersymmetric

flavor for SQCD, i.e. b = +1, so we have a coupling:

⌅

32⌃2mY
SGa

µ⇧G
aµ⇧ . (2.9)

If I then canonically normalize my gluon fields and change their name to F , this becomes:

⌅�s

8⌃mY
SF a

µ⇧F
aµ⇧ . (2.10)
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Run from     down to     with an intermediate 
threshold                     at which the beta function 
changes from      to           .
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tion of the chiral multiplets Y, Ȳ to the beta function of SU(3) is that of one supersymmetric

flavor for SQCD, i.e. b = +1, so we have a coupling:

⌅

32⌃2mY
SGa

µ⇧G
aµ⇧ . (2.9)

If I then canonically normalize my gluon fields and change their name to F , this becomes:

⌅�s

8⌃mY
SF a

µ⇧F
aµ⇧ . (2.10)

– 2 –

Let’s say, for instance, that m̃D dominates, and is 1 TeV, with ⌅ = 0.1, Mmess = 100 TeV

(which is consistent with
�
F ⇥ 100 TeV as well), mY = 2 TeV, and mS = 150 GeV. Then

we have:

m̃2
S = �2970 GeV2 ⇧ mscalar =

⇥
1502 � 2970 GeV ⇤ 140 GeV. (2.4)

So, this model is easily compatible with the sort of splittings we’re interested in.

2.2 Couplings to Gauge Bosons and Gauginos
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RG:



LOW-ENERGY THEOREM
Suppose the mass threshold is actually a function 
of space and time:
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Now we will integrate out Y and Ȳ and study the induced couplings of S to gauge bosons.

To keep things simple, we will assume that the mass of the Y s is dominantly supersymmetric.

In that case, we expect to find an e⇤ective operator of the form:

c

mY

�
d2⇤SW�W

� + h.c. (2.5)

Let’s work out the coe⌃cient c and then compute the resulting decays.

To compute the coe⌃cient, let me try to flesh out JiJi’s statement that it’s related to a

beta function coe⌃cient. Suppose we have a Lagrangian

L = � 1

4g2
Ga

µ⇧G
aµ⇧ . (2.6)

Then in fact g is a running coupling. In particular, suppose that we have fields at a scale M ,

with µ < M < ⇥, so that the beta function coe⌃cient changes from b below M to b + �b

above M . Then taking account of that threshold,

1

g2(µ)
=

1

g2(⇥)
+

b

8⌃2
log

⇥

µ
+

�b

8⌃2
log

⇥

M
. (2.7)

Now, the trick is to allow the threshold M to have spatial variation, M ⌅ M + ⇥M(x), which

will lead to a spatially varying coupling at the scale µ:

1

g2(µ, x)
=

1

g2(µ)
+

�b

8⌃2
log

M

M(x)
=

1

g2(µ)
� �b

8⌃2

⇥M(x)

M
. (2.8)

In our case, we have fermions with massmY +⌅S(x) and scalars with mass-squared |mY + ⌅S(x)|2,
implying that to leading order for all the fields we integrate out, ⇥M(x)

M = ⇤S(x)
mY

. The contribu-
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In particular, if         depends on the Higgs,                    , 
then we extract an effective coupling:     

M(x) M = M(h(x))

�b

32�2
hGa

µ�G
aµ� ⇥ logM(v)

⇥v



STOPS

1

2

⇥ log detM2
t̃

⇥v
⇠ ytmt

m̃2
Q + m̃2

u �X2
t sin

2 �

m̃2
Qm̃

2
u �X2

t m
2
t sin

2 �

Things to note:

Minus sign: large mixing 
leads to opposite-sign 

couplings

Small numerator factor 
(for heavy stops): 

decoupling
Intuition: in the highly mixed case, larger VEV means more 
mixing, splitting light and heavy stops more. The light one 
contributes more, and is pushed lighter, so the overall sign 
reverses.



MODIFIED GLUON AND 
PHOTON COUPLINGS
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Figure 2: Fit of the WW , Z Z , and �� channels in the ATLAS and CMS 7+8 TeV data, with 1� and 2� contours
as in the left-hand plot of Figure 1, but now showing the values achieved by adding particles in the loop in a
variety of representations of SU(3)c and U(1)EM.

In particular, because there are vectorlike masses that are split by the mixing terms proportional to the
Yukawas, we get a negative contribution to the amplitude. The factor �br

�b3
is the ratio of the SU(3)c beta-

function coefficient of the representation that  and � transform under, relative to the beta-function
coefficient of a triplet.

Loops of fermions contribute a correction to the Higgs quartic, which in the special case m = m� =
m is:

��F = � Nc;F
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ä
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1
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Ä
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1 � 2y1 y2+ 5y2
2
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y1+ y2
�2
´

. (9)

The result in the more general case m� 6= m is listed in Appendix A. Notice that the logarithmic term
here can be interpreted as encoding a beta function coefficient. Because the full renormalized potential
must be independent of µ, the tree-level quartic must run in such a way as to cancel the µ-dependence
of the Coleman-Weinberg potential.

2.3 New scalar states

Assume a mass matrix

M 2
S =

Ç
m2

1+�1v2 Av
Av m2

2+�2v2

å
. (10)

The correction to the h! g g amplitude relative to the Standard Model amplitude is

�A(hGG)
ASM(hGG)

=
�br

�b3

v2
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2+�2m2
1+ 2�1�2v2� A2

ä

4
ÄÄ

m2
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m2
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ä , (11)
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3.1 Inverting hGG with Stops

Given that we are looking for large changes to the Higgs potential that require light new colored and
charged particles, it is reasonable to first consider whether stops can be responsible, since naturalness
of electroweak symmetry breaking in supersymmetric theories favors light stops [29, 30]. In the case
of stops, the general results discussed in the previous section imply a correction to the hGG amplitude
(specializing the general result Eq. 11):

A(hGG)
ASM(hGG)

= 1+
1
4

0
@ m2

t

m2
t̃1

+
m2

t

m2
t̃2

� m2
t X 2

t

m2
t̃1

m2
t̃2

1
A , (14)

up to small D-term corrections (taken into account in the plots below). Here mt̃1
and mt̃2

are mass
eigenvalues, not Lagrangian parameters. The effect of stops on Higgs branching ratios has been dis-
cussed in several papers in the recent literature [6,17,18,24,39], which reach a variety of conclusions.
As emphasized by Ref. [39], light unmixed stops tend to increase the hGG coupling and decrease the
h�� coupling, whereas highly mixed stops contribute large corrections to m2

Hu
(thus requiring more

tuning for EWSB) and lead to large corrections to b ! s� that must also be tuned away. The same
considerations led Ref. [24] to focus on the “funnel” region in which the stop corrections to hGG are
small. On the other hand, Refs. [18,22] argued for light and highly mixed stops in the region with the
inverted sign of hGG, which could improve the fit to data.
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Figure 3: Stop parameter space that achieves a hGG coupling that is �1 times its Standard Model value. This
condition reduces the three-dimensional parameter space (mQ, mU , Xt) to two dimensions, which we parametrize
with mQ and mU . At left: contours of the lightest stop mass (orange, dashed) and the value of Xt needed to
achieve the desired coupling (purple, solid). At right: contours of the heavy stop mass (orange, dashed) and the
corresponding stop mixing sin2 ✓ t̃ parametrizing the right-handedness of the stop (purple, solid).

We illustrate the parameter space that can achieve A(hGG) = �ASM(hGG) in Figure 3. As is clear
from equation 14, this occurs at very large values of the mixing parameter Xt . This leads to a large
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Figure 4: Tree-level potential V (h, t̃ L , t̃R) along the subspace t̃ L = t̃R. We have fixed mQ = mU = 800 GeV and
adjusted Xt to produce A(hGG) = �ASM(hGG). The right-hand plot zooms in near the good EWSB vacuum where
hhi ⇡ 246 GeV and the stops have no VEV. A much deeper minimum is located near the D-flat direction where
the Higgs and stop VEVs are all equal. The barrier separating the two minima is shallow.

a bounce action S0
>⇠ 400, necessary for a sufficiently long-lived metastable vacuum to describe our

universe, occurs only for a light stop mass eigenstate below 70 GeV. Such a light stop is excluded by
LEP, even in the case of small t̃1� �̃0

1 mass splitting [59,60].

3.2 Inverting hGG with charged scalar color octets

Here we will consider a different possibility that does not involve large mixing effects. If we drop the
assumption of supersymmetry, we can consider charged scalar octets that have a mass that decreases
with increasing Higgs mass,

V = �µ2H†H +�H

Ä
H†H
ä2
+
Ä

m2
O ��HOH†H
ä

O†O+�O

Ä
O†O
ä2

, (16)

with �HO > 0. This is a simplified subset of the interactions that arise, for example, for the Manohar-
Wise scalar in the (8,2)1/2 representation of the Standard Model gauge group [61]. Other interactions
contract the SU(2) indices of H with those of O. There is no principled reason to ignore them, but we
restrict to a low-dimensional parameter space for ease of plotting the results and because we expect
it will capture the qualitative story of the interplay between vacuum stability and Higgs corrections.
Quantitatively, it could be worthwhile to explore the full set of operators, but this is beyond the scope
of this paper.

The Manohar-Wise representation contains both a neutral scalar O0 and a charged scalar O+; as-
suming they have the same mass, as they do with this simplified set of interactions with the Higgs,
one finds that they affect the Higgs decay widths as shown by the dashed purple curve in Figure 2,

vent a minimum-finding step from skipping over a shallow minimum and falling into a deep one.
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splitting between the two stop mass eigenstates. In this region of parameter space, the lightest stop
eigenvalue tends to be fairly light. For example, pushing the light eigenstate up to 450 GeV implies 20
TeV A-terms, which is an enormously finely-tuned scenario, both from the point of view of electroweak
symmetry breaking and of b! s�. In fact, from the Coleman-Weinberg discussion in Section 2.3, one
can readily see that such large A-terms lead to very large negative threshold corrections to the Higgs
mass. This implies the need for very large beyond-MSSM couplings of the Higgs boson that are capable
of lifting its mass up to 125 GeV. When such couplings become large enough, it is difficult to imagine
that other Higgs properties remain unmodified, so that considering only stop-loop modifications to the
partial widths is dubious. On the other hand, one may wonder if the lower-left corner of the plot, with
a light stop eigenstate, can fit the data, with large but no longer unreasonably large A-terms. It is still
rather tuned. Recent experimental searches for direct production of light stops [40–45] constrain much
of the stop parameter space with mt̃1

<⇠ 500 GeV, but only for sufficiently light neutralinos. The more
squeezed regime will be probed by a combination of traditional missing-ET signatures [46–55] and spin
correlations [56], and even the case of R-parity violation may be constrained soon [57]. Nonetheless,
for the moment, these considerations still allow as a logical possibility that light, highly mixed stops
significantly alter the Higgs properties.

However, vacuum instability poses an even more serious problem for this scenario than fine-tuning.
The large A-term mixing is a trilinear scalar coupling t̃ L t̃⇤Rh, so the potential can acquire large negative
values when all three of these fields have VEVs. Because the Higgs and one stop eigenstate are relatively
light, the barrier separating our EWSB vacuum from a color- and charge-breaking minimum can be
relatively low. At large enough field values, quartic couplings arising from the Yukawa coupling will
prevent the potential from being unbounded from below, even in the D-flat direction where the stop
and Higgs VEVs are equal. Nonetheless, a deep charge- and color-breaking vacuum will exist when the
A-term is large. This is illustrated with contour plots of the potential in Figure 4. It remains to check
whether the vacuum decay to this deep minimum happens fast enough to rule out this scenario.

For this calculation we use the tree-level potential for the up-type Higgs H and the third generation
squark superfields:

V (H, Q̃3, ũc
3) = m2
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We take m2
H = �1

2 m2
h with mh = 125 GeV the measured Higgs mass. Here �� represents the corrections

required to achieve the appropriate measured Higgs VEV; we remain agnostic about what model gener-
ates these corrections (in particular, we do not tie them to the stop masses and the MSSM radiative cor-
rections). In the plot in Figure 4, we have taken the fields to be real valued, with H = 1p

2
h, Q̃3 =

1p
2

t̃ L ,

and ũc
3 =

1p
2

t̃R. We ignore the down-type Higgs; at large tan� , it should not be important, and more
generally we don’t expect that it will qualitatively alter the results.

Because the results of Ref. [38] are expressed as a scatter plot of points that are viable or not, it is
not possible to do a systematic check from their results of whether the parameter space for which the
hGG amplitude is inverted (as displayed in Figure 3) is ruled out. Thus, we perform a new numerical
calculation of the zero-temperature tunneling rate, using a slightly modified version of the CosmoTran-
sitions software [58].1 The result is depicted in Figure 5. In the right-hand panel, one can see that

1The main change was to replace a call to scipy.optimize.fmin with one to scipy.optimize.fminbound to pre-
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3.1 Inverting hGG with Stops

Given that we are looking for large changes to the Higgs potential that require light new colored and
charged particles, it is reasonable to first consider whether stops can be responsible, since naturalness
of electroweak symmetry breaking in supersymmetric theories favors light stops [29, 30]. In the case
of stops, the general results discussed in the previous section imply a correction to the hGG amplitude
(specializing the general result Eq. 11):

A(hGG)
ASM(hGG)

= 1+
1
4
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up to small D-term corrections (taken into account in the plots below). Here mt̃1
and mt̃2

are mass
eigenvalues, not Lagrangian parameters. The effect of stops on Higgs branching ratios has been dis-
cussed in several papers in the recent literature [6,17,18,24,39], which reach a variety of conclusions.
As emphasized by Ref. [39], light unmixed stops tend to increase the hGG coupling and decrease the
h�� coupling, whereas highly mixed stops contribute large corrections to m2

Hu
(thus requiring more

tuning for EWSB) and lead to large corrections to b ! s� that must also be tuned away. The same
considerations led Ref. [24] to focus on the “funnel” region in which the stop corrections to hGG are
small. On the other hand, Refs. [18,22] argued for light and highly mixed stops in the region with the
inverted sign of hGG, which could improve the fit to data.
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Figure 3: Stop parameter space that achieves a hGG coupling that is �1 times its Standard Model value. This
condition reduces the three-dimensional parameter space (mQ, mU , Xt) to two dimensions, which we parametrize
with mQ and mU . At left: contours of the lightest stop mass (orange, dashed) and the value of Xt needed to
achieve the desired coupling (purple, solid). At right: contours of the heavy stop mass (orange, dashed) and the
corresponding stop mixing sin2 ✓ t̃ parametrizing the right-handedness of the stop (purple, solid).

We illustrate the parameter space that can achieve A(hGG) = �ASM(hGG) in Figure 3. As is clear
from equation 14, this occurs at very large values of the mixing parameter Xt . This leads to a large
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hhi ⇡ 246 GeV and the stops have no VEV. A much deeper minimum is located near the D-flat direction where
the Higgs and stop VEVs are all equal. The barrier separating the two minima is shallow.

a bounce action S0
>⇠ 400, necessary for a sufficiently long-lived metastable vacuum to describe our

universe, occurs only for a light stop mass eigenstate below 70 GeV. Such a light stop is excluded by
LEP, even in the case of small t̃1� �̃0

1 mass splitting [59,60].

3.2 Inverting hGG with charged scalar color octets

Here we will consider a different possibility that does not involve large mixing effects. If we drop the
assumption of supersymmetry, we can consider charged scalar octets that have a mass that decreases
with increasing Higgs mass,

V = �µ2H†H +�H
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with �HO > 0. This is a simplified subset of the interactions that arise, for example, for the Manohar-
Wise scalar in the (8,2)1/2 representation of the Standard Model gauge group [61]. Other interactions
contract the SU(2) indices of H with those of O. There is no principled reason to ignore them, but we
restrict to a low-dimensional parameter space for ease of plotting the results and because we expect
it will capture the qualitative story of the interplay between vacuum stability and Higgs corrections.
Quantitatively, it could be worthwhile to explore the full set of operators, but this is beyond the scope
of this paper.

The Manohar-Wise representation contains both a neutral scalar O0 and a charged scalar O+; as-
suming they have the same mass, as they do with this simplified set of interactions with the Higgs,
one finds that they affect the Higgs decay widths as shown by the dashed purple curve in Figure 2,

vent a minimum-finding step from skipping over a shallow minimum and falling into a deep one.
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splitting between the two stop mass eigenstates. In this region of parameter space, the lightest stop
eigenvalue tends to be fairly light. For example, pushing the light eigenstate up to 450 GeV implies 20
TeV A-terms, which is an enormously finely-tuned scenario, both from the point of view of electroweak
symmetry breaking and of b! s�. In fact, from the Coleman-Weinberg discussion in Section 2.3, one
can readily see that such large A-terms lead to very large negative threshold corrections to the Higgs
mass. This implies the need for very large beyond-MSSM couplings of the Higgs boson that are capable
of lifting its mass up to 125 GeV. When such couplings become large enough, it is difficult to imagine
that other Higgs properties remain unmodified, so that considering only stop-loop modifications to the
partial widths is dubious. On the other hand, one may wonder if the lower-left corner of the plot, with
a light stop eigenstate, can fit the data, with large but no longer unreasonably large A-terms. It is still
rather tuned. Recent experimental searches for direct production of light stops [40–45] constrain much
of the stop parameter space with mt̃1

<⇠ 500 GeV, but only for sufficiently light neutralinos. The more
squeezed regime will be probed by a combination of traditional missing-ET signatures [46–55] and spin
correlations [56], and even the case of R-parity violation may be constrained soon [57]. Nonetheless,
for the moment, these considerations still allow as a logical possibility that light, highly mixed stops
significantly alter the Higgs properties.

However, vacuum instability poses an even more serious problem for this scenario than fine-tuning.
The large A-term mixing is a trilinear scalar coupling t̃ L t̃⇤Rh, so the potential can acquire large negative
values when all three of these fields have VEVs. Because the Higgs and one stop eigenstate are relatively
light, the barrier separating our EWSB vacuum from a color- and charge-breaking minimum can be
relatively low. At large enough field values, quartic couplings arising from the Yukawa coupling will
prevent the potential from being unbounded from below, even in the D-flat direction where the stop
and Higgs VEVs are equal. Nonetheless, a deep charge- and color-breaking vacuum will exist when the
A-term is large. This is illustrated with contour plots of the potential in Figure 4. It remains to check
whether the vacuum decay to this deep minimum happens fast enough to rule out this scenario.

For this calculation we use the tree-level potential for the up-type Higgs H and the third generation
squark superfields:
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We take m2
H = �1

2 m2
h with mh = 125 GeV the measured Higgs mass. Here �� represents the corrections

required to achieve the appropriate measured Higgs VEV; we remain agnostic about what model gener-
ates these corrections (in particular, we do not tie them to the stop masses and the MSSM radiative cor-
rections). In the plot in Figure 4, we have taken the fields to be real valued, with H = 1p

2
h, Q̃3 =

1p
2

t̃ L ,

and ũc
3 =

1p
2

t̃R. We ignore the down-type Higgs; at large tan� , it should not be important, and more
generally we don’t expect that it will qualitatively alter the results.

Because the results of Ref. [38] are expressed as a scatter plot of points that are viable or not, it is
not possible to do a systematic check from their results of whether the parameter space for which the
hGG amplitude is inverted (as displayed in Figure 3) is ruled out. Thus, we perform a new numerical
calculation of the zero-temperature tunneling rate, using a slightly modified version of the CosmoTran-
sitions software [58].1 The result is depicted in Figure 5. In the right-hand panel, one can see that

1The main change was to replace a call to scipy.optimize.fmin with one to scipy.optimize.fminbound to pre-
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RAPID VACUUM DECAY
The large trilinear terms in this region lead to rapid vacuum 
decay (known already in 90s: Kusenko, Langacker, Segre, 
hep-ph/9602414).
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Figure 5: Contours of the bounce action S0 as calculated by CosmoTransitions [58]. The requirement for a
sufficiently long-lived vacuum is S0

>⇠ 400. The left-hand plot shows that the bulk of the parameter space fails
this requirement by a wide margin. The right-hand plot zooms in on the low-mass region, overlaying contours
of the mass of the light stop eigenstate t̃1 (orange, dashed). The bounce action exceeds 400 only when the light
stop eigenstate is below 70 GeV, and thus cleanly excluded by LEP constraints.

which comes rather close to the best-fit point of our simplified �2 fit. Effects of such an octet scalar
on the hGG amplitude were considered recently in Refs. [62–64] in the regime with relatively small
corrections that would lead to a reduced g g ! H cross section. The possibility that �HO < 0 could lead
to a reasonable fit of the data with enhanced diphoton rate was observed in Ref. [65]. Furthermore,
as emphasized in Ref. [66], this regime of parameter space makes a striking prediction of a di-Higgs
production rate hundreds or thousands of times larger than the rate in the Standard Model.

In this case, the condition ANP(hGG) = �2ASM(hGG), at one loop and ignoring m2
O/m

2
H effects,

singles out a particular choice of �HO given the mass m2
O:

�HO =
16m2

O

25v2 . (17)

Taking into account the (small) m2
H/m

2
O corrections, we plot the required choice of �HO as a function

of m2
O in Figure 6 along with the physical mass of the octet. Notice that, unless the new octet state is

very light, the coupling quickly becomes extremely large. In particular, once the physical octet mass
reaches about 400 GeV, the coupling is nonperturbatively large. Hence, this scenario is only viable with
relatively light states. In fact, the quartic part of the potential becomes unbounded below unless the
condition

�O � �O;min ⌘ �
2
HO

4�H
(18)

is satisfied. We have also plotted �O;min in Fig. 6. It becomes nonperturbatively large already when
mO ⇡ 300 GeV, a point at which the physical mass is only about 180 GeV. Of course, a potential that is
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Figure 4: Tree-level potential V (h, t̃ L , t̃R) along the subspace t̃ L = t̃R. We have fixed mQ = mU = 800 GeV and
adjusted Xt to produce A(hGG) = �ASM(hGG). The right-hand plot zooms in near the good EWSB vacuum where
hhi ⇡ 246 GeV and the stops have no VEV. A much deeper minimum is located near the D-flat direction where
the Higgs and stop VEVs are all equal. The barrier separating the two minima is shallow.

a bounce action S0
>⇠ 400, necessary for a sufficiently long-lived metastable vacuum to describe our

universe, occurs only for a light stop mass eigenstate below 70 GeV. Such a light stop is excluded by
LEP, even in the case of small t̃1� �̃0

1 mass splitting [59,60].

3.2 Inverting hGG with charged scalar color octets

Here we will consider a different possibility that does not involve large mixing effects. If we drop the
assumption of supersymmetry, we can consider charged scalar octets that have a mass that decreases
with increasing Higgs mass,

V = �µ2H†H +�H
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with �HO > 0. This is a simplified subset of the interactions that arise, for example, for the Manohar-
Wise scalar in the (8,2)1/2 representation of the Standard Model gauge group [61]. Other interactions
contract the SU(2) indices of H with those of O. There is no principled reason to ignore them, but we
restrict to a low-dimensional parameter space for ease of plotting the results and because we expect
it will capture the qualitative story of the interplay between vacuum stability and Higgs corrections.
Quantitatively, it could be worthwhile to explore the full set of operators, but this is beyond the scope
of this paper.

The Manohar-Wise representation contains both a neutral scalar O0 and a charged scalar O+; as-
suming they have the same mass, as they do with this simplified set of interactions with the Higgs,
one finds that they affect the Higgs decay widths as shown by the dashed purple curve in Figure 2,

vent a minimum-finding step from skipping over a shallow minimum and falling into a deep one.
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Another option, e.g. Manohar-Wise scalar octet O:

Increasing Higgs diphoton means large negative 
HHOO quartic, requiring the O4 quartic to be even 
larger to prevent a runaway negative potential.

Again, tree-level vacuum stability problem.
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p
m2

O ��HO v2 and the octet quartic �O. The region below the dashed orange
curve has a potential that is unbounded from below. Nonetheless, the tunneling calculation shows that a portion
of this region is metastable enough to provide a viable vacuum. The vertical red dotted line is an estimate of
the collider bound, showing that any surviving parameter space is at masses near 200 GeV and strong coupling
�O

>⇠ 4, or must decay in a manner that evades the ATLAS paired dijet search. Kinks in the curves are from the
parameter grid of the numerical scan, not physics.

to the Higgs contribute terms d�
d t = � 3

8⇡2 y4 in the RGE for the Higgs quartic. These corrections drive
� negative at relatively low energies, leading to yet another vacuum instability. Of course, there is a
way out: if the new colored fields come in complete supermultiplets, the scalars contribute an opposite
contribution to the running of � and the quartic can be saved from turning negative. Thus, one per-
spective on this correction is that it gives a bound on the size of the allowed splitting between fermions
and scalars in the new multiplet; this is essentially the naturalness point of view discussed in Ref. [37].

The first observation relates to fermionic top partners. In particular, suppose we have new fields
T, T in the (3,1)±2/3 representations of the Standard Model gauge group. We can add both a vectorlike
mass for these fields and a mixing term with the SM left-handed quarks,

M T T̄ + yT HQT + yT H†QT. (19)

Such top partners contribute a correction to the hGG amplitude:

A(hGG)
ASM(hGG)

= 1� v yT yT

M yt � v yT yT
. (20)

If we wish this to equal �1, we must take yT yT =
2
3 yt

M
v . If the new colored states are to be heavier

than the top quark, this requires large Yukawas. Furthermore, these states are highly mixed with the
top, and require that we significantly alter yt from its Standard Model value. This is an awkward
solution that will be difficult to reconcile with experimental bounds.

A safer approach is to add a pair of vectorlike fermions, as in Section 2.2, which are not mixed with
the SM top. To be concrete, we will take these states to have the same quantum numbers as the SM Q

12

Collider bound

Unbounded below

As you would expect, in all 
but a tiny sliver of the 
parameter space, having a 
potential that’s unbounded 
from below leads to very 
quick vacuum decay.
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and including N copies with identical couplings, the relevant RGEs read [48, 49]

16⇤2 dy

dt
= y

⇧
3

2

�
y2 � y2n

⇥
+N

�
y2 + yc2 + y2n + yc2n

⇥
+ 3y2t �

9g22
4

� 9g21
4

⌃
,

16⇤2 dyn
dt

= yn

⇧
3

2

�
y2n � y2

⇥
+N

�
y2 + yc2 + y2n + yc2n

⇥
+ 3y2t �

9g22
4

� 9g21
20

⌃
,

16⇤2 dyt
dt

= yt

⇧
N
�
y2 + yc2 + y2n + yc2n

⇥
+

9y2t
2

� 8g23 �
9g22
4

� 17g21
20

⌃
,

16⇤2 d�

dt
= �

⇧
24�� 9g22 �

9g21
5

+ 12y2t + 4N
�
y2n + yc2n + y2 + yc2

⇥⌃
� 2N

�
y4 + yc4 + y4n + yc4n

⇥
� 6y4t

+
3

8

⌥
2g42 +

⇧
g22 +

3g21
5

⌃2
�
. (A.1)

The RGEs for yc and ycn are similar to that for y and yn. The gauge beta functions are

b1 =
41

10
+

6N
5

, b2 = �19

6
+

2N
3

, b3 = �7. (A.2)

Vector doublets + triplet (“wino-higgsino”). For our “wino-higgsino” scenario, including N
copies with identical couplings and allowing for an additional singlet n, the relevant RGEs read [50]

16⇤2 dy

dt
= ycyny

c
n + y

⇧
5

4
y2 +

1

4
y2n � 1

2
yc2 +

N
2

�
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⇥
+ 3y2t �

9

20
g21 �

33

4
g22

⌃
,
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dt

= 3ycnyy
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⇧
3

4
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3

2
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3

4
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N
2

�
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+ 3y2t �
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20
g21 �

9

4
g22

⌃
,

16⇤2 dyt
dt
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⇧
N
2

�
3y2 + 3yc2 + y2n + yc2n

⇥
+

9

2
y2t � 8g23 �

17

20
g21 �

9

4
g22

⌃
,

16⇤2 d�

dt
= �
�
24�+ 2N

�
3y2 + 3yc2 + y2n + yc2n

⇥
+ 12y2t

⇥
� N

2

�
5y4 + 5yc4 + y4n + yc4n

⇥

�2N yny
c
nyy

c �N (y2 + yc2n )(yc2 + y2n)� 6y4t

�9�

⇧
g21
5

+ g22

⌃
+

27

200
g41 +

9

20
g22g

2
1 +

9

8
g42 . (A.3)

b1 =
41

10
+

2N
5

, b2 = �19

6
+ 2N , b3 = �7. (A.4)

We take as initial conditions, at a scale µ = 100 GeV,

g1 = 0.36
 
5/3, g2 = 0.65, g3 = 1.2, yt = 0.99, � =

m2
h

2v2
= 0.129. (A.5)

The vacuum stability cuto⇥ scale �UV is determined by [51]

� (�UV ) =
2⇤2

3 log
⇤

H
�UV

⌅ = �0.065

⇧
1� 0.02 log10

⇧
�UV

100 GeV

⌃⌃
, (A.6)

with the Hubble constant H = 70 km/s/Mpc = 1.5 · 10�42 GeV. We comment that for the problem
under study, Landau poles of the Yukawa couplings appear at much higher scales, beyond the scale
where the vacuum instability sets in, posing no additional constraint.
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Yukawas from a mass matrix

The minimal version of split SUSY cannot give a big enough e⌅ect – indeed, the only source for
enhancement is the same chargino loop as in natural SUSY. Thus a large enhancement of 1.5 - 2
immediately rules out this version of split SUSY. We can however certainly imagine extra fermions
near the TeV scale; a collection of fermions can have their masses protected by a common chiral
symmetry and set by the same scale.

In what follows we ask whether the recent LHC data can be explained in a framework of this
sort. We show that restricting to un-natural models with only new fermions immediately leads us
to a very narrow set-up with sharp theoretical and experimental implications: (1) new, vector-like,
un-colored fermions with electroweak quantum numbers must exist and be very light, within the range
100 � 150 GeV; (2) the cut-o⌅ scale of the theory where additional bosonic degrees of freedom must
kick in, cannot be high and is in fact bounded by ⇤UV ⇥< 1 � 10 TeV. The cut-o⌅ can be somewhat
increased but only at the expanse of significant model-building gymnastics, which further destroys any
hope of perturbative gauge coupling unification.

2 The diphoton rate

A fermionic loop contribution enhancing the Higgs-diphoton coupling requires vector-like represen-
tations and large Yukawa couplings to the Higgs boson. This has important ramifications for the
consistency of the theory at high scale. To see this, note that in the presence of a new fermion f with
electric charge Q, the h ⌅ �� partial width reads4

�(h ⌅ ��)

�(h ⌅ ��)SM
⇤

⇤⇤⇤⇤⇤1 +
1

A⇥
SM

Q2 4

3

⌃
 logmf

 log v

⌥�
1 +

7m2
h

120m2
f

 ⇤⇤⇤⇤⇤

2

, (2.1)

with �(h ⌅ ��)SM =
⌅

GF�2m3
h

128
⇤
2⇤3

⇧
|A⇥

SM |2 and5 A⇥
SM = �6.49. Constructive interference between the

SM and the new fermion amplitude requires electroweak symmetry breaking to contribute negatively to
the mass of the new fermion. Thus f must be part of a vector-like representation with an electroweak-
conserving source of mass.

The basic building block is then the charged vector-like fermion mass matrix,

LM = �
�
⌅+Q ⇤+Q

⇥
⌦

�m⇧
yv⇤
2

ycv⇤
2

m⌅

↵

�
�
⌅�Q

⇤�Q

 
+ cc, (2.2)

with the Higgs VEV given by �H = v/
↵
2 = 174 GeV. Eq. (2.2) contains one physical phase, ⇥ =

arg
⌅
m⇥

⇧m
⇥
⌅yy

c
⇧
, that cannot be rotated away by field redefinitions. It is straightforward to show that

⇥ = 0 maximizes the e⌅ect we are after, making ⇥ ⇧= 0 an un-illuminating complication for our current
purpose. Hence for simplicity we assume ⇥ = 0 in what follows. We are then allowed to take all of
the parameters in Eq. (2.2) to be real and positive. The two Dirac mass eigenvalues are split by an
amount

m2 = m1

⌅
1 +

�
⇥2

v +⇥2
y +⇥2

m

⇧
, ⇥2

v =
2yycv2

m2
1

, ⇥2
y =

(y � yc)2 v2

2m2
1

, ⇥2
m =

(m⇧ � m⌅)2

m2
1

. (2.3)

4At leading-log plus leading finite-mass correction; see e.g. [4] for a recent discussion.
5At leading-log, the SM amplitude is given by the top quark and W boson contributions to the QED beta function,�

A�
SM

�
leading�log

= bt + bW = +(4/3)2 � 7. Finite mass corrections modify this prediction slightly to A�
SM = �6.49.
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drive Higgs quartic negative fast (unless superpartners 
are nearby)
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Figure 2. Left: “vector-like lepton” model. Right: “wino-higgsino” model. The horizontal and vertical axes

correspond to the light and heavy mass eigenvalues, respectively. Pink bands denote the diphoton enhancement

µ�� . Gray bands denote the vacuum instability cut-o↵ ⇤UV . Dark is for y = y

c; pale is for y = 2yc. The

width of the bands (for both µ�� and ⇤UV ) correspond to varying the electroweak-conserving mass splitting

term �m (see Eq. (2.3)) from zero to one. Green dashed band, on the right, denotes the SUSY wino-higgsino

scenario.
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Figure 3. Same as Fig. 2, but for N = 2 copies of vector like fermions.

3 Collider signals and electroweak constraints

The light charged fermions discussed in the previous section are produced through electroweak pro-
cesses with appreciable rates at hadron colliders. In this section we consider constraints and detection
prospects from current and upcoming searches, assessing charchteristic detection channels and provid-
ing rough estimates of the experimental sensitivity. We stress that our analysis is simplistic, and can
by no means replace a full-fledged collider study. Nevertheless, our estimates provide solid motivation
and concrete guidelines for a more dedicated study in the future, should the diphoton enhancment be

precision constraints on this field content, in the context of modified Higgs couplings.
8See Eqs. (2.2-2.3) and the discussion between them for the definition of y, yc, �m and �.
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Significant fermion loop effects require very low cutoff:
parameter space. Here, for simplicity, we consider a few decay modes in single exclusive channels. If
we take, for example, BR(L

1

! Z + l) ⇡ 100%, and assume a flat 70% e�ciency times acceptance for
each of the four leptons10, then we find that the region mL1 ⇢ (100�120) GeV can be excluded already
in the “vector-like lepton” model, while the limit extends to ⇡ 180 GeV in the “wino-higgsino” case.
This estimate was made using a standard CLs technique described in App. B from a single channel 4l
with MET < 50 GeV and HT < 200 GeV and a Drell-Yan lepton pair from a Z decay. The limits are
slightly weaker for L

1

! Z + ⌧ . In this case we are not yet sensitive to the “vector-like lepton” model,
while we are sensitive to masses up to ⇡ 130 GeV in the “wino-higgsino” one. Again this estimate
was obtained by looking at a single channel: 3l+ 1⌧h11 with MET < 50 GeV and HT < 200 GeV and
a Drell-Yan lepton pair from a Z decay. It is clear that the rest of the relevant parameter space can
easily be covered by the end of the year and that, combining di↵erent channels and possibly results
from the two experiments, the sensitivity would be increased, covering also more generic scenarios in
which the branching ratio to these final states is not exactly one.

In summary, for N = 1, an L
1

decaying to SM leptons is either already ruled out or within reach
of the 8 TeV LHC. If, instead, L

1

! W ⇤n
1

(⌫) dominates, the relevant final state is WW+ MET from
L
1

L
1

production, which is still unconstrained for the “vector-like lepton” model, but also within reach
of the 8 TeV LHC. In the worst case, when L

1

and n
1

are nearly degenerate in masses, the monojet
searches will be able to probe the relevant parameter space at the 14 TeV LHC. In the latter case,
other interesting channels, especially for N > 1, would be the WWW+MET and, to a lesser extent,
WZ+MET final states arising from the production of L

1

N as depicted in the right panel of Fig. 5.
Dedicated analyses, beyond the scope of this paper, would improve the current sensitivities for some
of the channels12. For our purpose here it su�ces to show that if the enhancement of the �� rate will
be confirmed and an un-natural theory is responsible for it, then we expect the new fermions involved
to be detected in the next few years, or even months.
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Figure 5. Feynman diagrams for new fermion production and decay.

Finally, in addition to direct searches, light non-singlet fermions are constrained indirectly by
electroweak precision tests (EWPTs), especially so given the need for a large electroweak breaking
mass to a↵ect µ�� . Indeed, specializing to the “vector-like lepton” example13, in the minimal field

10From [40] we get an e�ciency of the kinematical cuts ⇠ 0.87. Taking into account the finite acceptance (somewhat

optimistically) we obtain the final 0.7 [41]. Notice that this is a huge simplification of the experimental set-up that does

not even distinguish between electrons and muons, and is thus only intended to give an order of magnitude estimate.
11Assuming an hadronic tau identification e�ciency, for the HPS algorithm used in the CMS paper, ✏⌧h = 0.35 [41–44]

and the same 0.7 e�ciency as before for any extra lepton.
12It is su�cient to think about possible three-lepton resonance searches or monojet searches with the additional

requirement of soft leptons in the final state [36].
13We expect similar results to hold for the “wino-higgsino” model, as can be deduced e.g. from [45].
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Viable region would 
be probed directly:



3 Correlation between CP-odd and CP-even observables

3.1 Operators and corresponding observables

We will assume that new charged matter does not interact or mix with the SM fermions at tree level
and they do not contribute to the EDMs of the SM fermions at one-loop order. (Thus, we will also
not discuss the discrepancy in the measured muon g � 2, which would typically require new physics
with leptonic quantum numbers exerting a one-loop e↵ect.) The one-loop EDM is generically ruled
out unless the new CP violating phases are tuned to be small (⇠< 10�2). However, new charged
particles could still contribute at the two-loop order to the SM fermion EDMs through Barr-Zee type
diagrams [88]. To see the correlations between the CP-odd observables (including EDMs) and CP-
even observables, it will be useful to perform an operator analysis first, which strictly speaking is only
valid in the limit when the charged matter is heavy and could be integrated out. We will use operator
analysis to clarify the correlations of the observables, whereas for the numerical evaluations we will use
the full-fledged loop calculations. Charged matter with physical phases contributes to 6 CP violating
dimension-six operators built out of the Higgs and the SM gauge fields. Among them, two involve
the SU(3) color field strength, one of which is the famous Weinberg operator [89]. We only inspect
the four operators generated by loops of colorless particles. They and their corresponding CP-even
operators with similar structures are, following the notations in [90],

OW = ✏abcW
a⌫
µ W b�

⌫ W cµ
� , O

˜W = ✏abcW̃
a⌫
µ W b�

⌫ W cµ
�

OhW = H†HW a
µ⌫W

aµ⌫ , Oh ˜W = H†HW̃ a
µ⌫W

aµ⌫

OhB = H†HBµ⌫B
µ⌫ , Oh ˜B = H†HB̃µ⌫B

µ⌫

OWB = (H†�aH)W a
µ⌫B

µ⌫ , O
˜WB = (H†�aH)W̃ a

µ⌫B
µ⌫ , (3.1)

where �a denotes the three Pauli matrices and a is the isospin index. The operators have coe�cients
ai bounded by the interval [�1/⇤2

neg

, 1/⇤2

pos

], where ⇤ is some high scale.2

Now we specify the observables these operators contribute to. It is well known that OWB gives
the S parameter in the electroweak precision tests (EWPT),

S =
4sW cW v2aWB

↵
,

where sW ⌘ sin ✓W , cW ⌘ cos ✓W , and v = 246 GeV.
Among all the operators, OW , OWB (O

˜W , Oh ˜W , O
˜WB) modify CP-even TGCs (CP-odd TCGs).

More concretely, the general triple gauge couplings could be parametrized as [93],

LWWV /gWWV = igV
1

�
W+

µ⌫W
�µV ⌫ � h.c.

�
+ iV W+

µ W�
⌫ V µ⌫ +

i�V

m2

W

W+

µ⌫W
�⌫�V µ

�

+i̃V W+

µ W�
⌫ Ṽ µ⌫ +

i�̃V

m2

W

W+

µ⌫W
�⌫�Ṽ µ

� + · · · , (3.2)

where V is either Z or � and gWWZ = �e cot ✓W , gWW� = �e. The first line of Eq. 3.2 contains
CP-even TGCs while the second line contains CP-odd TGCs. The dots represent C-violating TGCs
arising from operators at high orders in the SM e↵ective theory. In the SM, gV

1

= 1, V = 1 and

2In some literature [91, 92], more CP-odd operators were listed. As we show in Appendix B, those additional operators
can be written in terms of the operators in Eq. 3.1 using the equations of motion.
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Operators modifying the Higgs to diphoton rate have CP-
violating cousins:

couplings (neglecting SM gauge coupling e↵ects) are extracted from the general formulas [81–84]:

16⇡2�(g⇠) = g⇠
⇣
2 |g⇠|2 + |g |2 + 4 |g�|2

⌘
(2.27)

16⇡2�(g ) = g 
⇣
3 |g |2 + |g⇠|2 + 4 |g�|2 + |y|2 + |yc|2

⌘
� 4g†�yyc (2.28)

16⇡2�(g�) = g�

✓
5 |g�|2 + |g⇠|2 + 2 |g |2 +

1

2

⇣
|y|2 + |yc|2

⌘◆
� 2g† yyc (2.29)

16⇡2�(y) =
1

2
y
⇣
|g�|2 + |g |2 + 5 |y|2 + 2 |yc|2

⌘
� 2yc†g g� (2.30)

16⇡2�(yc) =
1

2
yc
⇣
|g�|2 + |g |2 + 5 |yc|2 + 2 |y|2

⌘
� 2y†g g� (2.31)

We will evolve these RGEs to examine the extent to which annihilating through resonant enhancement
relieves the Landau pole problem of the all-scalar model.

The modified h ! �� rate, in the limit of large m ,�, is determined by the low energy theorems
to be [3, 61, 62, 70]:

µ�� =

����1 +
1

A
SM

2

3
Q2

 

@

@ log v
log det M†M

����
2

+

����
2

A
SM

Q2

 

@

@ log v
arg det M

����
2

, (2.32)

where the first term arises from the modified CP-even hFµ⌫Fµ⌫ vertex and the second term from
the CP-odd hFµ⌫ F̃µ⌫ term. Here A

SM

= �6.49 represents the SM amplitude. As in the scalar case,
the result is modified by familiar loop functions that correct for finite mass, which are given in the
CP-even and CP-odd case respectively by [85]

A
1/2(⌧f ) =

3

2
⌧f

 
1 + (1 � ⌧f ) arcsin2

s
1

⌧f

!
(2.33)

Ã
1/2(⌧f ) = ⌧f arcsin2

s
1

⌧f
, (2.34)

(with ⌧f = 4m2

f/m2

h) and asymptote to 1 when 2mf � mh. (Note that there is a minor error in
Ref. [86], which assumes the same loop function for the scalar and pseudoscalar decay modes.)

We choose two representative points in parameter space that fit a 50% enhanced h ! �� rate. In
both cases, we arrange for the light mass eigenstate to be at 140 GeV, such that it is near the DM
mass but slightly too heavy for the dark matter to annihilate into two of our new charged fermions.

• Moderate phase: m = m� = 346 GeV, y = 1.37e0.2⇡i, yc = 1.37. The mass eigenvalues are 140
and 577 GeV. As we will see in the next section, this point is excluded by the nonobservation
of an electron EDM: it predicts de/e = 9.3 ⇥ 10�27 cm. However, this exclusion can be avoided
if the EDM is canceled by another contribution which must be tuned to about the 10% level.
(And note that our phase is already somewhat small; maximal CP violation would require the
EDM to be tuned at a few-percent level.)

• Small phase: m = m� = 333 GeV, y = 1.11e0.02⇡i, yc = 1.11. The mass eigenvalues are 140 and
526 GeV. This point is currently safe from EDM constraints, predicting de/e = 7.3 ⇥ 10�28 cm,
but would likely be detected with next-generation electron EDM measurements [63].

In both cases, we will also consider equal couplings g ⌘ g⇠ = g = g� of the pseudoscalar resonance,
chosen to achieve a gamma-ray line rate of 1.0⇥10�27 cm3/s. These turn out to be relatively insensitive
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CP-violating phases in mass matrix of fermions running in 
the loop generate these operators and affect the rate:

HIGGS AND CP



CP VIOLATION
Could try to probe this with CPV Higgs decays (Voloshin 
1208.4303), but also: RGE mixes

H†HFµ� F̃
µ� and LH�µ� ēF

µ�

Generically, new physics that alters Higgs decays with 
fermions will produce a nonzero electron (or 
neutron) EDM. “Higgs CP problem”

⇥̃0

⇥̃0

W+

W�

⇥̃�

Figure 4: Some annihilation modes

eL eR

⇥Hu

X+

�

hZ ,�

Figure 5: Two-loop EDMs in supersymmetric theories. The one-loop diagram in the dashed box is a
“CPV-EWPT" term.
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“Barr-Zee” type diagrams:
may be familiar, e.g. split SUSY
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Figure 10. Upper: “vector-like lepton” model; Lower: “wino-Higgsino” model. N = 1,m = m�, y = yc in

all these plots. � =arg(yycm⇤
 m

⇤
�). The horizontal and vertical axes correspond to the light and heavy mass

eigenvalues. The solid purple line is the current EDM constraint de/e = 1.05⇥ 10�27 cm with the grey region

excluded; the dashed purple line is the projected constraint de/e = 10�28 cm. The green lines denote the

diphoton enhancement µ�� .

calculation, it can also be understood as a consequence of the fact that the arg det M coupling arises
from an anomalous rotation of fermion fields, whereas scalars have no anomalies. However, if there
is a pseudoscalar particle in the spectrum that can run in the two-loop EDM diagram in place of the
Higgs, or if CP-violation leads the Higgs to have a small pseudoscalar-like coupling to the electron
(e.g. by mixing with a pseudoscalar), there will still be a two-loop EDM [107]. Thus, in the case of
charged scalars, the Higgs CP problem would be less robust: if all pseudoscalars are heavy, the EDMs
can be rather small. (There are other di�culties for such an interpretation of an increased h ! ��
rate, as new charged scalars typically have vacuum stability problems [40, 46], although there is still
viable parameter space for quite light scalars [55].)
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Constraints from EDMs: green contours are Higgs to 
diphoton enhancement

Solid purple: de/e = 1.05 10-27 cm;
dashed purple: de/e = 10-28 cm

J. Fan and MR, 1301.2597
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The ACME collaboration (DeMille/Doyle/Gabrielse) 
claims to be able to improve the EDM limit by an order 
of magnitude (or measure it). Latest news at colloquium 
on Monday (April 29) at Harvard?
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MORAL
Loop-level corrections to Higgs properties are 
small in almost any well-behaved model. Still 
worth looking! But don’t expect effects larger 
than ~20% without running into vacuum 
instabilities that are likely to kill or severely 
constrain the model.

Many reasonable people who thought about 
the diphoton excess concluded it would go 
away and, at CMS, it has.



MORAL

A more plausible scenario for modifying Higgs 
couplings is through an extended Higgs sector (e.g. 
2HDM mZ2/mA2 effects in the MSSM). Not 
surprising: it’s tree-level.

Then, expect correlated changes in diphoton and 
ZZ, WW.

Important to look for other Higgses as well!



STANDARD MODEL 
VACUUM STABILITY

Aside from neutrino masses and gravity modifying 
physics at high energies, and dark matter with no 
definite connection to the SM, we currently have 
no compelling beyond Standard Model 
signals.

This raises the question: does the SM Higgs 
potential give us any reason to suspect new 
physics at some scale?



VACUUM STABILITY IN THE SM
The Higgs quartic coupling runs according to:

�(�) ⇡ 1

8⇡2

�
12�2 + 6�y2t � 3y4t

�

The top Yukawa has:

Experimentally, we now know � ⇡ 0.13, yt ⇡ 1.

So, the leading effect is that the Higgs quartic decreases at 
high scales due to the top Yukawa, and top Yukawa 
decreases due to the strong gauge coupling.

�(yt) =
1

8⇡2

✓
9

4
y3t � 4ytg

2
s

◆



SHAPE OF THE HIGGS 
POTENTIAL

To good accuracy, the running quartic         describes the 
behavior of the potential at large field values H:

�(µ)

This is due to the RG improvement of the Coleman-
Weinberg potential, which involves           terms.

The leading    dependence cancels between logs in the 
Coleman-Weinberg potential and the logs in the running 
couplings.

log

|H|2

µ2

µ

V (H) ⇡ �(|H|) |H|4 at |H| � v.



TUNNELING
There is a simple approximation for the bounce action of 
the tunneling solution (Isidori, Ridolfi, Strumia [IRS] hep-
ph/0104016):

H =
1p
2
h(r), r2 = xµx

µ

where
d2h

dr2
+

3

r

dh

dr
+ V 0(h) = 0

solution with h = v at infinity and h’(0) = 0:

h(r) =

s
2

|�|
2R

r2 +R2
, S0 =

8⇡2

3 |�|

Here     is taken fixed and negative. �



TUNNELING
Our toy solution has an arbitrary size modulus R, and it’s 
unclear what scale to evaluate the quartic at. IRS do a 
one-loop calculation including the functional determinant 
to pin them down. Should take:                 with     near 
the scale where the potential goes unstable.

R ⇠ 1/µ µ

Scale of the instability:

and including N copies with identical couplings, the relevant RGEs read [48, 49]
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The RGEs for yc and ycn are similar to that for y and yn. The gauge beta functions are

b
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=
41

10
+

6N
5

, b
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6
+

2N
3

, b
3

= �7. (A.2)

Vector doublets + triplet (“wino-higgsino”). For our “wino-higgsino” scenario, including N
copies with identical couplings and allowing for an additional singlet n, the relevant RGEs read [50]
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b
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=
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2N
5

, b
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= �19

6
+ 2N , b

3

= �7. (A.4)

We take as initial conditions, at a scale µ = 100 GeV,

g
1

= 0.36
p

5/3, g
2

= 0.65, g
3

= 1.2, yt = 0.99, � =
m2

h

2v2
= 0.129. (A.5)

The vacuum stability cuto↵ scale ⇤UV is determined by [51]

� (⇤UV ) =
2⇡2

3 log
⇣

H
⇤UV

⌘ = �0.065

✓
1 � 0.02 log

10

✓
⇤UV

100 GeV

◆◆
, (A.6)

with the Hubble constant H = 70 km/s/Mpc = 1.5 · 10�42 GeV. We comment that for the problem
under study, Landau poles of the Yukawa couplings appear at much higher scales, beyond the scale
where the vacuum instability sets in, posing no additional constraint.
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RUNNING QUARTIC
Recently: 1205.6497 by Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, 
Isidori, Strumia. NNLO.
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt and ↵s by ±3�.

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed

2

Metastable potential, instability near the intermediate scale.



VACUUM INSTABILITY
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5GeV, whose main contributions

can be decomposed as follows:

+ 0.6GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2GeV due to the Yukawa threshold corrections to �;

� 0.2GeV from RG equation at 3 loops (from [12,13]);

� 0.1GeV from the e↵ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e↵ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).

17

Degrassi et al. find that the measured values fall in a region 
where the quartic runs negative, but the lifetime is long 
enough that it could be our universe (metastable region).



ANOTHER VIEW
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The (red)

diagonal arrow shows the e↵ect of varying ↵3(mZ) = 0.1196± 0.0017 [19]; the (blue) horizontal

one shows the e↵ect of varying µ� (the matching scale of �) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2� ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, � and �� both vanish at a certain scale µ� (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point

have to change in order to keep having, at the same scale µ�, a vacuum degenerate with

the electroweak one. The diagonal arrow is obtained by varying the strong coupling in

its allowed range, ↵3(mZ) = 0.1196± 0.0017 [19]; the short (long) dashed line shows how

the solid line would move if ↵3(mZ) were equal to its minimum (maximum) presently

allowed value. Notice that the error on ↵3(mZ) induces an uncertainty in both the Higgs

and top masses of about ±0.7 GeV. In ref.[14] the impact of the variation of ↵3(mZ) on

mH was estimated to be ±0.5 GeV (see their table 1). The two results are in substantial

agreement, considering that in our analysis ↵3(mZ) = 0.1196 ± 0.0017 at 1� [19], while

ref.[14] considers a smaller error, ↵3(mZ) = 0.1184 ± 0.0007 at 1�. Since the variation

of the other input parameters in eq.(4) induces much smaller e↵ects then the one due

1209.0393 by Isabella Masina: emphasizes uncertainty in 
top mass (is what’s measured precisely the pole mass?)

Becomes important to reduce uncertainties in the top 
sector in order to make a definite claim.



WHAT DOES IT MEAN?
•Bad news for supersplit supersymmetry. 
MSSM boundary conditions at a high scale lead to larger 
Higgs masses, ~ 140 GeV. 

•Some are using it as propaganda for “asymptotic safety,” 
an idea that seems to me to be obviously inconsistent with 
black hole physics & semiclassical GR.

•Many others are adopting a (related?) view that quadratic 
divergences are not real. But quadratic sensitivity to large 
mass scales is physical, the SM is not UV complete, and 
gravity is real, so I can’t make sense of this viewpoint.



WHAT DOES IT MEAN? 
INSIGHTS FROM TWITTER



CONCLUSIONS
•Vacuum instabilities plague most attempts to significantly 
modify the loop-level Higgs couplings to photons and to 
gluons. Tree-level alterations (mixing) typically safer.

•If large loop corrections observed, possible “Higgs CP 
problem.”

•Standard Model: probably metastable, with quartic 
running negative at intermediate scale. Lots of room for 
unknown new physics to modify the story.

•I’m skeptical of any deep meaning attached to small 
lambda at high scale.


